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ABSTRACT

Motivation: Recent developments in sequence alignment software

have made possible multiple sequence alignments (MSAs) of

4100 000 sequences in reasonable times. At present, there are no

systematic analyses concerning the scalability of the alignment quality

as the number of aligned sequences is increased.

Results: We benchmarked a wide range of widely used MSA pack-

ages using a selection of protein families with some known structures

and found that the accuracy of such alignments decreases markedly

as the number of sequences grows. This is more or less true of all

packages and protein families. The phenomenon is mostly due to the

accumulation of alignment errors, rather than problems in guide-tree

construction. This is partly alleviated by using iterative refinement or

selectively adding sequences. The average accuracy of progressive

methods by comparison with structure-based benchmarks can be

improved by incorporating information derived from high-quality struc-

tural alignments of sequences with solved structures. This suggests

that the availability of high quality curated alignments will have to

complement algorithmic and/or software developments in the long-

term.

Availability and implementation: Benchmark data used in this study

are available at http://www.clustal.org/omega/homfam-20110613-25.

tar.gz and http://www.clustal.org/omega/bali3fam-26.tar.gz.

Contact: fabian.sievers@ucd.ie

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Multiple sequence alignments (MSAs) of many thousands of

protein sequences are becoming commonplace. The biggest

families in Pfam (Punta et al., 2012) have4100 000 sequences

or domains and will expand greatly as new genome sequences are

being sequenced. MSAs are an integral part of how Pfam and

other domain databases are used and maintained. Metagenomics

research routinely involves the use of alignments of tens of thou-

sands of sequences, and almost all phylogenetic analysis involves

generating an MSA as a starting point. However, the generation

of the MSA can be computationally too intensive for very large

scale phylogenetic analysis. Recent work on predicting protein

structure from sequence alignments is based on having very high

quality alignments of many thousands of sequences (e.g. Marks

et al., 2011). Alignments of thousands of sequences have also

been used in the area of virus classification (Shi et al., 2010)

and epistasis (Breen et al., 2012).

Only a few of the standard MSA packages are capable of

aligning tens of thousands of sequences. In a recent article, we

described a new package called Clustal Omega (Sievers et al.,

2011), which makes it practical to align 4100 000 protein se-

quences on a desktop computer and is as accurate as some of

the most computationally demanding methods that can only

align a few hundred sequences. The PartTree program (Katoh

et al., 2007) of the MAFFT package (Katoh et al., 2002) and

Kalign (Lassmann and Sonnhammer, 2005) can also make align-

ments of this size, although with a lower accuracy.
Some studies (Katoh et al., 2005; Pei and Grishin, 2007;

Simossis and Heringa, 2005) suggest that the quality of an align-

ment may increase as more sequences are added. This is only true

if the newly added sequences are few and carefully chosen. As of

yet, no systematic analyses have been conducted for large num-

bers of homologous sequences.

In this article, we look at some of the issues that occur when

making alignments of 100–50000 sequences using standard auto-

matic MSA packages. For small alignments, we confirm a lim-

ited increase in accuracy, however, only if the added sequences

are carefully chosen. We find a universal trend towards marked

decrease in alignment accuracy as large numbers of sequences are

added indiscriminately. We explore strategies that attenuate this

deterioration, but they are useful only in certain cases. The strat-

egy that best preserves alignment accuracy with very large

datasets is to use a very high quality alignment of a small

subset of the sequences to help guide the alignment. This suggests

that very large alignments of high quality may be possible, but

only if very high quality alignments such as those from structure

superpositions or expert curated alignments are available.

2 METHODS

We investigate the general effect on the alignment quality of an MSA

when adding new sequences to an existing set of un-aligned sequences.

