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1 Introduction

The standard econometric approach in evaluating the empirical performance
of economic models involves the use of statistical methods (Watson 1993).
However, there is a growing controversy in the literature about the appro-
priate empirical methodology in macroeconomic modelling. Since the early
1980s, two streams have emerged in the literature. The �rst is based on vec-
tor autoregressive (VAR) modelling introduced by Sims (1980). VAR models
can be applied directly on the data to perform statistical hypothesis (Sims
1982, 1998; Stock and Watson 2001). The VAR is a powerful tool for empirical
validation of macroeconomic models, since it is essentially an easy statistical
model to estimate and once identi�cation restrictions are imposed, it can be
used to evaluate the impact of economic shocks on key variables. Litterman
(1986) also used VAR models for forecasting. Nevertheless, even though the
VAR model is proven to be a reliable tool in terms of data description and
forecasting the classical VAR modelling fails to take into account the inherent
nonlinearities of the economy.
The second approach, was initiated by Kydland and Prescott (1982) and

Long and Plosser (1983), and became increasingly popular for evaluating dy-
namic macroeconomic models. Dynamic stochastic general equilibrium (DSGE)
models describe the general equilibrium of a model economy in which agents
(e.g., consumers, �rms etc.) maximize their objectives subject to budget and
resource constraints (Del Negro and Schorfheide 2003). The structural parame-
ters of the DSGE model in principle do not vary according to the policy regime.
Over the last few years, there has been a growing interest in academia and in
central banks in using DSGE models to explain macroeconomic �uctuations
and conduct quantitative policy analysis. DSGE models have the advantage
of combining the micro-foundations of both households and �rm optimization
problems with price and wage rigidities. Model validation using DSGE models
allows the econometrician to establish a link between structural features of the
economy and reduced form parameters, something that was not always possible
with the usual large-scale macroeconomic models. Improvements in computa-
tional power and the development of new econometric methods are crucial to
the popularity of the use of DSGE models. The combination of rich struc-
tural models, novel solution algorithms and powerful simulation techniques
has allowed researchers to develop the so-called "New Macro-econometrics"
(Fernandez-Villaverde 2009). However, the calibrated DSGE models are typi-
cally too stylized to be taken directly to the data and often yield weak results
(Stock and Watson 2001; Ireland 2004). Despite their recent popularity, DSGE
face many important challenges. For instance, Schorfheide (2010) reports �ve
main challenges, namely the fragility of parameter estimates, lack of distinc-
tion between exogenous shocks that capture aggregate uncertainty or possible
misspeci�cation, the presence of trends, the statistical �t and the weak relia-
bility of policy predictions. The �ve challenges discussed by Schorfheide (2010)
are not the only problems in using DSGE models. Sometimes DSGEs exhibit
nonlinearities, even if the common practice is to solve and estimate a linearized
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version with Gaussian shocks. A number of papers report the lack of possible
stochastic volatility or parameter drifts using ad-hoc DSGE models applied
to the Great Moderation period such as Kim and Nelson (1999), McConnell
and Pérez-Quirós (2000), Clarida et al. (2000), Lubik and Schorfheide (2004),
Canova and Gambetti (2004), Primiceri (2005), Cogley and Sargent (2005),
Sims and Zha (2006), Justiniano and Primiceri (2008) and Benati and Surico
(2009), among the most cited.

DSGE models were not considered as forecasting tools until very recent
years, when Smets and Wouters (2003, 2004) presented an interesting study
of the forecasting performance of DSGE models compared to alternative non-
structural models. Moreover, very few papers discuss DSGE model valida-
tion, despite its recent use for forecasting (Edge and Gürkaynak 2011). In
the very recent macro-econometric literature, hybrid or mixture models have
become popular for dealing with some of the DSGE model misspeci�cations.
These models are able to solve the trade-o¤ between theoretical coherence and
empirical �t. Essentially, two approaches exist in building empirical models
that combine the restrictions of a DSGE model with a pure statistical model
(Schorfheide 2010). These are additive hybrid models and hierarchical hybrid
models. The hybrid models provide a complete analysis of the law of motion
of the data, capturing the dynamic properties of the DSGE model. Di¤erent
attempts of hybrid models have been introduced for solving, estimating and
forecasting with the DSGE model. Sargent (1989) and Altug (1989) proposed
augmenting a DSGE model with measurement error terms following a �rst
order autoregressive, known as the DSGE-AR approach. Ireland (2004) pro-
posed a method that is similar to the DSGE-AR, but imposing no restriction
on the measurement errors, assuming that residuals follow a �rst-order vector
autoregression (DSGE-AR à l�Ireland). A di¤erent approach called DSGE-
VAR was proposed by Del Negro and Schorfheide (2004) and was based on
the works DeJong et al. (1996) and Ingram and Whiteman (1994). The main
idea behind the DSGE-VAR is the use of the VAR representation as an econo-
metric tool for empirical validation, combining prior information derived from
the DSGE model in estimation. However, it has several problems. One of the
main problems in �nding a statistical representation for the data by using
a VAR is "over�tting" due to the inclusion of too many lags and too many
variables, some of which may be insigni�cant. The problem of "over�tting"
results in multicollinearity and the loss of degrees of freedom, leading to in-
e¢ cient estimates and large out-of-sample forecasting errors. It is possible to
overcome this problem by using what have become well-known as "Minnesota"
priors (Doan et al. 1984). The use of Minnesota priors has been proposed to
shrink the parameters space and thus overcome the curse of dimensionality.
Overall, there are several examples of additive hybrid models: the DSGE-AR
(Sargent 1989; Altug 1989), the DSGE-AR à l�Ireland (2004), the DSGE-DFM
by Boivin and Giannoni (2006) and Kryshko (2010) etc. Also, there are some
examples of hierarchical hybrid models, such as the well-known DSGE-VAR of
Del Negro and Schorfheide (2004) and the Augmented (B)VAR by Fernández-
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de-Córdoba and Torres (2010). However, these models are still linear and they
do not consider time-variation for parameters.
In general, the classical VAR or DSGE modelling fails to take into account

the inherent nonlinearities of the economy. In these cases, time-varying pa-
rameters or adaptive modelling seem to be attractive alternatives. The time-
varying properties are very useful, because they relax stationarity assump-
tions, and they also provide a simple interpretation of functional coe¢ cients.
Time varying autoregressive (TVP-VAR) models have been developed since
the early 1980�s. Prado and West (2001) o¤ers an excellent review. Primiceri
(2005) used them extensively in analyzing macroeconomic policy issues. All
parameters in the TVP-VAR speci�cation are assumed to follow the �rst-order
random walk process, thus allowing both temporary and permanent shift in
the parameters. Time varying VAR models led to new methods of time se-
ries decomposition and analysis as presented with applications in Primiceri
(2005). Dahlhaus (1997, 2000) developed asymptotic estimators and results.
Time-varying VARs put quite a challenge on an econometrician because of the
amount of parameters to estimate. While it is possible to analytically produce
the likelihood for the estimation problem, it is frequently di¢ cult to maximize
it over such a high dimension. Bayesian estimation with informative or di¤use
priors can be considered a way to tackle the problem.
In this paper, we propose a novel time-varying multivariate state-space

estimation method for TVP-VAR processes. The state space model has been
well studied by Harvey (1990) and Durbin and Koopman (2002). For the TVP-
VAR model, the parameters are estimated using a multivariate speci�cation
of the standard Kalman �lter (Harvey 1990). The likelihood estimation of the
TVP-VAR is performed with a suitable multivariate extension of the Kim and
Nelson (1999) method. Moreover, we focus on two DSGE models, i.e., the sim-
ple DSGE and the DSGE-VAR model. This hybrid DSGE model combines a
micro-founded DSGE model with the �exibility of a VAR framework. All the
aforementioned models as well standard VARs and Bayesian VARs, are used
in a comparative investigation of their out-of-sample predicting performance
regarding the US economy. The motivation comes from a group of recent pa-
pers that compares the forecasting performance of DSGE against VAR mod-
els. This includes Smets and Wouters (2004), Ireland (2004), Del Negro and
Schorfheide (2004), Del Negro et al. (2007), Adolfson et al. (2008), Christo¤el
et al. (2008), Rubaszek and Skrzypczynski (2008), Ghent (2009), Kolasa et al.
(2009), Consolo et al. (2009), Wang (2009), Fernandez-de-Cordoba and Torres
(2010), among others. A general result is that the use of the simple or hybrid
DSGE improves the forecasting performance compared to VAR and BVAR
models. From these studies, we picked out the most commonly used models
in order to perform a comparative evaluation. We selected the current models
exactly because they are indicative and at the same time representative of the
VAR and DGSE classes. Moreover, this choice was motivated by the fact that
we are concerned with the three key macroeconomic variables that appear
as observables in the simple DGSE model of Del Negro et al. (2004). In this
study, the GDP, CPI and interest rate forecasts for the US economy derived
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from the TVP-VAR, DSGE and DSGE-VAR hybrid model are compared with
each other and against the forecasts generated from the classical and Bayesian
variants of the VAR for a total period of 1980:1 to 2009:4 including the out-
of-sample testing period 2001:1-2009:4.
The remainder of this paper is organized as follows. Section 2 describes the

DSGE models and the hybrid DSGE-VAR along with the standard classical
and Bayesian VARs. Section 3 presents the time-varying multivariate state-
space TVP-VAR model. In section 4 the data are described and the empirical
results of the comparative predictive investigation are illustrated and analyzed.
Finally, section 5 concludes.

