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Chapter Xl |

| ncor poratingUser
Per ceptionin
AdaptiveVideo
Streaming Systems

Nicola Cranley, University College Dublin, Ireland

Liam Murphy, University College Dublin, Ireland

Abstract

There is an increasing demand for streaming video applications over both the fixed
Internet and wireless | P networks. The fluctuating bandwidth and time-varying delays
of best-effort networks makes providing good quality streaming a challenge. Many
adaptive video delivery mechanisms have been proposed over recent years,; however,
most do not explicitly consider user-perceived quality when making adaptations, nor
do they define what quality is. This chapter describes research that proposes that an
optimal adaptation trajectory through the set of possible encodings exists, and
indicates how to adapt transmission in response to changes in network conditions in
order to maximize user-perceived quality.
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| ntroduction

Best-effort IP networks are unreliable and unpredictable, particularly in a wireless
environment. There can be many factors that affect the quality of atransmission, such
as delay, jitter, and loss. Congested network conditions result in lost video packets,
which, as a consequence, produce poor quality video. Further, there are strict delay
constraints imposed by streamed multimedia traffic. If a video packet does not arrive
before its playout time, the packet is effectively lost. Packet losses have a particularly
devastating effect on the smooth continuous playout of a video sequence due to inter-
frame dependencies. A slightly degraded quality but uncorrupted video stream is less
irritating to the user than a randomly-corrupted stream. However, rapidly fluctuating
quality should also be avoided as the human vision system adapts to a specific quality
after a few seconds, and it becomes annoying if the viewer has to adjust to a varying
quality over short time scales (Ghinea, Thomas, & Fish, 1999). Controlled video quality
adaptation is needed to reduce the negative effects of congestion on the stream while
providing the highest possible level of service and quality. For example, consider a user
watching some video clip; when the network is congested, the video server must reduce
the transmitted bitrate to overcome the negative effects of congestion. In order to reduce
the bitrate of the video stream, the quality of the video stream must be reduced by
sacrificing some aspect of the video quality. There are a number of ways in which the
quality can be adapted; for example, theimageresolution (i.e. theamount of detail inthe
video image), the framerate (i.e. the continuity of motion), or acombination of both can
be adapted. The choice of which aspect of the video quality should depend on how the
quality reduction will be perceived.

In the past few years, there has been much work on video quality adaptation and video
quality evaluation. In general, video quality adaptation indicates how the bit rate of the
video should be adjusted in response to changing network conditions. However, thisis
not addressed intermsof video quality, asfor agiven bit rate budget there are many ways
inwhichthevideo quality can be adapted. Video quality eval uation measuresthe quality
of video as perceived by the users, but current evaluation approaches are not designed
for adaptive video streaming transmissions.

Thischapter will firstly provide ageneralized overview of adaptive multimediasystems
and describe recent systems that use end-user perception as part of the adaptation
process. Many of these adaptive systemsrely on objective metricsto calculate the user-
perceived quality. Several objective metrics of video quality have been developed, but
they are limited and not satisfactory in quantifying human perception. Further, it can be
argued that to date, objective metrics were not designed to assess the quality of an
adapting video stream. As a case study, the discussion will focus on recent research that
demonstrates how user-perceived quality can be used as part of the adaptation process
for multimedia. Inthiswork, the concept of an Optimal Adaptation Trajectory (OAT) has
been proposed. The OAT indicates how to adapt multimedia in response to changesin
network conditionsto maximize user-perceived quality. Finally experimental subjective
testing results are presented that demonstrate the dynamic nature of user-perception
with adapting multimedia. Theresultsillustrate that using atwo-dimensional adaptation
strategy based on the OAT out-performs one-dimensional adaptation schemes, giving
better short-term and long-term user-perceived quality.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
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Review of Adaptive Multimedia Systems

Given the seriousness of congestion on the smooth continuous play-out of multimedia,
there is a strong need for adaptation. The primary goals of adapting multimedia are to
ensuregraceful quality adaptation, mai ntain asmooth continuous play-out and maximize
the user-perceived quality. Multimediaservers should be ableto intelligently adapt the
video quality to match theavailableresourcesinthe network. Thereare anumber of key
featuresthat need to be considered in the development of an adaptive streaming system
(Wang & Schulzrinne, 1999) such asfeedback to relay the state of the network between
client and server, the frequency of this feedback, the adaptation algorithm used, the
sensitivity of the algorithm to feedback, and the resulting user-perceived quality.

However, themost important thingishow the system reacts, how it adaptsto congestion,
and the perceived quality that results from this adaptation.

