
Dynamic Adaptation of the Traffic Management
System CARDEMO

Arnaud Cordier∗, Rémi Domingues∗, Anthony Labaere∗, Nicolas Noel∗, Adrien Thiery∗,
Thomas Cerqueus∗, Siobhán Clarke‡, Pawel Idziak‡, Hui Song†, Philip Perry∗ and Anthony Ventresque∗

∗ Lero@UCD, Performance Engineering Lab. School of Computer Science and Informatics
University College Dublin, Ireland. Email: {firstname.lastname}@ucd.ie

† SINTEF ICT, Norway, Email: hui.song@sintef.no
‡ Lero@TCD, Distributed Systems Group

Trinity College Dublin, Ireland. Email: {firstname.lastname}@tcd.ie

Abstract—This paper demonstrates how we applied
a constraint-based dynamic adaptation approach on
CARDEMO, a traffic management system. The approach
allows domain experts to describe the adaptation goals as
declarative constraints, and automatically plan the adaptation
decisions to satisfy these constraints. We demonstrate how to
utilise this approach to realise the dynamic switch of routing
services of the traffic management system, according to the
change of global system states and user requests.

I. INTRODUCTION

CARDEMO is a Traffic Management System (TMS)
developed to showcase research outputs produced within
Lero1. The system offers all the basic functionalities of
a TMS, e.g., viewing of a map, geolocation, routing ser-
vices, localisation of Points Of Interests (POIs), viewing
of traffic information. Most of these services use APIs and
data provided by OpenStreetMap [1], [2]. Three types of
users are defined: every-day user, public servant (e.g., a
police officer) and TMS operator. As their expectations and
needs are different, three distinct Graphical User Interfaces
(GUIs) were developed. CARDEMO relies on the Entreprise
Service Bus (ESB) software architecture model. In this
type of architecture, functionalities are designed as services.
Each service can be composed of other services, and
services interact to form the whole system. Mule ESB [3]
was chosen as the development framework for CARDEMO.

As the context of the application may change (e.g., a
service may fail) and the requirements of the users may
vary, a system needs to be able to adapt. In this paper we
present an adaptation at runtime mechanism, and we show
how it is integrated in a complex and real application. In
this work, the adaptation mechanism is used to adapt a
specific component of CARDEMO: the routing service.

II. ADAPTATION AT RUNTIME METHOD

A. General idea

The adaptation of routing methods of CARDEMO is
implemented by the DYSARM adaptation tool [4]. The
tool implements a constraint-based adaptation approach, as
shown in Figure 1.

1The Irish Software Engineering Research Centre (www.lero.ie).

domain 
modeling

meta 
model
(MOF)

adaptation 
goals
(OCL)

runtime 
model

system

CSP 
generation CSP constraint 

solving

new 
config

runtime 
model'

domain experts

Fig. 1. Overview of DYSARM constraint-based adaptation.

The DYSARM adaptation tool requires domain experts
to provide two parts of specification for the target domain.
A meta-model defines what types of elements the system
can be composed of in this domain, and the properties
of each type. An adaptation goal specification describes
the constraints of these types, or in other word, what
is the expected system status in this domain. The two
specifications are described in MOF (Meta Object Facility)
and OCL (Object Constraint Language), respectively. At
runtime, the tool uses the models@runtime technique to
abstract the current system state into a runtime model
conforming to the meta-model. From this model and the
adaptation goals, it generates a constraint satisfaction prob-
lem, and uses constraint solving to find a new configuration
of the system, which satisfies as many adaptation goals as
possible. From the new configuration, the models@runtime
engine calculates the difference and execute them back into
the running system.

B. Integration in CARDEMO

Among all the features offered in the GUIs, this paper
focuses on the routing. Table I lists the requirements (first
3 lines) and the features (last 4 lines) of six routing al-
gorithms that are integrated in CARDEMO. The algorithms
osm2po-A* and osm2po-Dijkstra come from the osm2po
API [5]. OSRM is provided through the OSRM API, while
Dynamic Routing was developed to take into account the
presence of events (e.g., car crash, protest) for the routing.