2 DSGE Modeling

DSGE models have been considered as forecasting tools only since the seminal
work of Smets and Wouters (2003, 2004). Calibrated DSGE models often yield
fragile results, when traditional econometric methods are used for estimation
(Smets and Wouters 2003; Ireland 2004). Following this idea of combining the
DSGE model information and the VAR representation, among other models
that have been proposed in the literature, in this study we use the DSGE-VAR
hybrid model.

2.1 Simple DSGE model

The simple DSGE model with forward-looking features is usually referred to as
a benchmark in the literature. For instance, Del Negro and Schorfheide (2004)
used this model to introduce the DSGE-VAR, and investigate its predictive
ability. Wang (2009) proposes the same model in another forecasting exercise
without using the VAR representation of the DSGE model. In a DSGE setup
the economy is made up of four components. First component is the represen-
tative household with habit persistent preferences. This household maximizes
an additively separable utility function which is separable into consumption,
real money balances and hours worked over an in�nite lifetime. The household
gains utility from consumption and earns interest from holding government
bonds and real pro�ts from the �rms. It also pays lump-sum taxes to the gov-
ernment. The second component is a perfectly competitive, representative �nal
goods producer which is assumed to use a continuum of intermediate goods
as inputs, and the prices for these inputs are given. The producers of these
intermediate goods are monopolistic �rms with the same production technol-
ogy. Nominal rigidities are introduced in terms of price adjustment costs for
the �rms. Each �rm maximizes its pro�ts over an in�nite lifetime by choosing
its labour input and its price. The third component is the government which
spends in each period a fraction of the total output that �uctuates exoge-
nously. The government issues bonds and levies lump-sum taxes, which are
the main part of its budget constraint. The last component is the monetary
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authority, which follows a Taylor rule regarding the in�ation target and the
output gap. There are three economic shocks: an exogenous monetary policy
shock (in the monetary policy rule), and two autoregressive processes, AR(1),
which model government spending and technology shocks.
To solve the model, optimality conditions are derived for the maximiza-

tion problems. After linearization around the steady-state, the economy is
described by the following system of equations

~xt = Et[~xt+1]�
1

�
( ~Rt � Et[~�t+1]) + (1� �g)~gt + �Z

1

�
~zt (1)

~�t = �Et[~�t+1] + �[~xt � ~gt] (2)

~Rt = �R ~Rt�1 + (1� �R)( 1~�t +  2~xt) + �R;t (3)

~gt = �g~gt�1 + �g;t (4)

~zt = �z~zt�1 + �z;t; (5)

where x is the detrended output (divided by the non-stationary technology
process), � is the gross in�ation rate, and R is the gross nominal interest rate.
The tilde denotes percentage deviations from a steady state or, in the case of
output, from a trend path (King 2000; Woodford 2003). The model can be
solved by applying the algorithm proposed by Sims (2002). De�ne the vector

of variables ~Zt =
�
~xt; ~�t; ~Rt; ~gt; ~zt; Et~xt+1; Et~�t+1

�
and the vector of shocks

as �t = (�R;t; �g;t; �z;t). Therefore the previous set of equations, (1) - (5), can be
recasted into a set of matrices (�0;�1;C;	;�) accordingly to the de�nition
of the vectors ~Zt and �t

�0~Zt = C+ �1~Zt�1 +	�t +��t (6)

where C is a vector of constants, �t is an exogenously evolving random dis-
turbance and �t is a vector of expectations errors,

�
Et
�
�t+1

�
= 0

�
; not given

exogenously but to be treated as part of the model solution. In order to provide
the mapping between the observable data and those computed as deviations
from the steady state of the model we set the following measurement equations
as in Del Negro and Schorfheide (2004)

� lnxt = ln  +�~xt + ~zt
� lnPt = ln�

� + ~�t

lnRat = 4
h
(ln r� + ln��) + ~Rt

i (7)

which can be also casted into matrices as

Yt = �0 (�) +�1 (�) ~Zt + vt (8)
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where Yt = (� lnxt;� lnPt; lnRt)
0, vt = 0 and �0 and �1 are de�ned accord-

ingly. For completeness, we write the matricesT,R, �0 and�1 as a function of

the structural parameters in the model, � =
�
ln ; ln��; ln r�; �; � ;  1;  2;

�R; �g; �Z ; �R; �g; �Z

�0
.

Such a formulation derives from the rational expectations solution. The evo-
lution of the variables of interest, Yt, is therefore determined by (6) and (8)
which impose a set of restrictions across the parameters on the moving average
(MA) representation. Given that the MA representation can be very closely
approximated by a �nite order VAR representation, Del Negro and Schorfheide
(2004) propose to evaluate the DSGE model by assessing the validity of the
restrictions imposed by such a model with respect to an unrestricted VAR rep-
resentation. The choice of the variables to be included in the VAR is however
completely driven by those entering in the DSGE model regardless of the sta-
tistical goodness of the unrestricted VAR. Policy variables set by optimization
- typically included eZt - are naturally endogenous as optimal policy requires
some response to current and expected developments of the economy. Expec-
tations at time t for some of the variables of the systems at time t+1 are also
included in the vector Zt;whenever the model is forward-looking. Models like
(6) can be solved using standard numerical techniques as in Sims (2002) and
the solution can be expressed as followseZt = A0 +A1

eZt�1 +R�t (9)

where the matrices A0;A1;and R contain convolutions of the underlying
model structural parameters. Consider the simple case in which all variables
in the DSGE are observable and the number of structural shocks in �t is
exactly equal to the number of variables in eZt: In this case VAR are natural
speci�cations for the data, therefore the estimated reduced form is

eZt = A0+A1
eZt�1 + ut (10)

Recent model evaluation of DSGE models exploits the fact that a solved
RBC model is a statistical model. In fact, a solved DSGE model often gen-
erates a restricted MA representation for the vector of observable variables
of interest, that can be approximated by a VAR of �nite order (Fernandez-
Villaverde et al., 2007; Ravenna, 2007). Interestingly, this recent approach to
model evaluation does not require identi�cation of structural shocks but it is
still potentially a¤ected by lack of statistical identi�cation. To make it clear,
consider the general case of system (9) in which only a subset n of the m
variables included in eZt is observable and de�ne such a subset as Yt: Now, Yt
has a VAR(1) representation. This is usually approximated by a �nite VAR
representation at the cost of a truncation that can be relevant for purposes
such as the identi�cation of structural shocks (Ravenna 2007). Note that if the
RBC model features a number of shocks smaller than the number of variables
included in the VAR, some of the VAR shocks are interpreted as measurement
error. The �nite approximate VAR representation of a solved RBC model can
be written taking into account the following system from Ravenna (2007)
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Yt = AYt�1 +Bzt (11)

zt = Z1zt�1 + "t

where Yt =

�
xt
yt

�
, xt an (n � 1) vector of endogenous state variables, zt an

(m � 1) vector of exogenous state variables, yt an (r � 1) vector of endoge-
nous variables, "t an (m � 1) vector of stochastic process such that E("t) =
0; E("t"

0

t) = �;E("t"
0

� ) = 0 for � 6= t and � is a diagonal matrix. All compo-
nents of the vectors xt and yt are observable and the vector zt has dimension
m = n + r. Since the number of the observable variables, n + r, is equal to
the number of the shocks, if B�1 exists, we can write a restricted VAR(2)
representation of the system (11) as

Yt = (A+BZ1B
�1)Yt�1 � (BZ1B

�1A)Yt�2 +B"t

or
Yt = �0 +�1Yt�1 +�2Yt�2 + ut

where the VAR innovations ut = B"t are a rotation of the structural shocks
vector "t:

2.2 DSGE-VAR

The basic idea of the Del Negro-Schorfheide (2004) approach is to use the
DSGE model to build prior distributions for the VAR. The starting point for
the estimation is an unrestricted VAR of order p

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut (12)

In compact format:

Y = X�+U (13)

Y is a (T�n)matrix with rows Y 0t ;X is a (T�k)matrix (k = 1+np; p =number
of lags) with rows X 0

t = [1; Y
0
t�1; :::; Y

0
t�p], U is a (T � n) matrix with rows u0t

and � is a (k � n) = [�0;�1;:::; �p]0:The one-step-ahead forecast errors ut have
a multivariate normal distribution N(0;�u) conditional on past observations
of Y:The log-likelihood function of the data is a function of � and �u

L(Yj�;�u) / j�uj�
T
2 exp

�
�1
2
tr
�
��1
u

�
Y0Y ��0X0Y �Y0X�+�0X0X�

���
(14)

The prior distribution for the VAR parameters proposed by Del Negro
and Schorfheide (2004) is based on the statistical representation of the DSGE
model given by a VAR approximation. Let � �xx; �

�
yy; �

�
xy and � �yx be the



9

theoretical second-order moments of the variables Y and X implied by the
DSGE model, where

�� (�)= ���1xx (�)��xy (�)
�� (�)= ��yy (�)���yx (�)���1xx (�)��xy (�)

(15)