Adaptation Techniques

Broadly speaking, adaptation techniques attempt to reduce network congestion by
matching therate of the multimediastream to the availabl e network bandwidth. Without
some sort of rate control, any datatransmitted exceeding the avail able bandwidth would
be discarded, lost, or corrupted in the network. Adaptation techniques can be classified
into the following generalized categories: rate control, rate shaping, and rate adaptive
encoding (Figure 1). Each of these techniques adapts the transmitted video stream to
match the avail ableresourcesin the network by either adapting therate at which packets
are sent or adjusting the quality of the delivered video (Wu, Hou, Zhu, Lee, Chiang,
Zhang, & Chao, 2000, 2002). These are briefly described in the following sections.

Figure 1. Adaptation techniques
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Rate Control

Rate control isthe most commonly-used mechanism employed in adaptive multimedia
systems. Rate control can be implemented either at the server, the client, or a hybrid
scheme whereby the client and server cooperate to achieve rate control.

. Sender-based r atecontrol: Onreceipt of feedback fromtheclient, theserver adapts
thetransmissionrateof themultimediastream being transmittedin order tominimize
the levels of packet loss at the client by matching the transmission rate of the
multimedia stream to the avail able network bandwidth. Without any rate control,
the data transmitted exceeding the avail able bandwidth would be discarded in the
network.

. Receiver-based ratecontrol: Theclientscontrol thereceivingrateof video streams
by adding/dropping layers. Inlayered multicast, thevideo sequenceiscompressed
into multiple layers: a base layer and one or more enhancement layers. The base
layer can be independently decoded and provides basic video quality; the en-
hancement layers can only be decoded together with the base layer, and they
enhance the quality of the base layer.

. Hybrid ratecontrol: Thisconsistsof rate control at both the sender and receiver.
The hybrid rate control is targeted at multicast video and is applicable to both
layered video and non-layered video. Typically, clientsregulatethereceiving rate
of video streams by adding or dropping layers while the sender also adjusts the
transmission rate of each layer based on feedback information from thereceivers.

Unlike server-based schemes, the server uses multiplelayers, and the rate of each layer
may vary due to the hybrid approach of adapting both at the server and receiver.

Rate Shaping

Rate shaping is a technique to adapt the rate of compressed video bit-streams to meet
sometarget bit rate by acting asafilter (or interface) between the compression layer and
thetransport layer. Thereareanumber of filtersthat can be used to achieverate shaping.

. Frame-droppingfilter: Thisfilter distinguishesbetweenthedifferent frametypes
in avideo stream (i.e., |-, P- and B-frames). The frame-dropping filter is used to
reduce the data rate of a video stream by discarding frames according to their
relativeimportance. For example, B-framesare preferentially dropped, followed by
P-framesandfinally I-frames.

. Frequencyfilter: Thisfilter performsfiltering operationsonthecompressionlayer,
for example, by discarding DCT coefficientsat higher frequenciesor reducing the
color depth.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
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. Re-quantization filter: Re-quantizesthe DCT coefficients. Thefilter extractsand
de-quantizes the DCT coefficients from the compressed video stream then re-
guantizesthe coefficientswithalarger quantization step whichresultsinareduced
bitrate and reduced quality.

Rate Adaptive Encoding

Rate adaptive encoding performs adaptation by adjusting the encoding parameters
which in turn adapts the output bit rate. However, adaptive encoding is constrained by
the capabilities of the encoder and the compression scheme used. There are a number
of encoding parameters that can be adapted in rate adaptive encoding, such as dynami-
cally adapting the quantization parameter, frame rate, and/or the spatial resolution.

Discussion

The key questions that arise when developing or designing adaptation algorithms are
how the system adapts and the perceived quality at the receiver.

Thereareanumber of common componentsin each of thedifferent adaptation techniques
described. Many adaptation algorithms have a strong dependency on the choice of
control parameters used within the adaptation process. For example, in a server-based
rate control system, upon receipt of feedback the server either increasesitstransmission
rate by o or decreasesitsrate by B. If therate of o ischosen to betoo large, theincreased
transmission rate could push the system into causing congestion, which can in turn
causetheclient to experiencelossand poor perceived quality. However, if o.istoo small,
theserver will bevery slow to makeuse of the extraavail able bandwidth and send ahigher
bit rate video stream. Thus, thealgorithm isheavily dependent on the val ue of the control
parameters, o. and B, which drive the adaptation.

Even more problematicistranslating rateinto real video encoding parameters. Consider
asimple system where the server isdelivering video at 150kbps, and based on feedback,
the algorithm indicates that the transmission rate should be increased to 160kps. The
guestion that remains is: How should the extra 10kps be achieved, how can the video
stream be adjusted to achieve thisrate? Thisisfurther complicated by the limitations of
the encoder to adapt the video. L ayer-based schemes are equally problematic sincethere
isno firm definition of what constitutes a baselayer and each of the enhancement layers.

