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Abstract—In this paper, fractional spur suppression tech-
niques for all-digital PLLs (ADPLLs) are summarized. The
attention is paid to the recently proposed digital-to-time converter
(DTC)-based ADPLL architecture. DTC’s nonlinearity dominates
the fractional spurs contribution. Its influence is modeled with a
pseudo phase-domain ADPLL and its relationship with the spur
level is quantitatively described. An LMS algorithm is adopted
to calibrate the DTC gain. Furthermore, an improved adaptive
algorithm is proposed to suppress the fractional spurs.

I. INTRODUCTION

CMOS technology scaling favors the utilization of all-
digital phase-locked loops (ADPLLs) for frequency synthesis
[1]. One practical limitation of ADPLLs is fractional spurs,
which occur when the PLL is in a fractional-N frequency
relationship during which the frequency command word FCW
= fV /fR is very close to an integer (i.e., so-called an “integer-
N” channel) [2]. fV is the generated variable frequency output;
fR is the input reference frequency. The fractional spurs are
fundamentally due to the finite quantization of the phase
detection mechanism [e.g., time-to-digital converter (TDC)
resolution] and were first studied in [3]. Furthermore, TDC
imperfections, such as wrong estimation of its gain as well as
its non-linearities can worsen the fractional spurs. Frequency
locations of these fractional spurs vary with FCW, but only for
very small fractional values of FCW (when interpreted as in
a signed format) they are close enough to dc, thus not being
filtered out by the loop filter and causing undesired modulation
of the oscillator.

Numerous techniques have been proposed to suppress the
fractional spurs. In the traditional divider-based ADPLL, Σ∆
modulator is adopted to dither the divider value. However, the
large quantization noise of the oscillator cycle period and TDC
nonlinearity can severely affect the performance, especially
for higher-order Σ∆ modulators producing large clock edge
excursions. In the counter-based ADPLL, the TDC gain must
be calibrated for process, voltage and temperature (PVT) vari-
ations, otherwise large fractional spurs could result. However,
such calibration is quite straightforward and could be done
entirely in the digital domain. Recent ADPLL architectural
improvements replace the TDC with a digital-to-time converter
(DTC) [4] and a combination of DTC and TDC [5] [6] [7] .

II. FRACTIONAL SPURS

In [8], two techniques were proposed to reduce the level of
fractional spurs: A gated-ring oscillator (GRO) TDC is used to
first-order shape the TDC quantization noise and mismatches;
and a digital correlation loop is applied to improve the phase
noise performance. The key to algorithmic fractional spur
minimization is “correlation” and an LMS algorithm should
be formostly considered. Furthermore, in [4], a sign-error

LMS algorithm is used to adjust the DTC gain. Moreover,
Goertzel DTFT algorithm is included in the noise cancellation
technique, which complicates the design. For the divider-based
ADPLL, an excellent work is done in [9]. A TDC produces a
multi-bit output and the DTC nonlinearity correction correlates
the accumulated FCWf (fractional part of FCW) and the
detected phase error. This correction method is applied on
the phase error before the digital loop filter, rather than the
DTC gain. When PVT changes, TDC still has to cover a large
range. TDC element scrambling is adopted to linearize the
TDC performance at the price of increasing the in-band noise
floor. When only the correlation loop to compensate the DTC
gain error is enabled, the largest spur level drops from -24 dBc
to -44 dBc. When the DTC nonlinearity correlation part is also
enabled, the largest spur level drops to -57 dBc.

In another ADPLL [7], a single-bit TDC and two-stages of
DTCs are chosen. A coarse stage and a fine stage DTC follow
the integer divider of the oscillator clock. Now, the multipath
correlation scheme is applied on the coarse DTC, which can
cancel its nonlinearity. As for the fine DTC, correlation is
used only to calibrate its gain. The largest in-band fractional
spur achieved is lower than -52 dBc, keeping the same in-
band noise floor level. Then, a multipath correlation scheme is
applied on the fine DTC, achieving -67 dBc in-band fractional
spur level. The whole background calibration is termed there
a pre-distortion. In [10], the spur cancellation is also based
on correlation, but it is gradient-based and can reduce the
spur level by more than 20 dB. Even for an analog PLL [11],
correlation can still be used to adjust the DTC gain.