The moments are the dummy observation priors used in the mixture model.
These vectors can be interpreted as the probability limits of the coe¢ cients in
a VAR estimated on the arti�cial observations generated by the DSGE model.
Conditional on the vector of structural parameters in the DSGE model �, the
prior distributions for the VAR parameters p(�;�uj�) are of the Inverted-
Wishart (IW) and Normal forms

�u j� � IW ((�T��u (�) ; �T � k; n)
� j�u; � � N

�
�� (�) ;�u 
 (�T�XX (�))�1

� (16)

where the parameter � controls the degree of model misspeci�cation with
respect to the VAR; for small values of � the discrepancy between the VAR
and the DSGE-VAR is large and a sizeable distance is generated between the
unrestricted VAR and DSGE estimators. Large values of � correspond to small
model misspeci�cation and for � = 1 beliefs about DSGE misspeci�cation
degenerate to a point mass at zero. Bayesian estimation could be interpreted
as estimation based on a sample in which data are augmented by a hypothetical
sample where observations are generated by the DSGE model, the so-called
dummy prior observations (Theil and Goldberg 1961; Ingram and Whiteman
1994). Within this framework � determines the length of the hypothetical
sample.
The posterior distributions of the VAR parameters are also of the Inverted-

Wishart and Normal forms. Given the prior distribution, posterior distribu-
tions are derived by the Bayes theorem

�u j�;Y � IW
�
(�+ 1)T �̂u;b (�) ; (�+ 1)T � k; n

�
(17)

� j�u; �;Y � N
�
�̂b (�) ;�u 
 [�T�XX (�) +X0X]

�1
�

(18)

�̂b (�) = (�T�XX (�) +X
0X)

�1
(�T�XY (�) +X

0Y) (19)

�̂u;b (�) =
1

(�+ 1)T

h
(�T�Y Y (�) +Y

0Y)� (�T�XY (�) +X0Y) �̂b (�)
i
(20)

where the matrices �̂b (�) and �̂u;b (�) have the interpretation of maximum
likelihood estimates of the VAR parameters based on the combined sample of
actual observations and arti�cial observations generated by the DSGE. Equa-
tions (17) and (18) show that the smaller � is; the closer the estimates are
to the OLS estimates of an unrestricted VAR. Instead, the higher � is, the
closer the VAR estimates will be tilted towards the parameters in the VAR
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approximation of the DSGE model (�̂b (�) and �̂u;b (�)). In order to obtain
a non-degenerate prior density (16), which is a necessary condition for the
existence of a well-de�ned Inverse-Wishart distribution, and for computing
meaningful marginal likelihoods � has to be greater than �MIN

�MIN �
n+ k

T
; k = 1 + p� n

p = lags

n = endogenous variables.

Hence, the optimal lambda must be greater than or equal to the minimum

lambda
�
�̂ � �MIN

�
.

Essentially, the DSGE-VAR tool allows the econometrician to draw poste-
rior inferences about the DSGEmodel parameters �:Del Negro and Schorfheide
(2004) explain that the posterior estimate of � has the interpretation of a
minimum-distance estimator, where the discrepancy between the OLS esti-
mates of the unrestricted VAR parameters and the VAR representation of the
DSGE model is a sort of distance function. The estimated posterior of parame-
ter vector � depends on the hyperparameter �. When �! 0, in the posterior
the parameters are not informative, so the DSGE model is of no use in ex-
plaining the data. Unfortunately, the posteriors (18) and (17) do not have a
closed form and we need a numerical method to solve the problem. The poste-
rior simulator used by Del Negro and Schorfheide (2004) is the Markov Chain
Monte Carlo Method and the algorithm used is the Metropolis-Hastings accep-
tance method. This procedure generates a Markov Chain from the posterior
distribution of � and this Markov Chain is used for Monte Carlo simulations.
The optimal � is given by maximizing the log of the marginal data density

�̂ = argmax
�>�MIN

ln p(Yj�)

According to the optimal lambda
�
�̂
�
, a corresponding optimal mixture model

is chosen. This hybrid model is called DSGE-VAR
�
�̂
�
and �̂ is the weight of

the priors. It can also be interpreted as the restriction of the theoretical model
on the actual data.

2.3 Other Models

In order to evaluate the forecasting performance of the simple DSGE model
and the DSGE-VAR, the classical VAR as well as the Bayesian VAR are also
implemented.
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2.3.1 Classical VAR

The classical unrestricted VAR, as suggested by Sims (1980), has the following
compact format

Yt = Xt�+U (21)

where Yt is a (T � n) matrix with rows Y 0t ; X is a (T � k) matrix (k = 1 +
np; p =number of lags) with rows X 0

t = [1; Y
0
t�1; :::; Y

0
t�p].U is a (T�n) matrix

with rows u0t, � is a (k � n) = [�0;�1;:::; �p]0, while the one-step ahead forecast
errors ut have a multivariate N(0;�u) conditional on past observations of Y:

2.3.2 Bayesian VAR

The Bayesian VAR, as described in Litterman (1981), Doan et al. (1984), Todd
(1984), Litterman (1986) and Spencer (1993) has become a widely popular ap-
proach to dealing with overparameterization. One of main problems in using
VAR models is that many parameters need to be estimated, although some of
them may be insigni�cant. Instead of eliminating longer lags, the BVAR im-
poses restrictions on these coe¢ cients by assuming that they are more likely to
be near zero than the coe¢ cients on shorter lags. Obviously, if there are strong
e¤ects from less important variables, the data can counter this assumption.
Usually, the restrictions are imposed by specifying normal prior distributions
with zero means and small standard deviations for all coe¢ cients, with a de-
creasing standard deviation as the lags increase. The only exception is the
coe¢ cient on a variable�s �rst lag that has a mean of unity. Litterman (1981)
used a di¤use prior for the constant. The means of the prior are popularly
called the "Minnesota Priors" due to the development of the idea at the Uni-
versity of Minnesota and the Federal Reserve Bank at Minneapolis.
Formally speaking, these prior means can be written as follows

�i �
�
(�i; �

2
�i
); j = i; k = 1

(0; �2�j ); otherwise (22)

where �i denotes the coe¢ cients associated with the lagged dependent vari-
ables in each equation of the VAR, while �j represents any other coe¢ cient.
Litterman�s prior was designed for data in levels and has the e¤ect of shrinking
the process towards the univariate random walk. Consequently, �i is equal 1
for all i, re�ecting the high persistence. In this study, we impose their prior
mean on the �rst own lag for variables in growth rate, such as a white noise
setting �i = 0 (Del Negro and Schorfheide 2004; Adolfson et al. 2007; Banbura
et al. 2010). Instead, for level variables, we use the classical Minnesota prior
(Del Negro and Schorfheide 2004).
Doan et al. (1984) propose a formula to generate standard deviations as

a function of a small number of hyperparameters w and d, and a weighting
matrix F (i; j). This approach is useful for the forecaster to specify individual
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prior variances for a large number of coe¢ cients based on only a few hyperpa-
rameters. The speci�cation of the standard deviation of the distribution of the
prior imposed on variable j in equation i at lag m, for all i; j and m, denoted
by S(i; j;m), is speci�ed as follows

S(i; j;m) = [w � g(m)� F (i; j)] �̂i
�̂j
; (23)

where

F (i; j) =

�
1 if i = j

kij otherwise, 0 � kij � 1
(24)

is the tightness of variable j in equation i relative to variable i and by increasing
the interaction, i.e. it is possible for the value of kij to loosen the prior (Dua
and Ray 1995). Reducing the interaction parameter kij tightens the prior. The
ratio �̂i

�̂j
consists of estimated standard errors of the univariate autoregression,

for variables i and j. This ratio scales the variables to account for di¤erences
in the units of measurement, without taking into account the magnitude of the
variables. The term w measures the standard deviation on the �rst lag, and
also indicates the overall tightness of the prior distribution around the random
walk or white noise. The overall tightness governs the relative importance of
the prior beliefs with respect to the information contained in the data. A
decrease in the value of w results in a tighter prior. For w = 0 the posterior
equals the prior and the data do not in�uence the estimates. If w ! 1, the
posterior expectations coincide with the ordinary least squares estimates. As
pointed in Banbura et al. (2010), for small and medium VARmodels, the choice
of the overall tightness matters. The selection of the shrinkage coe¢ cient w
can be done subjectively as in Litterman (1986), or we can choose it in relation
to the size of the system. As the number of variables increases, the parameters
should be shrunk more to avoid over�tting (De Mol et al. 2008). The selection
can be implemented via a grid search in a training sample as in Banbura et al.
(2010). The function g(m) = m�d; d > 0 is the measurement of the tightness
on lag m relative to lag 1, and is assumed to have a harmonic shape with a
decay of d, which tightens the prior on increasing lags. Obviously, the function
g(m) is di¤erent across lags.