The most important issue that is often omitted in the design of adaptation algorithmsis
user-perception. User-perception should be incorporated into the adaptation algo-
rithms, since it is the user who is the primary entity affected by adaptation, and should
therefore be given priority in the adaptation decision-making process. For example, if a
video clip isbeing streamed at a particular encoding configuration and the system needs
to degrade the quality being delivered, how this adaptation occurs should be dictated
by the users’ perception. The way to degrade should be such asto havethe least negative
impact on the users' perception. There needs to be some sort of understanding of video
quality and the perception of the video quality in order for adaptation to occur in an
achievable and intelligent manner.
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Review of Objective Metrics

Themain goal of objective metricsisto measure the perceived quality of agivenimage
or video. Sophisticated objective metrics incorporate perceptual quality measures by
considering the properties of the Human Visual System (HV S) inorder to determinethe
visibility of distortions and thus the perceived quality. However, given that there are
many factors that affect how users perceive quality, such as video content, viewing
distance, display size, resolution, brightness, contrast, sharpness/fidelity, and colour,
many objective metrics have limited success in calculating the perceived quality
accurately for adiverse range of testing conditions and content characteristics. Several
objective metrics of video quality have been proposed (Hekstra, 2002; van den Branden
Lambrecht, 1996; Watson, Hu, & McGowan, 2000; Winkler, 1999), but they arelimited and
not satisfactory in quantifying human perception (Masry & Hemami, 2002; Yu & Wu,
2000).

In this section two key objective metrics, the Peak Signal to Noise Ratio (PSNR) and
the Video Quality Metric (VQM) are reviewed. These two metrics have been widely
applied to many applications and adaptation algorithms to assess video quality.

Peak Signal to Noise Ratio (PSNR)

The most commonly-used objective metric of video quality assessment is the Peak
Signal to Noise Ratio (PSNR). Theadvantage of PSNRisthat itisvery easy to compute.
However, PSNR doesnot match well to the characteristicsof HVS. Themain problemwith
using PSNR values as a quality assessment method is that even though two images are
different, thevisibility of thisdifferenceisnot considered. The PSNR metric doesnot take
the visual masking phenomenon or any aspects of the HV S into consideration, that is,
every single errored pixel contributes to the decrease of the PSNR, even if thiserror is
not perceived. For example, consider animagewhere the pixel valueshave been altered
slightly over the entire image and an image where there is a concentrated distortion in
asmall part of the image both will result in the PSNR value however, one will be more
perceptible to the user than the other. It is accepted that the PSNR does not match well
tothecharacteristicsof theHV S(Girod, 1993; van den Branden Lambrecht & Verscheure,
1996).

Video Quality Metric (VQM)

The ITU-T has recently accepted the Video Quality Metric (VQM) from the National
Telecommunicationsand I nformation Administration (NTIA) asarecommended objec-
tivevideo quality metric that correlates adequately to human perceptionin ITU-T J.148
(2003) and ITU-T J.149 (2004). The Video Quality Metric (V QM) provides ameans of
objectively evaluating video quality. The system compares an original video clip and a
processed video clip and reports a Video Quality Metric (VQM) that correlates to the
perception of atypical end user. TheV QM objectivemetricsareclaimedto provideclose
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approximations to the overall quality impressions, or mean opinion scores (Wolf &
Pinson, 1999). The quality measurement process includes sampling of the original and
processed video streams, calibration of the original and processed video streams,
extraction of perception-based features, computation of video quality parameters, and
finally calculation using various VQM models.

Using Objective Metrics for Multimedia Adaptation

Given the wide range of video quality metrics developed, the Video Quality Experts
Group (VQEG) wasformedin 1997 withthetask of collectingreliablesubjectiveratings
for adefined set of test sequences and to evaluate the performance of various objective
videoquality metrics(VQEG, 2005). In 2000, the V QEG performed amaj or study of various
objectivemetricson behalf of thel TU to comparethe performances of variousobjective
metrics against subjective testing in terms of prediction accuracy, prediction monoto-
nicity, and prediction consistency. The results of the VQEG study found that no
objective metric is able to fully replace subjective testing, but even more surprisingly,
that no objective metric performed statistically better than the PSNR metric.

Themaindifficultly withvideo quality metricsisthat eventhoughthey giveanindication
of the video quality, they do not indicate how the video quality should be adapted in an
adaptive system. Furthermore, many of these objective metrics require a comparison
between the reference clip and the degraded video clip in order to calculate the video
quality. Thiscomparison isoften done on aframe-by-frame basisand therefore requires
both the reference and degraded clips to have the same frame rate. The more sophisti-
cated metrics proposed are extremely computational ly intenseand are unsuitablefor use
in areal-time adaptive system. Given the limitations of objective metrics, it has been
recognized that user-perception needs to be incorporated in adaptation algorithms for
streamed multimedia. There are emerging adaptive streaming systems being devel oped
that addressthisissue (Muntean, Perry, & Murphy, 2004; Wang, Chang, & L oui, 2004).