For this, we require (i) a broad range of alignment programs and (ii)

suitable benchmark data.*To whom correspondence should be addressed.
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2.1 Alignment programs

The alignment programs that are used in this study are as follows:

(1) Clustal Omega, v1.0.3 (Sievers et al., 2011)

(2) ClustalW2, v2.1 (Larkin et al., 2007)

(3) DIALIGN 2.2.1 (Morgenstern et al., 1998)

(4) FSA 1.15.5 (Bradley et al., 2009)

(5) Kalign 2.04 (Lassmann and Sonnhammer, 2005)

(6) MAFFT 6.857 (Katoh et al., 2002)

(7) MSAProbs 0.9.4 (Liu et al., 2010)

(8) MUMMALS 1.01 (Pei and Grishin, 2006)

(9) MUSCLE version 3.8.31 posted May 1, 2010 (Edgar, 2004)

(10) Opal v2.0.0 (Wheeler and Kececioglu, 2007)

(11) Pagan v.0.38 posted March 6, 2012 (Löytynoja et al., 2012)

(12) POA V2 v1.0.0 (Lee et al., 2002)

(13) PRANK v.100802, August 2, 2010 (Löytynoja and Goldman,

2008)

(14) Probalign v1.4 (Roshan and Livesay, 2006)

(15) PROBCONS version 1.12 (Do et al., 2005)

(16) PSAlign (using TCoffee 1.37) (Sze et al., 2006)

(17) SATé v1.4.0 (using MAFFT v6.717b) (Liu et al., 2009)

(18) T-Coffee Version 8.99 (Notredame et al., 2000)

All programs were run with default command-line settings, apart from

SATé, where –iter-without-imp-limit¼ 1 was set, to speed up the align-

ment. We used four different flavours of the MAFFT program:

(i) L-INS-i, (ii) PartTree (Katoh et al., 2007), (iii) default FFT-NS-2

mode and (iv) DP-PartTree. DP-PartTree uses a reduced distance

matrix like PartTree but calculates full dynamic programming distances.

Pagan (Löytynoja et al., 2012) does not construct its own guide-tree but

requires an external one. We re-used the Clustal Omega guide-trees, as

they produced higher scores with Pagan than (default) MAFFT

guide-trees (results not shown).

Of these programs, we will particularly focus on: (i) Clustal Omega,

(ii) Kalign, (iii) MAFFT PartTree, (iv) DP-PartTree and (v) MAFFT

L-INS-i. In Sievers et al. (2011), it was shown that on the BAliBASE3

(Thompson et al., 2005) benchmark, Clustal Omega was more accurate

than all progressive aligners and faster than all consistency aligners.

Kalign was the fastest progressive aligner, while still giving very good

accuracy. MAFFT L-INS-i was the fastest consistency aligner, and

MAFFT-PartTree was the only program, apart from Clustal Omega,

that could align �100000 sequences. Of these, only Clustal Omega,

Kalign and MAFFT-(DP-)PartTree could align 50 000 sequences in a

reasonable time. The other programs were run for up to 500 sequences.

2.2 Benchmark datasets

To assess the quality of an automatically generated MSA, one can use

benchmark reference alignments. These are carefully constructed align-

ments that are assumed to be correct. Established benchmarks are made

up of families with relatively few sequences, for example, at most 50 for

Prefab (Edgar, 2004), at most 142 for BAliBASE3 and at most 807 for

BAliBASE10 (Thompson et al., 2011). Neither of these benchmarks qual-

ify as extremely large alignments w.r.t. the number of sequences. We

therefore created our own benchmark (Sievers et al., 2011), where we

blended Homstrad (Mizuguchi et al., 2008) (as of June 13, 2011) reference

sequences with Pfam (version 25) non-reference sequences, whenever

there was a one-to-one match between Homstrad and Pfam families

and when the Homstrad reference alignment had five or more sequences.

The Homstrad reference alignments are assumed to be known with

perfect accuracy. The Pfam sequences are available in large numbers,

some exceeding 100000. We compiled 94 families, with between 5 and

41 reference sequences, reference alignments between 39 and 938 in length

and between 88 and 93 675 non-reference sequences. Only three families

have450 000 sequences.

The HomFam dataset is composed of single-domain Homstrad refer-

ence sequences with an admixture of Pfam sequences from the same single

domain. As a second dataset, we created BaliFam, where we blended

reference sequences from BAliBASE3 with �1000 Pfam sequences. We

augmented 100 (out of 218) BAliBASE3 families with Pfam sequences

from just one family. The remaining 118 families were augmented with

Pfam sequences from up to 16 families. This was either because the

BAliBASE3 family was multi-domain and/or because the corresponding

Pfam family/families did not contain the desired 1000 sequences. This

study does not consider fragments or sequencing errors, which pose dif-

ficult problems. HomFam and BaliFam are much easier to resolve and

are therefore the ‘best case scenario’.