III. DTC NONLINEARITY’S EFFECT ON FRACTIONAL
SPURS
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Fig. 1: DTC-based ADPLL architecture.



In the following, spurs in the DTC-based ADPLL will be
described. This ADPLL architecture is shown in Figure 1,
which derives from the traditional counter-based ADPLL [1].
The reference signal is first delayed by DTC before it is fed
into the TDC. Thus, the rising edge of the delayed reference
signal is almost aligned with the rising edge of the DCO output
signal, thus shortening the TDC measurement range [6]. This
principle is called phase prediction, which takes the advantage
of DTC over TDC due to the fact that DTC makes it easier to
achieve lower power and better linearity.

The linearity requirements in this DTC-based ADPLL are
shifted from TDC to DTC, so the fractional spurs mainly
originate from DTC. In this section, DTC’s influence on the
fractional spurs is discussed. There are two ways to quantify
the DTC nonlinearity’s influence on the fractional spur level.
One is the traditional method, starting from the frequency
modulation equation. Another is the proposed pseudo-phase-
domain method, which is derived with the help of z-transform.
In the traditional method, the DCO output jitter is assumed
to be equal to the DTC nonlinearity, provided other parts
are ideal. While the new method gives a direct relationship
between DTC nonlinearity and the DCO output jitter, after we
get the jitter’s transient information, the following calculation
can be done in the regular way as the traditional method.

A. Traditional Method

The traditional method takes the DCO output clock as a
starting point. The information needed is the deviation of the
normalized tuning word (NTW) value. Due to the periodic
operation of DTC, NTW has a frequency component at FCWf ·
fR. The ADPLL is thus frequency modulated. Generally, the
DCO output signal can be written as V0 = A sin(ω0t+ θ(t)),
where A is defined as the signal’s amplitude, ω0 = 2πf0 is
the carrier frequency, θ(t) takes account of the initial phase
and its subsequent variations. Ideally, there would be only
one tone at V0 frequency spectrum, the amplitude would be a
constant A, and the phase would be a constant θ(t). However,
as thermal and flicker noise exist inside DCO, there is phase
noise, making θ(t) fluctuating over time.

Let us consider a special case: a single sinusoidal tone
modulates the phase: θ(t) = θp · sin(ωmt), where ωm(t) is
the modulating frequency. When the peak phase deviation, θp,
is much smaller than 1, the single sided spectral density can
be approximated as

SV0(ω) =
A2
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A2

2
[
θ2
p
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δ(ω − ω0 − ωm) +

θ2
p

4
δ(ω − ω0 + ωm)] (1)

It is evident that the phase modulating tone is translated
by the carrier frequency ω0 to appear on both sides of ω0.
As an example, if the DCO frequency is 4 GHz and the DCO
jitter is σ∆τ = 2.6857 ps, then θp = 2π σ∆τ

T0
= 2π 2.6857 ps

250 ps =
0.0675 rad where T0 = 2π/ω0. Because the in-band phase
error transfer function is flat at unity, DTC’s INL can be
assumed to be the DCO’s jitter. The fractional spur level can

be written as

L∆ωm = 10 log10(
θ2
p

4
) (2)

= −29.43 dBc

In the traditional method, there is one important assump-
tion: DTC nonlinearity is equivalent to the DCO output signal’s
jitter. It is acceptable in-band. Furthermore, in the above
derivation, θp is small. When it grows larger, the Bessel
function of first kind should be used to calculate the fractional
spur level. Generally, formula (2) is useful when the fractional
spur level is below -20 dBc.

B. Pseudo-Phase Domain Method

We now study the fractional spurs from a different perspec-
tive. A pseudo phase-domain ADPLL is set up in Figure 2. It
is termed “pseudo-phase” because the phase is in the units of
2π rad rather than 1 rad. One period of TV corresponds to a
phase of 2π rad.

Fig. 2: Pseudo phase domain ADPLL.