Optimum Adaptation Trajectories
(OATS)

Thissectionwill focuson an approach that incorporates user-perception into adaptation
algorithmsfor video streaming. Thiswork proposesthat thereisan optimal way inwhich
multimedia transmissions should be adapted in response to network conditions to
maximizetheuser-perceived quality (Cranley, Murphy, & Perry, 2003). Thisisbased on
the hypothesisthat withinthe set of different waysto achieveatarget bit rate, thereexists
an encoding configuration that maximizes the user-perceived quality. If a particular
multimedia file has n independent encoding configurations, then there exists an adap-
tation spacewith n dimensions. When adapti ng the transmission from some point within
that space to meet a new target bit rate, the adaptive server should select the encoding
configuration that maximizesthe user-perceived quality for that given bit rate. When the
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transmission is adjusted across its full range, the locus of these selected encoding
configurations should yield an Optimum Adaptation Trajectory (OAT) within that
adaptation space.

Thisapproach isapplicableto any type of multimediacontent. Thework presented here
focusesfor concreteness on the adaptation of MPEG-4 video streamswithinafinitetwo-
dimensional adaptation space defined by the range of the chosen encoding configura-
tions. Each encoding configuration consists of a combination of frame rate and resol u-
tion and is denoted as [Frame rate ., Resolution _]. These encoding variables were
chosen as they most closely map to the spatial and temporal complexities of the video
content. The example shown in Figure 2(a) indicates that, when degrading the quality
from an encoding configuration of 25fpsand 100% resolution or [25 ., 100,], thereare
anumber of possibilities such asreducing theframerateonly, [X ., 100.], reducing the
resolutiononly, [25_, Y ], or reducing acombination of both parameters, [U_, V]. Each
of these possihilities lies within a zone of Equal Average Bit Rate (EABR). The clips
fallingwithinaparticular zoneof EABR havedifferent, but similar bit rates. For example,
the bit rates corresponding to the encoding points [17,., 100.], [25 ., 79.] and [25_,
63,] were85, 88, and 82 kbps, respectively. To compareclipsof exactly thesamebit rate
wouldrequireatarget bit rateto be specified, and then theencoder would use proprietary
meansto achievethisbit rate by compromising thequality of theencodinginanunknown
manner. Using zones of EABR effectively quantizes the bit rate of different video
sequences with different encoding configurations. The boundaries of these zones of
EABR are represented as linear contours for simplicity, since their actual shape is
irrelevant for this scheme.

The OAT indicates how the quality should be adapted (upgraded or downgraded) so as
to maximizethe user-perceived quality. The OAT may be dependent on the characteris-
tics of the content. Thereis a content space in which all types of video content exist in
terms of spatial and temporal complexity (or detail and action). Every type of video
content within this space can be expanded to an adaptation space as shown in Figure
2(b). Adaptation space consists of all possible dimensions of adaptation for the content.
It can be implemented as part of an adaptive streaming server or adaptive encoder.

Figure 2(a). Adaptation possibilities Figure 2(b). Adaptation space
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OAT Discovery

User perception of video quality may vary with the content type; for example, viewers
may perceive action clips differently from slow-moving clips. Thus, there may exist a
different OAT for different types of content based on their spatial and temporal
characteristics. In order to characterize content in terms of its spatial and temporal
complexity, aspatial-temporal grid wasconstructed, asshownin Figure3(a). Thespatial
and temporal perceptual information of the content was determined using the metrics
Spatial Information (SI) and Temporal Information (T1) (ITU-T P.910, 1999).

Eight different content types were selected based on their Sl and Tl valuesin order to
cover as much of the Spatial-Temporal grid as possible. These test sequences were
acquired from the VQEG. Each test sequence was then expanded to form an adaptation
space, as shown in Figure 3(b). During the preparation of the test sequences for the
subjective testing, the encoding method used was the “ most accurate”, that is, no target
bit rate was specified, and the encoder followed the supplied encoding parameters as
closely as possible regardless of the resulting bit rate.