The quality of the automatically generated alignment is then usually

expressed by the Sum of correctly aligned Pairs (SP score) or by the

number of correctly aligned Total Columns, divided by the length of

the alignment (TC score). It could be argued that the TC score is too

strict if non-core regions are to be aligned and scored. In this case, the SP

score is more forgiving. However, we will show that for the HomFam

benchmark set SP score and TC score give similar results. We also show

that considering only core regions produces equivalent results by using

BAliBASE10. For the rest of this study, we will use TC score over the

entire range of the alignments.

To compile the input sequences, we randomly re-shuffle the order of

the non-reference sequences with random seed r and then add the first i

non-reference sequences to the (unaligned) reference sequences of family

F, where i ¼ 0, 1, 2, 5, 10, . . . When i¼ 0 only reference sequences are

aligned. This is the base alignment; its TC score TCdefði ¼ 0, 8r,FÞ is

the base score. Sampling one or more non-reference sequences is

random and is therefore repeated R times with different random

number seed r. If non-reference sequences are aligned together with ref-

erence sequences, then only the alignment of the embedded reference

sequences can be scored. For scoring HomFam, we use qscore (Edgar,

2004), and for BaliFam, bali_score (Thompson et al., 2005). For the

computationally most demanding programs, we re-sample as often as

feasible; for Clustal Omega, Kalign, MAFFT L-INS-i and MAFFT

(DP-)PartTree, we re-sample R¼ 100 times. Results for different r are

averaged.

2.3 Change in alignment score

The score TCdefði, r,FÞ for the alignment of the Homstrad reference se-

quences (which can be scored) and i non-reference Pfam sequences (which

are part of the alignment but cannot be scored) of family F during

re-sampling round r is shifted by the score of the corresponding base

alignment TCdefð0, 0,FÞ (containing Homstrad sequences only). This

gives �defði, r,FÞ ¼ TCdefði, r,FÞ � TCdefð0, 0,FÞ, the change in TC score

w.r.t. the base alignment. Here, ‘def’ stands for default, that is, for the

alignment that is produced using the programs’ default command-line

arguments. For every i, the � are averaged over r and F to give the average

change in TC score for each alignment program as i non-reference se-

quences are added to the Homstrad references. These steps are illustrated

in Supplementary Figures S1 and S2.

To improve on these alignment results, it is important to understand

what mechanisms affect the score as non-reference sequences are added.

Since there are two distinct stages to the MSA process—(i) profile align-

ment and (ii) guide-tree construction—we try to isolate these two mech-

anisms by (i) keeping the guide-tree constant and by (ii) analysing the

default guide-trees, by removing the effect of non-reference residues

during the profile alignment stage. In both cases, we use Clustal

Omega as the alignment program of choice.
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2.4 Fixed guide-tree

It was shown previously that guide-tree topology strongly affects align-

ment accuracy (Blackshields et al., 2010). This effect of variations in the

guide-tree can be eliminated by fixing the tree. We construct, for each

family, the biggest possible guide-tree, that is, for all reference and all

available non-reference sequences. This will be called the fixed master

guide-tree. We then populate the fixed master guide-tree with reference

sequences only. In general, the topology of this fixed base tree will be

different from the default base tree. The alignment is the fixed base align-

ment with score TCfixð0, 0,FÞ. Successively more non-reference sequences

are then added at the appropriate positions in the master guide-tree.

As the master guide-tree is fixed, the relative order in which sequences

are aligned is the same for every alignment. We record

�fixði, r,FÞ ¼ TCfixði, r,FÞ � TCfixð0, 0,FÞ, the change in TC score w.r.t.

the fixed base score. The sequences that are used to obtain �defði, r,FÞ

and �fixði, r,FÞ are the same; however, the alignments are arrived at using

possibly different guide-trees, giving different alignments with different

TC scores. For �defði, r,FÞ, the guide-tree organizes itself from scratch,

while the guide-tree for �fixði, r,FÞ is based on the fixed master tree. This

procedure is illustrated in Supplementary Figures S3 and S4.