3 State space time-varying parameter VAR model

The classical VAR modelling is adequate only in the analysis of stationary time
series, and in many cases, stationarity assumptions are too restrictive. In these
cases, the use of time-varying parameters seems to be an attractive alterna-
tives. Time varying autoregression (TVP-VAR) models have been developed
since the early 1980�s. Primiceri (2005) used them in analyzing macroeconomic
policy issues. The TVP-VAR model enables capturing a possible time-varying
nature of underlying structure in the economy in a robust manner by allowing
both temporary and permanent shift in the parameters.
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In this paper, we propose a novel time-varying multivariate state-space
estimation method for VAR models. Regarding the parameters of the TVP-
VAR as state parameter variables, TVP autoregression could easily form a
state space model. The state space model has been well studied by Harvey
(1990) and Durbin and Koopman (2002). According to Kalman (1960, 1963),
in a state-space representation the signal extraction is implemented through
a model that links the unobserved and observed variables of the system. To
estimate a state space model, several methods have been developed. Kalman
�ltering involves sequentially updating a linear projection on the vector of
interest. The state-space representation is given by a system of two vector
equations. First, the state or transition equation describes the dynamics of
the state vector containing the unobserved variables we estimate, while the
second equation represents the observation or measurement equation linking
the state vector to the vector containing the observed variables. For the TVP-
VAR models, the parameters are estimated using a multivariate speci�cation
of the standard Kalman �lter (Harvey 1990) . The likelihood estimation re-
quires repeating the �ltering many times in order to evaluate the likelihood
for each set of the time-varying parameters until we reach the maximum.
This is performed with a suitable multivariate extension of the Kim and Nel-
son (1999) method. The calculation of the Hessian for the estimation of the
variance-covariance matrix is done with the Broyden-Fletcher-Goldfarb-Shano
(BFGS) optimization algorithm. Other algorithms can also be used with the
same results, e.g., the DFP and the Levenberg-Marquardt. The parameters
could be also estimated with the use of the Zellner g-prior and in this case the
numerical evaluation of the posterior distributions is performed with Gibbs
sampling (Kim and Nelson 1999).
The TVP-VAR can be expressed as

yt = �0;t +�1;tyt�1 + � � �+�p;tyt�p + ut (25)

in which �0;t is a k � 1 vector of time-varying intercepts, �i;t (i = 1; : : : ; p)
are k � k matrices of time-varying coe¢ cients and ut are homoscedastic or
heteroscedastic reduced-form residuals with a covariance matrix
t. This could
be transformed into a multivariate state-space form.
Harvey (1990) provides a framework for a multivariate version of the Kalman

�lter based on a time series analogue of the seemingly unrelated regression
equation (SURE) model introduced into econometrics by Zellner (1963). Har-
vey (1990) refers to it as a system of seemingly unrelated time series equations
(SUTSE) model. An important property of the SUTSE system is that its form
remains unaltered when it is subject to contemporaneous aggregation. A linear
time-invariant univariate structural model can be written in the SUTSE state
space form for N variables

Yt = (z
0 
 IN )�t + "t (26)

�t = (T
 IN )�t�1 + (R
 IN )�t (27)
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where �t is the vector of state variables of the the state equation, Tt the state
transition matrix, V ar("t) = �" and V ar(�t) a block diagonal matrix with
the blocks being �k, k = 1; :::; g. For example, in the three-variate case, the
variance of the error component in the state equation is

V ar (�t) =

24�� 0 0
0 �� 0
0 0 �!

35 (28)

In fact a more general formulation of the SUTSE model does not constrain
V ar (�t) to be diagonal and hence V ar (�t) need not be block diagonal. Indeed
the SUTSE formulation can be generalized further to allow quantities such as
z; �";T;R and V ar (�t) to change deterministically over time. As shown in
Harvey (1986), the time-domain treatment still goes through. The Kalman
�lter may be applied to (26) and (27), the number of sets of observations
needed to form an estimator of �t , with �nite MSE matrix being the same as
in the univariate case. The conditions for the �lter to converge to a steady state
are an obvious generalization of the conditions in the univariate case. Given
normality of the disturbances, the log-likelihood function is of the prediction
error decomposition form.
The decoupling of the Kalman �lter is related to the result which arises in

a SURE system where OLS applied to each equation in turn is fully e¢ cient if
each equation contains the same regressors. Hence, all the information needed
for estimation, prediction and smoothing can be obtained by applying the
same univariate �lter to each series in turn. Consider the multivariate random
walk plus noise model. If the signal-to-noise ratio is q (i.e., ��=�" = q), the
Kalman �lter for this model is

�t+1jt = �tjt�1 +Kt

�
Yt ��tjt�1

�
; t = 2; : : : ; T (29)

and

Pt+1jt = Ptjt�1 �Ptjt�1F�1t Ptjt�1 + q�" (30)

where

Kt = Ptjt�1F
�1
t (31)

and

Ft = Ptjt�1 +�" (32)

Let wt denote a positive scalar for t = 2; : : : ; T and suppose that Ptjt�1, the
MSE matrix of the N � 1 vector �tjt�1, is proportional to �", i.e. Ptjt�1 =
wt�". It then follows from (30) that Pt+1jt is of the same form, that is,
Pt+1jt = wt+1�" with wt+1 = (wt + wtq + q) = (wt + 1). Furthermore ifPtjt�1 =
wt�" the gain matrix in (29) is diagonal, that is

Kt = wt�" (wt�" +�")
�1
= [wt= (wt+1)] IN (33)
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Suppose that the above Kalman �lter is started o¤ in such a way that P2j1
is proportional to�"; that is P2j1 = p

2j1�", where p2j1 is a scalar. Since Ptjt�1
must continue to be proportional to �", it follows from (33) that the elements
of �t+1jt, can be computed from the univariate recursions. It also follows that
wt, must be equal to ptjt�1 for all t = 2; : : : ; T . The starting values �2j1 = y1
and P2j1 = �� +�" = (1 + q)�" equally correspond to the use of a di¤use
prior, and the use of these starting values leads to the exact likelihood function
for Y2; : : : ;YT in the prediction error decomposition form

logL = � (T � 1)N
2

log 2� � 1
2

TX
t=2

log jFtj �
1

2

TX
t=2

v0tF
�1
t vt (34)

However, the decoupling of the Kalman �lter allows the elements of vt, to be
computed from the univariate recursions. Furthermore

Ptjt�1 = p
tjt�1�" (35)

and so

Ft = Ptjt�1 +�" = ft�"; t = 3; : : : ; T (36)

where ft =
�
p
tjt�1 + 1

�
. Substituting from (36) into (34) gives

logL = � (T � 1)N
2

log 2�+
(T � 1)
2

log
����1

"

���N
2

TX
t=2

log ft�
1

2

TX
t=2

1

ft
v0t�

�1
" vt

(37)
Di¤erentiating (37) with respect to the distinct elements of ��1

" leads to the
ML estimator of �" being

~�" = (T � 1)�1
TX
t=2

f�1t vtv
0
t (38)

for any given value of q. The ML estimators of q and �" can therefore be
obtained by maximizing the concentrated likelihood function

logLc = �
(T � 1)N

2
log 2� � (T � 1)

2
log
��� ~�"

���� N

2

TX
t=2

log ft (39)

with respect to q. Once the parameters have been estimated, prediction and
smoothing can be carried out. The predictions of future observations are ob-
tained from the univariate recursions

MSE
�
~yT+ljT

�
= fT+ljT�"; l = 1; 2; : : : (40)

where
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fT+ljT = pT+ljT + 1 (41)

The decoupling of the Kalman �lter can be shown in a similar way for the
time-varying system

Yt = (z
0
t 
 IN )�t + "t; V ar ("t) = ht�� (42)

�t = (Tt 
 IN )�t�1 + (Rt 
 IN )�t; V ar (�t) = Qt 
�� (43)

where Qt =diag(q1; : : : ; qk). The more general formulation does not constrain
Qt to be diagonal, although, as in the univariate model, restrictions are needed
on Qt for the model to be identi�able. All the results on estimation and pre-
diction carry through, with Pt+1jt = P�t+1jt 
��, where P�t+1jt is the MSE
matrix for the univariate model (Harvey 1986, 1990).