The subjective testing consisted of two independent testers performing identical test
procedures and using identical test sequences on subjects. Subjects were eliminated if
the subject was either knowledgeabl e about video quality assessment or had any visual
impairments. Testing was conducted in two phases. Phase One considered four test
sequences, onetaken from each quadrant of the SI-TI grid. Tofacilitate subjectivetesting
and reduce the number of test cases, adaptation space was sampled using alogarithmic
scaletoreflect Weber’ sLaw of Just NoticeableDifference (JND). Phase Two considered
four different test sequences with similar SI-TI values to those used for Phase One.
However, this time, the adaptation space was sampled using a linear scale. The main
objective of having two different test phases wasto verify and validate the results from

Figure 3(a). Spatial-temporal grid sampled with four content types for phase one of
testing; (b) logarithmically-sampled adaptation space for content type C1
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Phase One. In addition, by using different encoding scales, it could be verified that the
OAT was similar in shape regardless of whether alinear or logarithmic scale was used,
and regardless of the encoding points tested.

There are anumber of different subjective testing methodol ogies that are proposed by
the ITU-T, including the Absolute Category Rating (ACR), the Degraded Category
Rating (DCR), and Pair Comparison (PC) methods. The DCR method usesafive-point
impairment scale whilst the ACR method uses a five-point quality grading scale, or
alternatively aContinuousQuality Scale (CQS) (ITU-T P.910, 1999). However, by using
such grading scales, it is criticized that different subjects may interpret the associated
grading scale in different ways and use the grading scale in a non-uniform fashion
(Watson, 1998). To overcome these difficulties in the grading procedure, the Forced
Choice methodology is often employed. In the forced choice method, the subject is
presented with anumber of spatial or temporal alternativesin each trial. The subject is
forcedto choosethelocation orinterval inwhichtheir preferred stimulusoccurred. Using
the forced choice method, the biasis binary, which simplifies the rating procedure and
allows for reliability, verification, and validation of the results. The subjective tests
consisted of asubject watching every combination of pairsof clipsfromeachEABR zone
for each content type and making aforced choice of the preferred encoding configura-
tion. Intra-reliability andinter-reliability of asubject werefactoredintothetest procedure
by including repetition of the same test sequence presentation.

Thediagramin Figure4 showsthe subjectivetest resultsobtained for aparticular content
type. The diagram consists of agrid of circular encoding pointswherethe framerateis
on the x-axis and the resolution is on the y-axis. Through these encoding points are
diagonal grey lines denoting the zones of EABR, ranging from 100kbpsto 25kbps. The
encoding points marked with a percentage preference value are those points that were
tested withinazone of EABR. For example, in EABR-100kbps, thereweretwo encoding
configurations tested, [17_., 100.] and [25_.., 79.]. Seventy percent of the subjects
preferred encoding configuration [17_, 100.], while the remaining 30% preferred
encoding configuration[25__., 79.]. However, intheleft-most zoneof EABR, thepreferred
encoding configuration is [5_., 63.]. In this zone of EABR there are three encoding
configurations, but sincetheframerateisthe same, the preferred encoding configuration
isthat with the highest resolution, [5_., 63_].

The Path of Maximum Preference is the path through the zones of EABR joining the
encoding configurationswith the maximum user preference. Weighted pointswerethen
used to obtain the Optimal Adaptation Perception (OAP) points. The weighted points
wereinterpolated as the sum of the product of preference with encoding configuration.
For example, 70% of subjects preferred encoding [17,_., 100.] and 30% preferred
encoding point [25_,, 79.]. The weighted vector of these two encoding configurations
is[70%(17_.0)+30%(25,,), 70%(100,)+30%(79,)] whichequalsOAPpoint[19.4 ., 93.7 ].
The Weighted Path of Preferenceisthe path joining the OAPs. There are two possible
pathswhich can be used torepresent the OAT: the path of maximum user preference, and
the weighted path of preference. It seems likely that by using the weighted path of
preference, the system can satisfy more users by providing a smooth graceful quality
adaptation trajectory. Using the same subjectivetesting methodology, the OAPsin each
zone of EABR were compared against the maximum preferred encoding and all other
encoding configurations. In all cases, theinterpolated OAP did not have a statistically-
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Figure 4. Subjective test results for content type, C3
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significant preference from the maximum preferred encoding indicating that thissimple
weighted vector approach is acceptable. It was also observed that there was a higher
incidence of forced choices when the maximum preferred encoding and the OAP were

close together.

Figure 5 shows the paths of maximum preference and weighted paths of preference for
the four content types used during Phase One of testing. It can be clearly seen from the
paths of maximum user preference that when there is high action (C1 and C2), the
resol utionislessdominant regardless of whether the clip hashigh spatial characteristics
or not. Thisimplies that the user is more sensitive to continuous motion when thereis
high temporal information in the video content. Intuitively this makes sense as when

Figure 5. Path of maximum user preference and weighted path of preference for four
different content types
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thereishigh action in ascene; often the scene changes aretoo fast for the user to be able
toassimilatethescenedetail. Conversely, when the scene haslow temporal requirements
(C3and C4), the resol ution becomes more dominant regardl ess of the spatial character-
istics.