2.5 Pruned guide-tree

Conversely, to focus on the effect of the guide-tree topology, we take the

default guide-trees and prune away all non-reference sequences. Although

containing only reference sequences, these pruned trees will in general be

topologically different from the default base trees. The reason for this is

explained in Supplementary Figure S5. However, the pruned base tree is

always identical with the default base tree and hence TCpruneð0, 0,FÞ �

TCdefð0, 0,FÞ. Next, the reference sequences are aligned using the pruned

guide-trees and �pruneði, r,FÞ ¼ TCpruneði, r,FÞ � TCpruneð0, 0,FÞ, the

change in TC score of the pruned-tree alignment w.r.t. default base align-

ment, is obtained.

2.6 Correlation of default / fixed / pruned guide-tree

alignment scores

To quantify the effect of (i) profile alignment and (ii) guide-tree construc-

tion on the default alignment scores we ask whether �defði, r,FÞ, �fixði, r,FÞ

and �pruneði, r,FÞ are correlated. We chose Spearman’s rank correlation

coefficient � over Pearson’s correlation coefficient, as it only assumes a

monotonic function describing the correlation, rather than a linear one.

We calculate �ðiÞ as a function of i, the number of added sequences, to see

how contributions of the two mechanisms vary as more sequences are

added. We will present �ðiÞ for 1 � i � 5000 because there are at most 20

families with45000 sequences.

In this and the previous sections, we suggested to measure the align-

ment quality as a function of the number of (added) sequences.

Alternatively, we also study alignment quality as a function of the tree

topology as measured by its entropy and tree diameter.

2.7 Iteration

Several alignment programs, for example, Clustal Omega, MAFFT and

Muscle, can refine an alignment in a subsequent stage, which we will call

‘iteration’. Iteration attempts to improve the objective score by repeatedly

adjusting an initial MSA that is typically constructed by a progressive

algorithm.

Clustal Omega has, corresponding to the two stages of MSA, two

iteration modes, (i) guide-tree iteration and (ii) Hidden Markov Model

(HMM) iteration. The logic behind guide-tree iteration is that distance

information from a full multiple alignment should be more meaningful

than distances between pairs of sequences; consequently, a tree con-

structed with this information should yield a better alignment. HMM

iteration tries to remedy the fact that a progressive alignment algorithm

has no ‘foresight’. An alignment of two residues may seem advantageous

at an early stage of the MSA. However, as more residues get aligned to

this particular position, the initial alignment may in fact turn out to be

sub-optimal. ‘Mistakes’ made at an early stage cannot be undone later-on

in a progressive alignment scheme. HMM iteration helps to ‘anticipate’

the final distribution of residues and gaps at a certain position. The initial

alignment is turned into an HMM. During the progressive alignment

stage of the iteration, individual sequences and small profiles are aligned

with the HMM and pseudo-count information is transferred. Both iter-

ation modes can be invoked independently from each other; they can be

repeated and combined. As we disentangled the effects of the guide-tree

construction and the profile alignment stage, we will also invoke both

iteration modes separately, as well as combined.

MAFFT and Muscle can also perform guide-tree iteration, as outlined

above. Additionally, they can perform a refinement where a (preliminary)

alignment is broken up into two groups, and the groups are then

re-aligned (Barton and Sternberg, 1987).

2.8 Homology extension

So far, when adding homologues to the reference sequences, we have

randomly re-shuffled the non-reference sequences and taken sequences

from the top of this list. We would now like to reproduce the effect that

has been reported, for example in (Katoh et al., 2005; Kemena and

Notredame, 2009; Pei and Grishin, 2007; Simossis and Heringa, 2005),

that carefully selected homologous sequences can boost the alignment

quality. We group the added sequences into bands, based on the min-

imum distance they have from any of the reference sequences. For the

distance measure, we use both, full alignment distances and pair-wise

distances. As scale, we use the minimum distance m between the reference

sequences themselves, the average distance a between the references

and their geometric mean g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

m� a
p

. This gives rise to four

bands, where the minimum distance between a test sequence and any

reference sequence are dðvery similarÞ 2 ½0,mÞ, dðsimilarÞ 2 ½m, gÞ,

dðmediumÞ 2 ½g, aÞ and dðdissimilarÞ 2 ½a,1Þ. Alternatively, methods

like Cd-hit (Li and Godzik, 2006) or UCLUST (Edgar, 2010) can be

used to group the sequences.