TABLE I
REQUIREMENTS AND FEATURES OF THE ROUTING ALGORITHMS.

osm2po-A* osm2po-Dijkstra OSRM Dynamic Routing SUMO-Duarouter SUMO-Dijkstra
Graph needed 3
SUMO needed 3 3
Only Dublin 3 3 3
Considers events 3
Provides the shortest path 3 3
Supports via points 3 3 3
Provides routing directions 3
Ping demand (access time) 3 2 1 5 4 3

graphNeeded:Boolean
sumoNeeded:Boolean
onlyDublin:Boolean
shortestPath: Boolean
pingDemand:Integer

RoutingService

Repository
sumoUp: Boolean
graphUp: Boolean

System

isInDublin: Boolean

User

shortestPath: Boolean

Requestuses

Fig. 2. Excerpt of the Meta-Model for CARDEMO.

Finally, SUMO-Duarouter and SUMO-Dijkstra come from
the SUMO simulator [6].

Figure 2 shows an excerpt of the meta-model we defined
for the TMS. The system maintains a repository of available
routing services, and it carries global states, such as if
the SUMO simulator is running. The system is monitored
at regular intervals, allowing the capture of the global
states changes at runtime. Similarly, different users, and
even different requests from the same user, have different
requirements. The adaptation problem is to compute and
select the best candidate service to answer the requests
according to the global state, and the requirement of
the current request. The sample constraints listed below
illustrate how to specify the adaptation goals. The first
two constraints regulate that the current request needs a
service that supports shortest paths or considers events; the
selected service must provide one of these features. The
third constraint utilises the global system state: the selected
service can be SUMO-Duarouter or SUMO-Dijkstra, only if
the current system has a SUMO simulator up and running.
Finally, the last constraint expresses that the time required
to access the service should not exceed the scope of pings
allowed for the current user. For each constraint, we give
a priority, and lower ones may not be satisfied in some
circumstances. When the priority value is set to −1, it
means that the constraint cannot be violated.

context Request inv: #priority = 3
shortestPath implies uses.shortestPath

context Request inv: #priority = 5
consideringEvents implies uses.consideringEvents

context Request inv: #priority = -1
uses.sumoUp implies user.system.sumoUp

context Request inv: #priority = 2
uses.pingDemand <= user.ping

The tool solves these constraints as follows.
When the current state is [system.sumoUp=false,

user.ping=2, user.isInDublin=false], the solving
result, and the adaptation decision, is to select osm2po-
Dijkstra. For another example, if the request requires both
shortest path and the consideration of events, than no
candidate service can satisfy both, and the constraints are
not satisfiable in this context. As the considering events
has a higher priority, the result will be Dynamic Routing,
ignoring the constraint related to shortest path.

III. DEMONSTRATION SCENARIOS

As it is not straightforward to simulate a realistic con-
text of execution for the system, the changes of context
are done artificially. Concretely, the GUI of CARDEMO
includes a panel in which it is possible to disable a
given service. For instance, a button allows to disable the
SUMO service. In the demonstration we will show that the
failure of the SUMO service, which represents a context
change, triggers an adaptation of the system: the routing
service is replaced. A video showing this specific scenario
is accessible on the website of the CARDEMO project:
http://cardemo.ucd.ie/saso-demo.mov.

ACKNOWLEDGMENTS

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software
Engineering Research Centre (www.lero.ie).

REFERENCES

[1] M. M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[2] J. Bennett, OpenStreetMap: Be your own Cartographer. Packt
Publishing, 2010.

[3] MuleSoft. (2014) Mule ESB: Most Popular Open Source ESB.
[Online]. Available: http://www.mulesoft.com/platform/soa/mule-esb-
open-source-esb

[4] H. Song, S. Barrett, A. Clarke, and S. Clarke, “Self-adaptation
with end-user preferences: Using run-time models and constraint
solving,” in ACM/IEEE 16th International Conference on Model-
Driven Engineering Languages and Systems (MODELS). Springer,
2013, pp. 555–571.

[5] osm2po. (2014) osm2po: OpenStreetMap converter and routing
engine for Java. [Online]. Available: http://osm2po.de

[6] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO -
Simulation of Urban MObility: An Overview,” in 3rd International
Conference on Advances in System Simulation (SIMUL), 2011, pp.
63–68.