Objective metrics were investigated to determine whether they yielded an OAT that
correlated to that discovered using subjective testing. The results showed that thereis
a significant difference between the adaptation trajectories yielded using objective
metrics and subjective testing techniques. This suggests that measuring quality and
adapting quality based on this measurement are different tasks.

Oats in Practice

Inthissection, how user-perceptionisaffected by adapting video quality isinvestigated.
In particular, the user-perceived quality is compared when video quality is varied by
adapting theframerate only, theresolution only, or adapting both the frame rate and the
resol ution using the OAT. Streaming multimediaover best-effort networksisbecoming
an increasingly important source of revenue. A content provider isunlikely to have the
resources to provide real -time adaptive encoding for each unicast request and, as such,
reserves this for “live” multicast sessions only. Typically, pre-encoded content is
transmitted by unicast streamswherethe client choosesthe connection that most closely
matchestheir requirements. For such unicast sessions, the adaptive streaming server can
employ several techniques to adapt the pre-encoded content to match the clients’
resources. |n such adaptive streaming systems, two techniques that are most commonly
used are frame dropping and stream switching. The OAT showshow to stream the video
in order to maximizetheuser’ sperceived quality in atwo-dimensional adaptation space
defined by framerate and resolution (Figure 6). Adaptive framerate can be achieved by
frame dropping, while adapting spatial resolution can be achieved using track or stream
switching.

All adaptation algorithms behave in an A-Increase/B-Decrease manner where A and B
are the methods of change and can be either Additive, Multiplicative, Proportional,
Incremental, or Decremented (Figure 7). When there is no congestion, the server
increasesitstransmission rate either additively (Al), proportionally (PI), or multiplica-
tively (M1), and similarly when there is congestion, it decreases its transmission rate
either additively (AD), proportionally (PD), or multiplicatively (MD). There are many
waysto adapt video quality, for example:

. Additivel ncrease/M ultiplicativeDecr ease (AIMD) (Chiu & Jain, 1989)
. Additivelncrease/AdditiveDecrease(AlAD),

. Additivel ncrease/Proportional Decrease(AIPD) (Venkitaraman, Kim, Lee, Lu, &
Bharghavan, 1999),

. Multiplicativelncrease/M ultiplicative Decr ease (MIMD) (Turletti & Huitema,
1996).
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Figure 6. One-dimensional versus two-dimensional adaptation
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Ingeneral, all rate-control algorithmsexhibit someform of Al and AD behavior, although
the majority of adaptation algorithms are AIMD (Feamster, Bansal, & Balakrishnan,
2001). Thus the perception of adapting video quality is assessed in three different test
cases. Thefirst test assesses user perception when quality isadapted upinan Al manner,
while the second assesses perception when quality is degraded down in an AD manner.
Finally, the third assesses quality adapting in an Additive Increase/Multiplicative
Decrease (AIMD) manner.

Test Methodology

The Forced Choice methodol ogy issuitablefor clipslasting not longer than 15 seconds.
For video clips lasting longer than this duration, there are recency and forgiveness
effects by the subject, which are a big factor when the subject must grade the overall
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quality of avideo sequence. For example, the subject may forget and/or forgive random
appearances of content-dependent artifacts when they are making their overall grade of
the video sequence. To test clips of alonger duration, a different test methodology to
the forced choice method needsto be applied to overcome the forgiveness and recency
effects and to ensure the subject can make an accurate judgement.

TheSingle StimulusContinuousQuality Evaluation (SSCQE) methodol ogy isintended
for the presentation of sequences lasting several minutes (ITU-R BT.500-7, 1997).
Continuous evaluation is performed using a slider scale on the screen to record the
subjects’ responses without introducing too much interference or distraction, and
providesatraceof theoverall quality of thesequence (Pinson & Wolf, 2003). A reference
clip was played out at the beginning of the test so that the subjects were aware of the
highest quality sequence. The three varying quality sequences were then presented in
random order to each subject in turn. As each sequence was played out, the subject
continuously rated thequality of the sequenceusing theslider. Whentheslider ismoved,
the quality grade of the slider is captured and related to the playout time of the media.
TheMean Opinion Score(MOS) and standard deviation are cal cul ated at each mediatime
instant. In this case, each media time instant corresponds to one second of media. The
MOS and standard deviation is calculated for each clip segment.

The test sequence chosen for this experiment contains a wide range of spatial and
temporal complexity. The test sequence contains periods of high temporal complexity
that are generally bursty containing many scene changes. In thistest sequence, periods
of hightemporal complexity aregenerally followed by periodsof relatively low temporal
complexity but high spatial complexity consisting of detailed scenessuch asfacial close-
ups and panoramic views. Thistest sequence contains a broad diversity of complexity
andistypical of filmtrailers. Thetest sequencewasdivided into segmentsof 15 seconds
duration, and each segment was encoded at various combinations of spatial resolution
and frame rate. These video segments were then pieced together seamlessly to produce
three varying bit rate versions of the test sequence. It was necessary to control and align
each adaptation in each of the test sequences used. During thesetests, it isassumed that
some mechanism is implemented that informs the streaming server of the required
transmission bit rate.