2.9 External profile alignment

External Profile Alignment (EPA) is a combination of the iteration

scheme from section 2.7 and the homologue scheme from section 2.8.

During iteration, an HMM was produced from an internally created

alignment; this HMM was used in a subsequent step to refine the align-

ment. The homologue scheme used externally stored un-aligned sequences

to help with the alignment. EPA uses HMMs derived from externally

produced alignments. Such alignments can be small and locally main-

tained ones or large generic alignments, as maintained, for example, by

Pfam. Using HMMER (Finn et al., 2011), we generated an HMM from

the actual Homstrad reference alignment. This clearly is a blatant case of

over-fitting, as it uses as input the alignment that is later used to score the

alignment. These results therefore present an upper limit for the EPA

scheme, using current aligners. However, it is a proof of principle that

shows that EPA of carefully maintained alignments can significantly

boost the quality of large alignments. The second method is more realis-

tic, in that it uses HMMs that had been retrieved from Pfam. Pfam

HMMs are produced from relatively small seed alignments, which in

turn have been created using standard MSA programs, like MAFFT or

MUSCLE. While the Pfam seed sequence selection may be representative,

the actual seed alignment is presumably sub-optimal. The results for the

Pfam–EPA scheme therefore present the lower limit for the potential of

the EPA method.
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3 RESULTS

3.1 Scalability of alignment quality

For a preliminary investigation, we took the three largest families

in HomFam. HomFam families are composed of a small number

of Homstrad sequences, for which the ‘correct’ structural align-

ment is known and can be scored, and a large number of Pfam

sequences, for which no reliable alignment is known and there-

fore cannot be scored. The reference sequences were aligned to-

gether with non-reference sequences, using different aligners

[Clustal Omega, MAFFT (DP-)PartTree and Kalign]. There is

a clear trend: the alignment accuracy of the embedded Homstrad

reference sequences falls as more non-reference Pfam sequences

are aligned. This is shown in Supplementary Figure S6. To be

sure that this phenomenon was not exclusive to just these test

cases and these methods, we then tested all 94 HomFam test sets

using 21 different alignment programs. In Figure 1, we show the

change in alignment accuracy, as measured by the increase or

decrease in TC score, as progressively more homologous Pfam

non-reference sequences are added to Homstrad reference

sequences.

The large scale tendency is the same for all alignment pro-

grams: the TC score goes down as large numbers of randomly

selected homologous non-reference sequences are added. Most

programs fall off in a more or less monotonic manner. A few

programs enjoy a modest initial improvement. Most notably

amongst these are MAFFT L-INS-i, Dialign, Opal, SATé and

Probcons. However, even these programs inevitably end up

below their respective base alignment TC score. Dialign and

POA remain relatively constant over the sampled range.

However, their absolute TC scores are comparatively low

(Supplementary Figs S7–S9). The behaviour of the top five pro-

grams, for which the added sequences were re-sampled 100 times,

is shown in the top right inset of Figure 1; the entire table is

rendered in Supplementary Figure S10. Results for the

multi-domain BaliFam test set are shown in Supplementary

Figure S11. These results show the same tendency as for the

single-domain HomFam. We also plotted the change in align-

ment scores against various tree measures like entropy and diam-

eter. These correlated well for sequences of medium similarity

(see section 2.8), but did not correlate well for sequences of high

or low similarity (results not shown).

3.2 Contributions to the change in alignment quality

Next we wanted to establish if and how much different elements

of the MSA scheme contribute to the change in alignment ac-

curacy. In Figure 2a, we plot �fixði, r,FÞ, the change in the fixed

tree score, against �defði, r,FÞ, the change in TC score if a default

guide-tree is used and not the fixed master guide-tree, as i Pfam

sequences of family F are added during re-sample r (Methods,

section 2.4). The data points show two cases, that is, where only

one sequence is added (i¼ 1, blue) and where five sequences are

added (i¼ 5, red). There are 94 families with at least five

non-reference sequences, which were re-sampled 50 times. So

there are ðf ¼ 94Þ � ðR ¼ 50Þ ¼ 4700 blue and red dots. Visual

inspection suggests that there is a positive correlation between

the two changes in score, and that the correlation is stronger for

one added sequence than for five. This is formalized in Figure 2d,

where we show the Spearman coefficient �ðiÞ, for the correlation
of default and fixed tree scores within the range of 1–5000 added