4 Empirical results

The models are estimated based on quarterly data of the US economy over
the total period 1980:1 to 2009:4 following the works of Benati and Surico
(2008), Schorfheide et al. (2010), Cogley et al. (2008), Herbst and Schorfheide
(2012) and Consolo et al. (2009). The sample begins in 1980 when signify-
ing changes in US monetary and �scal policy occurred (Ireland 2004) and
thus it can be considered a major breakpoint. The starting period roughly
coincides with the end of the Volcker stabilization and disin�ation era. We
concentrate on the 1980-2009 period which is characterized by a more stable
monetary and �nancial structure and a lower volatility of the macroeconomic
variables. Structural breaks in mean and volatility are found in the literature
by comparing the pre-80 with the post-80 period, while the null hypothesis
of parameter stability cannot be rejected in the post-80 period (Justiniano
and Primiceri 2008). Moreover in�ation, monetary policy rate, annual real
output growth and other variables used in the empirical literature are clearly
mean reverting in the post 1980 period. Consolo et al. (2009) mention that
this evidence reduces the concern of having a non-stationary VAR that omits
potential long-run cointegrating relations among the variables of interest. Fur-
thermore, Benati and Surico (2008) claim that if the U.S. economy was indeed
in an indeterminate equilibrium before but not after October 1979, then by
estimating TVP-VAR and DSGE models before and after the 80s they would
be mixing two quite di¤erent regimes, thus obtaining biased estimates of the
structural parameters. Finally, Herbst and Schorfheide (2012) argue that since
there is strong empirical evidence that monetary policy as well as the volatility
of macroeconomic shocks changed in the early 1980s, the information set in
estimating DSGE and TVP-VAR models should be relevant to the exercise of
contemporary policy making, thus a sample after the 1980s ensures a better
forecasting performance.
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The data for real output growth comes from the Bureau of Economic Analy-
sis as Gross Domestic Product (GDP-SAAR, billions chained 2005). Consumer
price index data are derived from the Bureau of Labor Statistics (CPI-U: all
items, seasonally adjusted, 1982-1984=100). GDP and CPI are taken in �rst
di¤erence logarithmic transformation. The interest rate series (FFR) are con-
structed as in Clarida et al. (2000); for each quarter the interest rate is com-
puted as the average federal funds rate (source: Haver Analytics) during the
�rst month of the quarter, including business days only. These three time se-
ries represent the three equations of the DSGE and VAR model classes. We
compare the out-of-sample forecasting performance of VAR, Bayesian VAR,
DSGE and DSGE-VAR models and the multivariate state space TVP-VAR,
in terms of the Root Mean Squared Error (RMSE) for di¤erent lag speci�-
cations (one to four). The out-of-sample period is 2001:1-2009:4. The fore-
casting investigation is performed over the one- to �ve-quarter-ahead horizon
with a rolling estimation sample, based on the works of Marcellino (2004) and
Brüggemann et al. (2008) for datasets of quarterly frequency. In particular, the
models are re-estimated each quarter over the forecast horizon to update the
estimate of the coe¢ cients, before producing the one- to �ve-quarters-ahead
forecasts. Then, in order to evaluate the models�forecast accuracy, we use the
cross-model test statistic of Diebold and Mariano (1995) and the Clark and
West (2004) test for nested (restricted) models which is based on Clark and
McCracken (2001) and Newey-West estimator (1987, 1994) of the asymptotic
variance matrix. The application of the Clark and West (2004) test for com-
paring the out-of-sample accuracy of two models was considered necessary as
many of the competing models are nested and this causes the mean prediction
error of the restricted model to be often smaller than that of the alternative,
leading to size and power distortions of the Diebold and Mariano test. The
larger the number of parameters in the unrestricted model the larger the di¤er-
ence will be. In addition, the Clark-West test uses the Newey-West estimator
(1987, 1994) to correct for the autocorrelation of the forecast errors, since the
Diebold-Mariano assumes for h-steps-ahead forecasts all autocorrelations of
order equal or greater to h for the squared forecast errors di¤erence are zero
and consequently the empirical autocorrelation of the errors tends to be of
higher order than h.

Regarding the BVAR setup, in our empirical exercise we impose the prior
mean on the �rst own lag for GDP and CPI as a white noise setting �i = 0
(Adolfson, et al. 2007; Del Negro and Schorfheide 2004; Banbura et al. 2010).
Instead, for the FFR interest rate, we use the classical Minnesota prior (Del
Negro and Schorfheide 2004). For the selection of the hyperparameters, we
follow the empirical strategy proposed by Liu et al. (2009) and Gupta and
Kabundi (2010). We implement a grid search to optimize the forecasting per-
formance. In case of overall tightness, we consider the grid (0:1; 0:2; 0:3), and
for the lag decay, a grid search (0:5; 1; 2). For the interaction term, instead
of considering a symmetric interaction function F (i; j), assuming kij = 0:5 as
in Dua and Smyth (1995) we check di¤erent values (0:1; 0:5; 0:9), to allow for
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a di¤erent tightness for the interactions. Eventually, we optimize forecasting
across di¤erent lags for the BVAR with w = 0:1, kij = 0:1; d = 0:5:
The prior distribution for the DSGE model parameters (�), which are sim-

ilar to the priors used by Del Negro and Schorfheide (2004), are illustrated in
Table 1. Using these priors, we can build the hybrid models, taking into account
that the statistical representation of the DSGE is given by a restricted VAR(2).
In the forecasting exercise, the forecasted values are produced implementing
the DSGE-VAR (�̂), where the �̂ is chosen by the numerical procedure for each
estimation. In the forecasting evaluation, the DSGE-VAR is estimated with
a di¤erent number of lags on the sample spanning from 1980:1 to 2000:4. As
already mentioned the out-of-sample forecasting accuracy is assessed based
on a rolling sample and the DSGE-VARs are re-estimated for each rolling
sample. The forecasts are calculated as a mean of forecast draws, taking into
account the �̂ found in the in-sample estimation. Parameter � is chosen from
a grid which is unbounded from above. In our empirical exercise, the log of
the marginal data density is computed over a discrete interval, ln p(Y j�;M):
The minimum value, �min = n+k

T , is model dependent and is related to the
existence of a well-de�ned Inverse-Wishart distribution. For completeness, it
is worth mentioning that � = 0 refers to the VAR model with no prior and
it is not possible to compute the marginal likelihood in this particular case.
Therefore, we can show the log of marginal data density for any value of �
larger than �min: Thus, �min depends on the degrees of freedom in the VAR.1

Table 1 Prior Distributions for the DSGE model parameters

Name Range Density Starting value Mean Standard deviation
ln  R Normal 0.500 0.500 0.250
ln�� R Normal 1.000 1.000 0.500
ln r� R+ Gamma 0.500 0.500 0.250
� R+ Gamma 0.400 0.300 0.150
� R+ Gamma 1.000 2.000 0.500
 1 R+ Gamma 2.500 1.500 0.250
 2 R+ Gamma 0.300 0.125 0.100
�R [0; 1) Beta 0.400 0.500 0.200
�G [0; 1) Beta 0.800 0.800 0.100
�Z [0; 1) Beta 0.200 0.300 0.100
�R R+ Inv.Gamma 0.500 0.251 0.139
�G R+ Inv.Gamma 0.500 0.630 0.323
�Z R+ Inv.Gamma 1.000 0.875 0.430

Note: The model parameters ln ; ln��; ln r�; �R; �g ; and �z are scaled by 100 to
convert them into percentages. The Inverse Gamma priors are of the form
p(�j�; s) / ����1e��s

2=2�2 , where v=4 and s equals 0.2, 0.5, and 0.7, respectively.
Approximately 1.5% of the prior mass lies in the indeterminacy region of the parameter
space. The prior is truncated to restrict it to the determinacy region of the DSGE model.

1 For the DSGE-VAR, the lambda grid is given by

� =

�
0, 0.06, 0.09, 0.12, 0.14, 0.15, 0.20, 0.25, 0.30, 0,35, 0.40,

0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.9, 1, 5, 10

�
.

In this lambda interval, we consider the �MIN across lags from one to four.
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Table 2 Optimal lambda for the DSGE-VAR calculated with Markov Chain Monte Carlo
and Metropolis Hastings method

�MIN �̂ �̂��MIN
�̂��MIN
�MIN

ln p(Y j�̂;M) Bayes Factor

DSGE-VAR(1) 0.06 0.09 0.03 0.5 -486.5 exp [26:3]
DSGE-VAR(2) 0.09 0.70 0.61 6.8 -460.2 1
DSGE-VAR(3) 0.12 0.30 0.18 1.5 -450.8 exp [�9:4]
DSGE-VAR(4) 0.14 0.70 0.56 4.0 -414.3 exp [�45:9]

Table 2 shows the main results related to the DSGE-VAR implemented
using a di¤erent number of lags (from one up to four) in case of one-step
ahead2 . Each minimum � (�MIN ) is given by the features of the model (number
of observations, number of endogenous variables, number of lags) and the
optimal lambda (�̂) is calculated using the Markov Chain Monte Carlo with
Metropolis Hastings acceptance method and 10,000 replications for each of 10
MH blocks. All Markov Chain Monte Carlo results are based on 110,000 draws
from the relevant posterior distribution, discarding the �rst 10,000. We checked
whether 110,000 draws were su¢ cient by repeating the MCMC computations
from overdispersed starting points, and we veri�ed that we obtained the same
results for parameter estimates and log-marginal likelihood functions. The
ln p(Y jM) is the log marginal data density for the DSGE model speci�cations
computed based on Geweke�s (1999) modi�ed harmonic mean estimator. The
Bayes factor (ratio of posterior odds to prior odds) (Schorfheide 2010) helps us
to understand the improvement of the log marginal data density of a speci�c
model compared to a benchmark model, which for the MCMC exercise is the
DSGE-VAR (2), since the statistical representation of the DSGE model is
given by a VAR(2). According to Table 2, the di¤erence �̂ � �MIN is the
greatest in the case of a DSGE-VAR(2), and hence its corresponding ratio
�̂��MIN

�MIN
is the greatest too. Looking at the log of the marginal data densities,

we notice that the DSGE-VAR(4) model has the minimum value and the Bayes
factor evidences a great di¤erence between the DSGE-VAR(2) (the benchmark
model) and the DSGE-VAR(4) (exp [�45:9]) in favour of the DSGE-VAR with
four lags.