Results

Three scenarios were tested: First, the quality is adapted down from the best to worst;
second, the quality is upgraded from worst to best; and third, the quality variesin an
additiveincrease/multiplicativedecreasefashion. Thefirst twotestsare complementary
and are designed to assess symmetrical perception, that is, whether subjects perceive
quality increases and quality decreases uniformly. The third test is designed to test
quality perception in atypical adaptive network environment. Of particular interest are
the MOS scores when the quality is decreased.
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Additive Decrease Quality Adaptation

In this test, the quality of the clip degrades from the best quality to the worst quality.
Figure 8(a) showsthe bit rate decreasing asthe quality degrades. Figure 8(b) showsthe
encoding configuration of frame rate and resolution for each segment as the quality is
adapting downin either theframerate dimension only, or theresolution dimension only,
or using the OAT adapting down in both the frame rate and resolution dimensions.
Through time interval 0-45 seconds, the resolution and frame rate dimensions are
perceived the same (Figure 8(c). In timeinterval 45-60 seconds, there appearsto be an

imperceptibledifference between adecreaseinresolutionfrom80_to 70,.. Usingthe OAT,

thereisasmooth decreasein the M OS scores, which outperforms both one-dimensional

Figure 8. Time series during additive decrease (AD) in quality; (a) Segment average
bit rate variations over time; (b) Video encoding parameter variations over time; (c)
MOS Scores over time; (d) MOS Scores during period of lowest quality

350
s00 L |
Q250 -
o)
X< 200 -
]
§ 150 -
& 100 -
50 A
0 . . . . .
0O 15 30 45 60 75 90
Time (Sec)
100
#£ a0 4 \"%\,1
7] .
o
g &0
It
Iy
o 70 A
=
g B0
S0 T T T T T
o 15 30 45 B0 75 490
Time [(Sec)
(c)

L 23
E’gzn-
E“CAS-
= 04
- 5
c 100
o |
5 .90
24 80 -
& va _I_l
Bl ———————
0 15 30 45 60 75 90
Time (Sec)
(b)
=]
@ H
w50
il
=]
@
o 7o
& .
=
o G0 S
e
a0 T T T
70 75 g0 g5 Q0
Titne [(=ec)
(d)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.




Incorporating User Perception in Adaptive Video Streaming Systems 259

adaptation of framerate and resolution. During timeinterval 45-60 seconds, thereishigh
action in the content which may explain the sharp decrease in the MOS scores for
adapting the frame rate only. When there is high action, subjects prefer smooth
continuous motion. Further, when there is high action content, reductions in spatial
resolution cannot be perceived as clearly as there is too much happening in the video
clip for the detail to be perceived properly. Figure 8(d) shows a close up view of MOS
scores during the lowest quality level in timeinterval 70-90 seconds, the framerateis
perceivedworst of all whiletheresolution performsvery well. Thismay beduetothefact
that the bit rate for the resolution is significantly greater than the two other methods. It
wasundesirableto achievealower bit ratefor theresol ution at 60%, asthiswould require
atarget bit rate to be set in the encoder.

Figure9. Time series during additive increase (Al) in quality; (a) Segment average bit
ratevariationsover time; (b) Video encoding parameter variations over time; (c) MOS
Scores over time; (d) MOS Scores during period of lowest quality
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Additive Increase Quality Adaptation

In thistest, the quality of the clip upgrades from the worst quality to the best quality.
Figure 9(b) showsthe encoding configuration of framerate and resolution asthe quality
isadapting up in either the frame rate dimension only or the resolution dimension only
or usingthe OAT adapting downinboththeframerateand resol ution dimensions. During
thisexperiment, the slider isplaced at the highest quality value on therating scale when
the clip begins. It can be seen that it took subjects several secondsto react to the quality
level and adjust the slider to the appropriate value (Figure 9(c)). At low quality, subjects
perceive adaptation using the OAT better than one-dimensional adaptation. The quality
is slowly increasing, however subjects do not seem to notice the quality increasing nor
do they perceiveit significantly differently —indicating that subjects are more aware of
quality whenitislow (Figure 9(d)).