non-reference sequences (green). After a small drop (which at-

tains a minimum at five) from a positive value, �ðiÞ is rising

steadily. This means that errors outside the tree building phase,

Fig. 1. Change in HomFam alignment score w.r.t. base alignment as

non-reference sequences are added. Number of added sequences is

along the bottom x-axis. Number of families that results are based on

is along the top x-axis. Alignment algorithm along the y-axis—

‘K’¼Kalign, ‘PT’¼MAFFT-PartTree, ‘DP’¼ ‘DP-PartTree’ and

‘O’¼Clustal Omega. Number of re-samples R in parentheses, R¼ 100

for ‘K’, ‘PT’, ‘DP’ and ‘O’. Improvement is highlighted blue, deterior-

ation red. Top right hand inset shows graph of values for programs that

were re-sampled 100 times: ‘O’ (red), ‘K’ (purple), ‘PT’ (green) ‘DP’

(black) and MAFFTL-INS-i (blue)

Fig. 2. Correlation of default score and contributions from tree building

and profile alignment. (a) Correlation of change in default score (y-axis)

and fixed tree score (x-axis), (b) default score (y-axis) and pruned tree

score (x-axis), (c) fixed tree score (y-axis) and pruned tree score (x-axis);

(a–c) as i¼ 1 (blue) and i¼ 5 (red) sequences are added. (d) Spearman’s

Rank Correlation coefficient for default/fixed (green), default/pruned

(purple) and pruned/fixed (blue) changes in TC score as a function of

the number of added sequences. x-Scale is logarithmic
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that is, during the profile–profile alignment phase, contribute to
the overall deterioration in TC score as more sequences are
added; this effect is greater for larger numbers of sequences.

In Figure 2b, we plot the change in the pruned score
�pruneði, r,FÞ (Methods, 2.5) against �defði, r,FÞ, for i ¼ 1, 5.
Again, visual inspection suggests that there is a positive correl-

ation and that it is larger for five added sequence. This is quan-
tified in Figure 2d, where the purple line shows the Spearman

correlation coefficient of �pruneði, r,FÞ and �defði, r,FÞ. This curve
starts at about the same value as the green curve but—after a
brief rise, which attains its maximum at 20—falls off steadily.

This means there is a contribution from errors during the tree
building phase to the overall deterioration in TC score as

non-reference sequences are added; this effect is greater for smal-
ler numbers of sequences, and it is on average detrimental.
Extensive reconstruction of the original guide-tree frequently

leads to deterioration.
In Figure 2c, we plot �pruneði, r,FÞ against �fixði, r,FÞ for

i ¼ 1, 5, and there is no apparent correlation. This is borne out

in Figure 2d, where the blue line of Spearman’s coefficient for
�pruneði, r,FÞ and �fixði, r,FÞ hovers around zero. This means that

the contributions from the tree-building phase and the profile–
profile alignments phase to the overall deterioration in TC score
are decoupled.

3.3 Delay of alignment quality decay through iteration

Figure 3 shows the change in TC score for Clustal Omega,
MAFFT PartTree and MUSCLE with increasing number of se-

quences and different iteration schemes.
The default result for Clustal Omega, with no iterations, is

shown with bullets in Figure 3a. Results for various iteration

schemes are overlaid. The main part of Figure 3a shows that

iteration can indeed delay the onset of decay in alignment qual-

ity. Initially, single guide-tree iteration seems to be able to hold

the TC score for up to 50 sequences. Double guide-tree iteration

on its own appears to have no beneficial effect. After 50 added

sequences, the guide-tree iteration results decline, and after 1000

sequences, they are worse than the default results. Guide-tree

construction is based on distance matrix computation. Full dis-

tance matrices appear to give better results than mBed matrices

(see Supplementary Fig. S12). Although for up to ten sequences

HMM iteration has no appreciable effect, it then is able to sta-

bilize the TC score until 200 sequences are added. After that it

deteriorates, but it always remains above the default values.