Tables 3, 4 and 5 report the RMSE ratios against the benchmark model
for the forecasting exercise, which in this study is VAR(2). The number of lags
was indicated by the Schwartz Bayesian information criterion (SIC) criterion

2 Table 2 presents the b� calculated in one-step ahead exercise. However, the optimal
lambda for each lag length is very similar across forecasting samples. For further steps
ahead results are upon request.
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Table 3 RMSE Ratios for the US GDP (total period)

GDP Quarters ahead
1 2 3 4 5

VAR(1) 0.970 0.960 0.973 0.953 0.939
VAR(3) 0.980 0.981 0.980 0.971 0.988
VAR(4) 0.961 0.973 0.953 0.956 0.970
BVAR(1) 0.959 0.937 0.976 0.940 0.936
BVAR(2) 1.002 0.983 1.023 0.995 1.001
BVAR(3) 0.980 0.959 0.997 0.972 0.992
BVAR(4) 0.955 0.938 0.977 0.944 0.956
DSGE 1.055 1.154 1.083 1.181 1.278
DSGE-VAR(1) 0.959 0.965 0.945 0.928 0.874
DSGE-VAR(2) 0.991 1.012 0.942 0.857 0.875
DSGE-VAR(3) 0.994 1.017 0.922 0.906 0.913
DSGE-VAR(4) 1.027 1.012 0.888 0.883 0.897
TVP-VAR(1) 0.960 0.858 0.892 0.868 0.817
TVP-VAR(2) 0.965 0.799 0.873 0.854 0.822
TVP-VAR(3) 1.007 0.838 0.896 0.844 0.806
TVP-VAR(4) 1.017 0.895 0.893 0.852 0.789

Notes: The ratios are estimated against the benchmark model VAR(2) for one- to
�ve-steps-ahead in the out-of-sample (rolling) period 2001:1 to 2009:4.

Table 4 RMSE Ratios for the US CPI (total period)

CPI Quarters ahead
1 2 3 4 5

VAR(1) 1.006 0.998 0.986 0.996 0.998
VAR(3) 0.988 0.986 0.994 0.995 0.996
VAR(4) 0.991 0.983 0.982 0.994 0.989
BVAR(1) 0.998 1.004 1.002 0.994 1.004
BVAR(2) 1.001 1.009 1.008 0.996 1.004
BVAR(3) 0.987 0.998 1.004 0.992 1.013
BVAR(4) 0.989 0.995 0.996 0.990 1.004
DSGE 0.996 1.002 0.974 0.990 1.028
DSGE-VAR(1) 0.993 1.000 0.975 0.990 1.009
DSGE-VAR(2) 1.000 0.991 0.980 0.990 1.026
DSGE-VAR(3) 0.976 0.979 0.981 0.995 1.066
DSGE-VAR(4) 0.983 0.979 0.984 1.002 1.041
TVP-VAR(1) 1.070 1.013 1.014 1.032 1.001
TVP-VAR(2) 1.186 0.960 1.030 1.037 1.012
TVP-VAR(3) 1.188 1.087 1.082 1.114 1.106
TVP-VAR(4) 1.155 1.060 1.066 1.053 0.988

Notes: As in Table 3

for the simple vector autoregression system. For the GDP series the TVP-
VAR with a multivariate state-space representation outperforms the other
models for all the quarters-ahead forecasts except for the one-quarter-ahead
where the BVAR(4) provides a better RMSE ratio against the benchmark.
The TVP-VAR achieves a better score for the RMSE ratios with three lags
for the two-quarter and four-quarters ahead forecasts, and two and four lags
for the three-quarter and �ve-quarter ahead forecasts respectively. The DSGE-
VAR is in general better than the simple DSGE which on average generates the
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Table 5 RMSE Ratios for the US FFR (total period)

FFR Quarters ahead
1 2 3 4 5

VAR(1) 1.075 1.082 0.996 1.114 1.349
VAR(3) 0.865 0.838 0.913 0.854 0.853
VAR(4) 0.870 0.797 0.783 0.822 0.980
BVAR(1) 1.030 1.019 0.920 1.009 1.186
BVAR(2) 1.019 1.003 0.884 0.708 0.889
BVAR(3) 0.931 0.917 0.839 0.768 0.747
BVAR(4) 0.944 0.894 0.815 0.864 1.046
DSGE 0.890 0.968 0.931 1.027 1.399
DSGE-VAR(1) 1.068 1.201 0.681 0.730 0.709
DSGE-VAR(2) 0.963 1.043 0.712 0.562 0.730
DSGE-VAR(3) 0.908 0.978 0.700 0.568 0.749
DSGE-VAR(4) 0.931 0.923 0.646 0.548 0.772
TVP-VAR(1) 0.420 0.429 0.484 0.640 0.918
TVP-VAR(2) 0.447 0.460 0.498 0.647 0.919
TVP-VAR(3) 0.510 0.536 0.560 0.689 0.946
TVP-VAR(4) 0.502 0.530 0.548 0.664 0.889

Notes: As in Table 3

worst forecast ratios, while VARs and BVARs present similar predictive perfor-
mance, albeit BVAR slightly better for all steps-ahead. The DSGE-VAR with
any lag structure seems to be better than VAR and BVARs particularly over
the three-quarter ahead forecasts of the GDP The results for the CPI series
vary. Speci�cally, the DSGE-VAR(3) provides the lowest RMSE ratio against
the benchmark for the one-quarter-ahead forecast, while the state-space TVP-
VAR outperforms the other models for the two- and �ve-quarter-ahead fore-
casts. Interestingly, the results suggest that the simple DGSE produces lowest
ratios for three- and four-steps ahead, although this is compensated by an
equal ratio by the DSGE-VAR(1), DSGE-VAR(2) and BVAR(4) for the four-
steps ahead forecasts. Overall, the TVP-VAR underperforms relatively to the
other models, while on average VARs provide better results than the other
speci�cations. Regarding the FFR variable, the TVP-VAR and the DSGE-
VAR models are the winners. In particular, for the �rst three quarter-ahead
forecasts the TVP-VAR(1) clearly outperforms all other models, while for the
four- and �ve-quarter-ahead the DSGE-VAR(4) and DSGE-VAR(1) respec-
tively give the best results against the benchmark. Generally, VAR and BVAR
models provide with similar ratios while on average the DSGE-VAR is better
than the simple DSGE3 .

3 Via the utilization of a disjoint larger sample and beyond the current dataset, we per-
formed a sensitivity analysis with respect to the initial sample selection. This could also be
considered as a further robustness check regarding the forecast error results as well as the
di¤erential predictability results presented later. As the current database did not include a
longer sample with the exact same variables/time series we used a new sample that spanned
from 1955:1 to 2009:4 with an out-of-sample period of 2001:1-2009:4 (same as the initial
exercise). The real Gross Domestic Product (GDP) and the Consumer Price Index (CPI)
came from the Historical Data Files for the Real-Time Data Set provided by the Federal
Reserve Bank of Philadelphia. The short interest rate series came from the ALFRED dataset
for vintage data provided by the Federal Reserve Bank of St. Louis. The quarterly real GDP
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Furthermore, we discuss results concerning in particular the US �nancial
crisis period 2008 -2009 in order to juxtapose them against that of the total
forecasting period. We consider the out-of-sample sub-period 2008:1-2009:4
and again we report the RMSE for the various models against the benchmark
VAR(2) over the one- to �ve-quarter-ahead horizon with a rolling estimation
sample. In case of GDP, the TVP-VAR speci�cations still achieve better scores
for the RMSE ratios for two- and three-quarters ahead forecasts as in the total
period, while it is also best for the one-step-ahead. However, as opposed to the
total sample investigation, beyond the three-steps-ahead the simple DGSE is
better that DGSE-VAR and presents the best performance. The results for the
CPI series are di¤erent for over two-quarters-ahead compared to those from
the total period. Speci�cally, DGSE-VAR(1) and DSGE-VAR(4) outperform
the other models for three- and four-steps-ahead respectively, while BVAR
provides with the lowest RMSE for �ve-quarters-ahead. The results for one-
and two-steps are qualitatively the same. Finally, for FFR the TVP-VAR(1)
clearly outperforms all other models for all horizons, interestingly ruling out
the DSGE-VAR as the best performer in the total out-of-sample period for
the four- and �ve-quarter-ahead. The RMSE ratios for the �nancial crisis sub-
period are reported in Tables 6, 7 and 8.

is taken in billions of real dollars, seasonally adjusted. The CPI is taken as index level,
seasonally adjusted. GDP and CPI are taken in �rst di¤erence logarithmic transformation.
The short term interest rate series is constructed as in Clarida et al. (2000). The new sample
is taken considering the vintage updates at 2010:4. We intended to investigate whether a
longer sample - especially a dataset that goes back that far in the past - o¤ers higher or
eventually lower statistical predictability especially for the atheoretical time-varying VAR
models, due to structural changes or over�tting and learning of sample idiosyncrasies that
do not correspond to contemporary economic conditions.
For the longer sample and for the GDP series the TVP-VAR outperformed the other models.
This result is in accordance with the investigation conducted on the original sample. How-
ever, as opposed to the original analysis the simple DGSE was in general better than the
DSGE-VAR which on average generated the worst forecast ratios, while VARs and BVARs
presented similar predictive performance. The DSGE-VAR with any lag structure seemed
to be better than VAR and BVARs particularly over the three-quarter ahead forecasts. The
results for the CPI series were slightly di¤erent compared to that of the initial sample selec-
tion. Speci�cally, the simple DSGE provided the lowest RMSE ratio against the benchmark
for all steps-ahead, while the state-space TVP-VAR presented similar predictability as the
simple VAR. Overall, the DSGE-VAR and BVAR underperformed relatively to the afore-
mentioned models. Regarding the FFR variable, the TVP-VAR and the VAR models were
the winners in case of the long sample as opposed to the TVP-VAR and DSGE-VAR with
the original sample. In particular, for the �rst two quarter-ahead forecasts the TVP-VAR(1)
clearly outperformed all other models, while for the three-, four- and �ve-quarter-ahead the
VAR(4) gave the best results against the benchmark. On average the DSGE was better than
the DSGE-VAR.
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Table 6 RMSE Ratios for the US GDP (2008-2009 sub-period)