AIMD Adaptation

Thissection presentstheresultsfor AIM D adaptation, asmight be expected fromaTCP-
friendly rate control mechanism. The same bit rate variation patterns were obtained in
these three sequences by adapting quality in the frame rate dimension only, the spatial
resolution dimension only, or both frame rate and spatial resolution dimensions, as
shown in Figure 10(a). Thetracesin Figures 10(b) show the encoding configuration of
framerate or resolution for each segment as the quality was adapted in either the frame
ratedimension only, or theresol utiondimensiononly, or usingthe OAT adaptingin both
the frame rate and resolution dimensions.

InFigure 10(a), it can be seen that although thefirst bit-rate reduction occursat time 15
seconds, itisnot fully perceived until time 28 seconds because thereisatime delay for
subjectsto react to the quality adaptation. At time interval 70-90 seconds, alarger drop
in bit rate occurs resulting in the lowest quality level that might reflect a mobile user
entering a building. The MOS scores for adapting only the frame rate and spatial
resolution arequick toreflect thisdrop. However, using the OAT, it takes subjects much
longer to perceivethisdrop in quality. Thisisahigh action part of the sequence and so
thereduced framerateisperceived moreseverely. Thestandard deviation of MOSscores
usingthe OAT was much lessthan that for adapting framerate only or spatial resolution
only.

Discussion

From the experiments reported here, it appearsthat if auser’s average bit rate changes
from being quite near their maximum to near the minimum that they can tolerate, then a
one-dimensional adaptation policy will cause the perceived quality to degrade quite
severely. Using the two-dimensional adaptation strategy given by the OAT allowsthe
bit rateto be dropped quitedramatically but maintain substantially better user-perceived
quality.
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Figure 10. Time series during additive increase multiplicative decrease (AIMD) in
quality; (a) Segment average bit rate variations over time; (b) Video encoding
parameter variations over time; (c) MOS Scores over time; (d) MOS Scores during
period of lowest quality
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In addition to the greater bit rate adaptation range achieved using the OAT, adaptation
using thetwo-dimensional OAT out-performs one-dimensional adaptation using frame
rate or spatial resolution and reduces the variance of perception. From the various
experiments conducted, subjects perceived adapting frame rate the worst, then resolu-
tion, andthe OAT best of all. It wasobserved that thereisatime delay of several seconds
for subjectsto react to quality adaptations. It was also observed that quality perception
isasymmetrical when adapting the quality down and adapting quality up: Usersaremore
critical of degradations in quality and less rewarding of increased quality. Similar
observations were reported in Pinson and Wolf (2003).
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Perception is strongly dependent on the spatio-temporal characteristics of the content.
Given thisunderstanding of user-perception, adaptation al gorithms should consider the
contents characteristics when making adaptation decisions. Also, frequent quality
adaptation should beavoidedto allow the usersto becomefamiliar with thevideo quality.
In the experiments, the globally-averaged OAT was used, but the OAT can be dynamic
if the contents’ spatial and temporal characteristics are known at a given instant, thus
making it moreflexibleto adapt according tothe contents’ characteristicsand maximize
user-perceived quality. Itisexpected that adynamic OAT that adapted on the changing
complexity of the content would yield even higher MOS scores.

Summary

Thischapter provided abrief overview of adaptive streaming systemsandidentified key
limitationsof thetechniquescurrently inuse. Quiteoften, adaptation algorithmsomit the
user-perceived quality when making adaptation decisions. Recent work in multimedia
adaptation has addressed this problem by incorporating objective video quality metrics
into the adaptation algorithm, thereby making the adaptation process quality-aware.
However, these objective metrics have limited efficacy in assessing the user-perceived
quality. As a case study, we have focused on describing recent research that attempts
to address both the limitations of objective video quality metrics and adaptation
techniques.

This work proposed that there is an Optimal Adaptation Trajectory (OAT), which
basically statesthat thereisan optimal way video should be adapted that maximizesthe
user-perceived quality. More specifically, within the set of different waysto achieve a
target bit rate given by an adaptation algorithm, there exists an encoding that maximizes
the user-perceived quality. Furthermore, the OAT is dependent on the spatio-temporal
characteristics of the content. We have described a subjective methodology to discover
the OATsthrough subjectivetesting, and applied it to finding OATsfor various M PEG-
4 video clips. Further it was shown that using a two-dimensional adaptation strategy
given by the OAT allows the bit rate to be dropped quite dramatically but maintain
substantially better user-perceived quality over one-dimensional adaptation strategies.
In addition to the greater bit rate adaptation range achieved using the OAT, adaptation
using thetwo-dimensional OAT out-performs one-dimensional adaptation using frame
rate or spatial resolution and reduces the variance of perception.

Future work will assess the possibility of using and/or modifying existing objective
metrics in order to mimic the OATSs found by subjective methods and enable the
development of adynamic OAT. Thiswill involve agreater analysis of therelationship
between content characteristicsand the corresponding OAT to determinethe sensitivity
of an OAT to the particular video being transmitted.
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