Initially, multiple HMM iteration has no advantage over single

HMM iteration; however, as41000 sequences are added, double

and finally triple HMM iteration produce the best results. For

very large numbers of added sequences, however, no iteration

scheme can significantly reduce the decay in accuracy, as shown

in the small inset. HMM and guide-tree iteration appear to be

additive. When both HMM and guide-tree iteration outperform

the default results, then combined iteration is better than either

of the single schemes. When guide-tree iteration does worse than

default then combined iteration fares worse than HMM iteration

on its own. This is consistent with the correlation results from the

last section 3.2.
Figure 3b shows the change in the TC score for MAFFT

PartTree. Here, the default setting is ‘retree 2’ and ‘maxiterate

0’ (bullets). It is not possible to increase the ‘retree’ value, only to

reduce it. While there is a small absolute improvement for the

higher retree value (1.5%, not shown), we also notice a small

relative improvement for intermediate numbers of sequences.

For very large numbers, the default values are worse than the

un-iterated results; however, these results are based on very few

families. The ‘maxiterate’ value cannot be changed in PartTree

mode.

Figure 3c shows the change in TC score for MUSCLE. Here,

the default setting is ‘maxiters¼ 16’ (bullets). MUSCLE uses just

one flag to control both refinement modes. The default iterates

the guide-tree twice and performs the alignment division 14

times. We increased ‘maxiters’ to 32 and 256, but there was no

change in the absolute/relative scores. The results for four iter-

ations (two guide-tree iterations, two alignment divisions, results

not shown) were almost the same as for the default. The absolute

accuracy drops by 1.2 and 3.4% if the number of iterations drops

from 16 to 2 and 1, respectively (there are no alignment divisions

and only one or two guide-tree iterations, respectively). The rela-

tive drop can be clearly seen in panel (c), as the default curve

initially falls off less steeply. This is mainly due to the alignment

divisions. The difference between the two black curves is due to

the different number of guide-tree iterations only.
The overall result of Figure 3 is that iteration can, to a degree,

delay the onset of decay in TC score for increased numbers of

sequences but not indefinitely.

3.4 Effect of selectively sampling homologues

Figure 4 shows the TC scores if sequences are not added ran-

domly, as in Figure 1, but selectively. Similarity was defined

w.r.t. the minimum distance of an added sequence to any of
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Fig. 3. Change in TC score for different aligners and iteration schemes.

(a) Clustal Omega default result (not iterated) with bullets (same as red

curve in Fig. 1). Guide-tree iteration with diamonds, HMM iteration with

triangles, combined guide-tree/HMM iteration with squares. Single iter-

ation with empty symbols, double iteration with filled-in symbols, triple

iteration with upside–down symbols. Main part of Figure zooms in on

results for small number of sequences; inset shows overview for large

number of sequences. (b) MAFFTPartTree default results (retree¼ 2)

with bullets, un-iterated results with circles. (c) MUSCLE default (max-

iters¼ 16) results with bullets, lesser iterations with circles (1) and dia-

monds (2). Note the reduced x-range for MUSCLE
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the reference sequences. In Figure 4, we use full alignment dis-

tances; however, results for pair-wise distances are qualitatively

similar (not shown). We present results for four example aligners

(Clustal Omega, Kalign, MAFFT L-INS-i and Probalign). On

average (not true for Kalign), adding sequences that are very

similar (circles) or very dissimilar (crosses) does not improve

on the alignment quality of the random scheme (bullets).

Similar sequences simply ‘cover’ the reference sequences, not

adding any new information, while very different sequences

only get added once the reference sequences are already aligned

and their alignment is fixed. These sequences will still affect the

quality of the entire alignment. However, this quantity is unob-

servable in our scheme—as no reliable reference alignment exists

for the Pfam sequences—but it is bounded from above by the

observable TC score of the embedded Homstrad alignment. On

the other hand, sequences of medium similarity (diamonds and

boxes) appear to have a beneficial effect in small numbers. The

minimum distance of these test sequences lies between the mini-

mum distance of the reference sequences and the average dis-

tance of the reference sequences. This beneficial effect

dissipates for410–100 added sequences.

3.5 Effect of external profile alignment

Clustal Omega has a functionality called EPA where information

from External Profiles can be added in the form of an HMM.