GDP Quarters ahead
1 2 3 4 5

VAR(1) 0.970 0.970 0.974 0.967 0.954
VAR(3) 0.990 0.987 0.986 0.983 0.980
VAR(4) 0.977 0.973 0.968 0.962 0.952
BVAR(1) 0.975 0.967 0.981 0.967 0.962
BVAR(2) 1.005 0.999 1.013 1.006 1.015
BVAR(3) 0.994 0.984 0.996 0.990 1.007
BVAR(4) 0.976 0.966 0.981 0.967 0.966
DSGE 0.882 0.860 0.860 0.669 0.782
DSGE-VAR(1) 0.979 0.973 0.983 0.961 0.900
DSGE-VAR(2) 1.012 1.010 0.978 0.879 0.915
DSGE-VAR(3) 1.008 1.018 0.954 0.947 0.944
DSGE-VAR(4) 1.041 1.013 0.927 0.912 0.926
TVP-VAR(1) 0.618 0.822 0.896 0.929 0.951
TVP-VAR(2) 0.706 0.706 0.877 0.879 0.919
TVP-VAR(3) 0.741 0.780 0.824 0.835 0.931
TVP-VAR(4) 0.745 0.819 0.846 0.818 0.812

Notes: The ratios are estimated against the benchmark model VAR(2) for one- to
�ve-steps-ahead in the out-of-sample (rolling) sub-period including the US �nancial crisis,
2008:1 - 2009:4.

Table 7 RMSE Ratios for the US CPI (2008-2009 sub-period)

CPI Quarters ahead
1 2 3 4 5

VAR(1) 1.004 1.003 1.000 1.002 1.147
VAR(3) 0.993 0.992 0.993 0.991 0.936
VAR(4) 0.990 0.987 0.984 0.985 0.937
BVAR(1) 1.000 1.001 1.000 0.999 1.046
BVAR(2) 1.001 1.004 1.004 1.001 1.041
BVAR(3) 0.994 0.998 1.000 0.994 0.935
BVAR(4) 0.992 0.994 0.991 0.989 0.942
DSGE 0.987 1.012 0.999 0.982 1.475
DSGE-VAR(1) 0.995 1.003 0.973 0.983 1.042
DSGE-VAR(2) 0.997 0.993 0.984 0.982 1.348
DSGE-VAR(3) 0.980 0.977 0.982 0.967 1.547
DSGE-VAR(4) 0.980 0.974 0.976 0.960 1.153
TVP-VAR(1) 1.041 1.002 0.997 0.988 1.394
TVP-VAR(2) 1.138 0.868 0.963 0.974 1.261
TVP-VAR(3) 1.057 0.961 0.979 1.015 1.426
TVP-VAR(4) 1.077 1.040 0.979 1.054 1.590

Notes: As in Table 6

Next, we evaluate the forecast accuracy of the models for the total out-of-
sample period by applying a pairwise forecast comparison with the Diebold-
Mariano (1995) test based on squared prediction errors and with the Clark
and West (2004) test. The results are reported in Tables 9, 10 and 11 in p-
values. The tests have been conducted on the best performer of each category,
namely VAR, BVAR, DSGE-VAR, DSGE and TVP-VAR models and for each
examined macro-variable. For example, in case of FFR for the �ve-quarter-
ahead forecasts, the DM and CW tests have been implemented pairwise on
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Table 8 RMSE Ratios for the US FFR (2008-2009 sub-period)

CPI Quarters ahead
1 2 3 4 5

VAR(1) 1.052 1.047 1.025 1.050 1.121
VAR(3) 0.907 0.901 0.929 0.908 0.882
VAR(4) 0.869 0.845 0.846 0.852 0.893
BVAR(1) 1.009 1.002 0.974 0.993 1.046
BVAR(2) 1.017 1.003 0.960 0.829 0.908
BVAR(3) 0.924 0.925 0.905 0.849 0.761
BVAR(4) 0.923 0.915 0.898 0.913 0.971
DSGE 0.927 0.973 0.960 0.959 1.084
DSGE-VAR(1) 1.122 1.187 0.859 0.894 0.667
DSGE-VAR(2) 1.014 1.047 0.882 0.712 0.663
DSGE-VAR(3) 0.936 0.944 0.862 0.724 0.666
DSGE-VAR(4) 0.949 0.889 0.763 0.690 0.710
TVP-VAR(1) 0.522 0.431 0.416 0.467 0.493
TVP-VAR(2) 0.562 0.472 0.440 0.486 0.507
TVP-VAR(3) 0.709 0.683 0.638 0.637 0.644
TVP-VAR(4) 0.625 0.600 0.562 0.566 0.571

Notes: As in Table 6

the VAR(3), BVAR(3), DSGE-VAR(1), DGSE and TVP-VAR(4) model speci-
�cations. As it was aforementioned the application of the CW test is necessary
as the competing models are nested and this creates a bias in the out-of-sample
test with the DM test. It uses the Newey-West estimator (1987, 1994) of the
asymptotic variance matrix to correct for the autocorrelation of the forecast
errors. According to Clark and West (2004) the model with the smaller num-
ber of parameters is considered restricted (nested). However, this also depends
on the lag speci�cation of the model. In our study we considered the classical
VAR as the unrestricted model according to the literature, yet in few cases
we account for the total number of parameters and lagged variables when
the pairwise comparison includes non-VAR models or vastly di¤erent lagged
speci�cations of VARs (e.g., VAR(1) vs. a TVP-VAR (4)). In almost all cases
the compared models end-up to contain similar lagged variables leaving only
the issue of total number of parameters to lead the consideration of nesting
categorization. The application for the CW reveals whether the statistical sig-
ni�cance of the DM values vanishes or not. Evidently, as it can be seen below,
the results of both tests indicate that in general the forecasts of the investi-
gated models are pairwise signi�cantly di¤erent in many cases.

For GDP, the DM test statistics are highly signi�cant at the 1% level for
almost all forecasts of the VAR against DSGE-VAR and TVP-VAR as well as
for pairs BVAR vs DSGE-VAR and TVP-VAR. The DSGE does not appear to
comparatively outperform any of the other models. These compared with the
results from the RMSE ratio analysis show that the TVP-VAR and the DSGE-
VAR outperform the other models, albeit their pairwise forecast comparison
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Table 9 Pairwise forecast comparison for the GDP with Diebold-Mariano and Clark-West
tests

GDP Quarters ahead
1 2 3 4 5

Test DM CW DM CW DM CW DM CW DM CW
VAR vs BVAR 0.386 0.002 0.083 0.007 0.029 0.002 0.241 0.005 0.696 0.001
VAR vs DSGE-VAR 0.812 0.003 0.033 0.002 0.002 0.163 0.001 0.479 0.013 0.733
VAR vs TVP-VAR 0.008 0.051 0.002 0.057 0.001 0.058 0.002 0.054 0.003 0.048
VAR vs DSGE 0.160 0.123 0.473 0.157 0.140 0.239 0.089 0.268 0.094 0.142
BVAR vs DSGE-VAR 0.505 0.001 0.011 0.009 0.004 0.286 0.006 0.521 0.001 0.134
BVAR vs TVP-VAR 0.007 0.053 0.025 0.069 0.001 0.066 0.005 0.075 0.007 0.052
BVAR vs DSGE 0.169 0.127 0.728 0.158 0.083 0.274 0.275 0.272 0.208 0.145
DSGE-VAR vs TVP-VAR 0.002 0.056 0.004 0.067 0.215 0.073 0.267 0.061 0.859 0.064
DSGE-VAR vs DSGE 0.141 0.123 0.410 0.159 0.811 0.126 0.989 0.203 0.908 0.134
TVP-VAR vs DSGE 0.766 0.014 0.624 0.039 0.800 0.016 0.759 0.036 0.964 0.055

Notes: The results are reported in p-values. The Diebold-Mariano (1995) and Clark-West
(2004) tests are based on squared prediction errors. The tests has been conducted on the
best performers of each category based on the RMSE results.