Such HMMs are available from databases, such as Pfam, or can

be built from locally maintained alignments using, for example,

HMMER.
Figure 5 shows the effect of adding two different kinds of

External Profiles: an HMM built from the actual reference align-

ment (stars) and an HMM retrieved from Pfam (circles). Panels

(a–c) show the same three biggest HomFam test cases described

in words in 3.1 and in Supplemental Figure S6. Panel (d) is the

average of all 94 HomFam families. Both EPA-enhanced

alignments show, for large numbers of added sequences, a sig-

nificant improvement over the default results (bullets). Using the
actual reference alignment particularly enhances the score for

small numbers of sequences. Using Pfam, HMMs appears to
be less beneficial for small numbers of sequences but seems to

be more useful for larger numbers of sequences.
Clearly, in terms of alignment benchmarking, this is circular.

One cannot benchmark an alignment and alignment method, if
one uses the benchmark itself. What it does show, however, is

that if a user is faced with the problem of aligning large numbers
of sequences, from one of these families, the use of a high-quality

reference alignment helps enormously to maintain accuracy as
one makes bigger alignments.

4 DISCUSSION

All of the standard automatic MSA packages behave very simi-
larly, when the number of sequences to be aligned is increased

into the thousands. Although few families exhibit a marked
improvement in accuracy, the average accuracy—as measured

on structure-based benchmarks—decreases steadily. This raises
two obvious questions: what is the reason for the fall off and how

can it be fixed?
The simplest explanation for the fall off in accuracy is attrition

owing to the accumulation of noise and/or alignment errors as

sequences are added. All of the widely used algorithms are based
directly or indirectly on ‘progressive alignment’, which aligns the

sequences according to the branching order in a ‘guide-tree’. This
requires a series of alignment steps, at any of which alignment

errors can be made. These errors cannot be reversed, except by
iteration of the alignment process. Such alignment errors occur

less frequently with programs such as T-Coffee that use consis-
tency (Notredame et al., 2000), but such programs cannot easily

cope with 41000 sequences. The presence of fragments,
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frameshifts, swapped domains and very large insertions or dele-

tions will aggravate this situation.
With small numbers of sequences, the algorithms have proved

to be very robust for general use. With very large numbers of

sequences, however, the number of opportunities for irreversible

alignment errors increases steadily. Even if during progressive

alignment, only one sequence alignment in a thousand introduces

a serious error, in a dataset of 100 000, this will occur 100 times.

In large datasets, the scope for errors is simply very great. By

fixing the guide-tree topology, we were able to separate out the

effects of possible errors in guide-tree construction from align-

ment errors. Guide-tree construction certainly has an effect on

alignment accuracy, but it is not the main source of error here.

Iteration does help to delay the fall off in accuracy to an extent.

We tested various combinations of iteration of guide-tree con-

struction and alignment. For small-to-medium-sized datasets, the

effects are noticeable, but the fall off in accuracy inevitably fol-

lows. Either the iteration strategy needs to be changed or it needs

to be done more intensively. This would have the effect of greatly

increasing alignment times. Carefully choosing the sequences to

be aligned certainly has a beneficial effect, again, for modest

increases in dataset size. We observe the best results when

sequences of intermediate similarity are added. Figure 4 clearly

demonstrates that sequences that are very similar did not

improve accuracy. Perhaps, if huge alignments are desired, new

sequences to be added to the dataset must be selected carefully.
Using progressive alignment packages is not the only way to

make very large alignments, however. In the Pfam database,

HMMER is used in a simple process, to add sequences one at

a time to a smaller seed alignment. The accuracy of such align-

ment schemes has not been tested much, and it has probably

been assumed that the accuracy is low. The full Pfam alignments

are not intended as high-accuracy alignments. In Clustal Omega,

there is a facility to use a pre-existing HMM to help the align-

ment of a new set of sequences, in a process called EPA. In the

long-term, the most obvious solution to the issue of how to make

very large alignments may be to use smaller high-quality align-

ments as seeds or ‘external profiles’ and algorithms for extending

alignments such as Pagan (Löytynoja et al., 2012), PaPaRa

(Berger and Stamatakis, 2011) or as explained in (Katoh and

Frith, 2012). Progressive alignment alone can make the align-

ments, but the accuracy will be a serious issue without new algo-

rithms or strategies being developed.
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