Table 10 Pairwise forecast comparison for the CPI with Diebold-Mariano and Clark-West
tests

CPI Quarters ahead
1 2 3 4 5

Test DM CW DM CW DM CW DM CW DM CW
VAR vs BVAR 0.035 0.002 0.003 0.837 0.004 0.003 0.659 0.002 0.248 0.004
VAR vs DSGE-VAR 0.001 0.566 0.002 0.574 0.001 0.349 0.007 0.009 0.004 0.439
VAR vs TVP-VAR 0.220 0.132 0.741 0.125 0.208 0.120 0.472 0.074 0.003 0.105
VAR vs DSGE 0.025 0.089 0.091 0.082 0.540 0.028 0.047 0.006 0.005 0.109
BVAR vs DSGE-VAR 0.007 0.581 0.004 0.656 0.003 0.545 0.006 0.136 0.003 0.515
BVAR vs TVP-VAR 0.252 0.123 0.153 0.123 0.048 0.119 0.522 0.077 0.001 0.100
BVAR vs DSGE 0.050 0.137 0.751 0.054 0.262 0.005 0.003 0.152 0.009 0.113
DSGE-VAR vs TVP-VAR 0.551 0.130 0.603 0.121 0.865 0.118 0.900 0.115 0.005 0.103
DSGE-VAR vs DSGE 0.392 0.012 0.026 0.117 0.230 0.083 0.254 0.001 0.006 0.140
TVP-VAR vs DSGE 0.965 0.131 0.129 0.128 0.510 0.126 0.517 0.002 0.521 0.116

Notes: As in Table 9

shows no statistical di¤erence especially over the two-quarter-ahead forecasts.
Overall, many test statistics are not signi�cant in particular for the BVAR
vs DSGE, DSGE-VAR vs TVP-VAR, DSGE-VAR vs DSGE and TVP-VAR
vs DSGE pairwise comparisons in all steps-ahead forecasts. After employing
the CW test the TVP-VAR pairwise comparisons against VAR and BVAR
become statistically weaker, although they retain signi�cance below 10%. With
DGSE and DSGE-VAR the di¤erential predictability is stronger, especially
over three-steps-ahead. Moreover, the VAR vs DGSE-VAR signi�cance turns
weaker while the BVAR vs DGSE-VAR cross-accuracy changes and the VAR
vs BVAR forecast comparison is enhanced.
Then, for the CPI series, the �ve-ahead forecasts seem to be statistically

di¤erent for all pairs, while VAR and in a smaller extent the BVAR is con-
sistently superior to the other models. In accordance with the RMSE results,



26

Table 11 Pairwise forecast comparison for the FFR with Diebold-Mariano and Clark-West
tests

FFR Quarters ahead
1 2 3 4 5

Test DM CW DM CW DM CW DM CW DM CW
VAR vs BVAR 0.002 0.004 0.002 0.003 0.037 0.003 0.002 0.013 0.004 0.820
VAR vs DSGE-VAR 0.005 0.002 0.001 0.001 0.000 0.969 0.003 0.955 0.005 0.831
VAR vs TVP-VAR 0.002 0.001 0.003 0.003 0.002 0.019 0.041 0.103 0.399 0.286
VAR vs DSGE 0.872 0.009 0.002 0.002 0.003 0.006 0.002 0.004 0.004 0.002
BVAR vs DSGE-VAR 0.101 0.060 0.521 0.001 0.003 0.969 0.001 0.946 0.007 0.634
BVAR vs TVP-VAR 0.008 0.000 0.001 0.001 0.001 0.022 0.392 0.091 0.893 0.631
BVAR vs DSGE 0.087 0.385 0.062 0.001 0.005 0.007 0.001 0.003 0.009 0.005
DSGE-VAR vs TVP-VAR 0.004 0.001 0.001 0.001 0.050 0.076 0.942 0.575 0.145 0.825
DSGE-VAR vs DSGE 0.118 0.002 0.432 0.002 0.004 0.002 0.002 0.004 0.002 0.008
TVP-VAR vs DSGE 0.003 0.005 0.002 0.002 0.003 0.004 0.001 0.023 0.001 0.022

Notes: As in Table 9

it is evident that in case of CPI, the VAR setup and the BVAR outperform
the other models with statistically signi�cant comparative forecastability at
the 1% and 5% level for the DM test. In addition, many statistics appear to
be insigni�cant even at the 10% level. Moreover, the results from CW seem
to indicate an increase in statistical predictability of the TVP-VAR against
VAR, BVAR and DSGE-VAR. In accordance with the results form DM, the
di¤erential predictability of VAR is strengthened. The BVAR and VAR pairs
vs DSGE-VAR become weaker, whereas other comparisons appear modi�ed
in relation to DM scores. The DGSE vs TVP-VAR comparative performance
remains insigni�cant.
Finally, for the FFR as the combined investigation of the RMSE and DM

results indicate, the TVP-VAR in any pair shows a distinctively signi�cant
predictability in almost all the steps-ahead forecasts. The DSGE-VAR is also
a good performer mainly for the four- and �ve-ahead forecast. Overall, for the
FFR the forecasting ability of the models seems to present a diverse and variant
yet signi�cant performance in all steps-ahead. The CW values do not indicate
an important change in di¤erential predictability of the TVP-VAR vs VAR,
BVAR and DSGE-VAR, although it becomes stronger over the four-quarter-
ahead horizon yet not statistically signi�cant in the 10% level. All other results
are the same as for the DM test with the exception of the VAR vs DGSE-
VAR and BVAR vs DSGE-VAR pairs that turn weaker over three-steps-ahead.
Overall, the implementation of the Clark and West (2004) test did not lead
to a dramatic weakening in the detected signi�cance by the Diebold-Mariano
(1995) test, nor to a distinctive change in most of the pairs. Interestingly, in
many cases taking into account the nested relationships lead to a statistically
stronger di¤erential predictability4 .

4 Similarly to the RMSE sensitivity analysis with respect to the sample selection, we
performed a robustness check regarding the di¤erential predictability results by the DM
and CW tests with the use of a longer sample spanned from 1955:1 to 2009:4 with an out-
of-sample period of 2001:1-2009:4. Again, the GDP and the CPI came from the Historical
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5 Conclusions

Over the last few years, there has been a growing interest in DSGE modelling
in the academia and central banks, in order to explain macroeconomic �uctu-
ations and conduct quantitative policy analysis. Despite their success, DSGE
models are not considered the best forecasting tools due to validation, esti-
mation and identi�cation issues. Very recently, hybrid or mixture models have
become popular for dealing with some of the DSGE model misspeci�cations.
These models are able to solve the trade-o¤ between theoretical coherence
and empirical �t. In this study a DSGE-VAR approach was employed. The
main idea behind the DSGE-VAR is the use of the VAR representation as an
econometric tool for empirical validation, combining prior information derived
from the DSGE model in estimation. However, these models are still linear
and they do not consider time-variation for parameters. A novel time-varying
multivariate state-space estimation method for vector autoregression models
has been introduced in this paper. For the TVP-VAR model, the parameters
are estimated using a multivariate speci�cation of the standard Kalman �lter
(Harvey 1990) combined with a suitable extension of the univariate method-

Data Files for the Real-Time Data Set provided by the Federal Reserve Bank of Philadelphia,
while the short interest rate series came from the ALFRED dataset for vintage data provided
by the Federal Reserve Bank of St. Louis. As in the initial sample the tests have been
conducted on the best performer of each model class and for each macro-variable. For GDP
the outcome was almost identical to the original sample selection. The DM test statistics
were signi�cant (except for the one-step-ahead) for almost all forecasts of the VAR against
DSGE-VAR and TVP-VAR as well as for pairs BVAR vs DSGE-VAR and TVP-VAR. The
DM results compared with the RMSE ratio analysis showed that the TVP-VAR and the
DSGE-VAR outperformed the other models and their pairwise comparison showed a stronger
statistical di¤erence for more steps-ahead than the one of the initial sample. In accordance
with the analysis conducted on the original sample, many test statistics were not signi�cant
in particular for the BVAR vs DSGE, DSGE-VAR vs TVP-VAR, DSGE-VAR vs DSGE and
TVP-VAR vs DSGE pairwise comparisons. After employing the CW test the TVP-VAR
pairwise comparisons against the other models became statistically weaker and even more
weak than the original sample investigation. Similarly to the initial sample, the VAR vs
DGSE-VAR signi�cance turned weaker while the BVAR vs DGSE-VAR and VAR vs BVAR
forecast comparison was more signi�cant. For the CPI series in the longer sample, the DM
and CW statistics turned weaker compared to the original sample. In this case the VAR
setup and the BVAR did not seem to outperform the other models based on the DM test,
while the DGSE pairs did not show a statistically signi�cant di¤erential predictability as
would someone expect from the RMSE results. In addition, many statistics appeared to be
insigni�cant even at the 10% level, exactly as in the initial sample selection. The results from
CW showed the same weak statistical predictability of the TVP-VAR against VAR, BVAR
and DSGE-VAR. The DGSE vs TVP-VAR comparative performance remained insigni�cant.
From the combined investigation of the RMSE and DM results for the FFR in the longer
sample, it was inferred that the TVP-VAR in any pair showed a distinctively signi�cant
predictability in all steps-ahead. The DSGE-VAR was also a good performer for all forecast
horizons and not only for the four- and �ve-ahead forecast as in the original sample. The
CW values did not indicate an important change in di¤erential predictability of the TVP-
VAR vs VAR, BVAR and DSGE-VAR and in general the statistical signi�cance was stronger
compared to the one of the initial sample. Overall, the implementation of the CW test in
the longer sample revealed an increase in the statistical signi�cance of the predictability
inferred by the DM test concerning the FFR variable, while it did not lead to a dramatic
change in most of the pairs for the other two variables.
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ology framework of Kim and Nelson (1999). All the aforementioned models
as well as standard VARs and Bayesian VARs, are used in a comparative in-
vestigation of their out-of-sample predicting performance in case of the GDP,
CPI and interest rate series of the US economy. The results vary across the
three investigated time series and indicate that, while in general the classical
VAR and BVARs provide with equally good forecasting results, in most cases
the estimated hybrid DSGE-VAR and the TVP-VAR models outperform the
simple DGSE model.
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