Φrn disturbance consists of the reference noise and
DTC nonlinearity, ΦDTC,n. The working principle of the
DTC-counter-based ADPLL reveals that the DTC nonlinear-
ity directly phase-modulates the reference signal. RR[k] =∑k
l=1 FCW + ΦDTC,n. In the following analysis we assume

that the TDC has sufficiently fine resolution to neglect the
quantization noise while the DCO quantization noise and ther-
mal noise are vanishingly small. Only two non-ideal effects are
taken into consideration: reference noise and DTC nonlinearity.
Assume DTC has a sinusoidal INL curve when the digital
control word sweeps one cycle. INLpp = 0.2LSB. DTC
unit delay is 25 ps. In the ADPLL, the reference frequency
is 50 MHz and FCW equals 80. TV = 250 ps. The variance
of timing uncertainty is σ2

t = (
INLpp·TDTC

2
√

2
)2. Normalized to

the unit interval and multiplying by 2π radians: σφ = 2π σt
TV

.
That value has to be divided by 2, to transfer the single-sided
spectrum into double-sided spectrum. Thus the fractional spur
level can be written as

L =
π2

4
(

INLppTDTC
TV

)2

= −30.06 dBc/Hz

Up to this point, this formula is actually the same as for-
mula (2), just obtained through a different derivation method.
This is because they directly link NTW to the DTC nonlinear-
ity.

To validate the effectiveness of the formulas above, a
simulation result is given in Figure 3. The reference noise is
−114 dBc/Hz. α = 0.156.



Fig. 3: Simulated fractional spur level.

The fractional spur level is simulated to be
−28.80 dBc/Hz. The estimation error of the fractional
spur level is only 1.26 dB, which is small enough to be
accepted. It proves that formula (3) is very helpful to
determine the in-band spur level.

To close the gap between the simulation result and the
theoretical value, further derivation is done to give a precise
relationship between NTW and DTC nonlinearity. In Figure 2,
following equations are valid.

ΦE [k] = ΦR[k]− ΦV [k] (3)
ΦR[k] = k · FCW + Φrn[k] (4)

ΦV [k] = k · f0

fr
+

k∑
n=1

NTW [n] (5)

NTW [k] = αΦE [k] + ρ

k∑
n=1

ΦE [n] (6)

Φ̄E = 0 (7)

What interests us is how ΦE and NTW change as Φrn.
Formula 6 can be written as NTW [k] = kc + αΦE [k] +
ρ
∑k
n=m ΦE [n]. kc is a constant, given by ρ

∑m−1
n=1 ΦE [n],

which approximates FCW − f0

fr
. Formula 3, formula 4 and

formula 5 give

ΦE [k] = k · FCW + Φrn[k]− k · f0
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−
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l∑

n=m

ΦE [n]) (8)

The formula above can be simplified by taking kc = FCW− f0

fr
.

It is based on the fact that in type-II system, the phase error
approaches zero. As the above equation shows, the first term
should be zero, independent of k. Then the remained terms
also equal zero. By z-transform, we can get

ΦE =
1− 2z−1 + z−2

(1 + α+ ρ)− (α+ 2)z−1 + z−2
Φrn (9)

z = esTr ≈ 1 + sTr = 1 + 2jπfrnTr. If we only consider
DTC nonlinearity, then frn is the fractional spur’s frequency,
which is 200 kHz in the simulation. Then

|θp| =
fr
frn
|α+

ρ

1− z−1
|| 1− 2z−1 + z−2

(1 + α+ ρ)− (α+ 2)z−1 + z−2
|AΦrn

=
50MHz

200kHz
· 0.1976 · 0.1367 · 0.01

= 0.0675

With formula (2), the fractional spur level is -29.43 dBc/Hz.
The Bessel function also yields the same value. In addition,
the observed value of θp is 0.068 in the simulation. It can
be concluded that −29.43 dBc is the theoretical fractional
spur level. It is closer to the simulation result -28.80 dBc. The
0.63 dB gap is due to the computational error of the spectrum
calculation code. As a summary, the key difference between
the two methods is how they get the relationship between DCO
output jitter and DTC nonlinearity.

IV. DTC GAIN CALIBRATION

An LMS algorithm is chosen here to calibrate the DTC
gain, KDTC . It works by iteratively diminishing the correlation
between an error signal (here: the phase error) and a forcing
signal (here: PHRf being the accumulated FCWf ). When
PVT changes, the DTC gain is no longer correct and so the
phase error increases linearly in one cycle of the sweeping
DTC control codes. Fig. 4 shows the scheme of the proposed
DTC gain calibration. (1 − PHRf ) is approximately linearly
correlated with the noise n. 1/KDTC is the coefficient needed
to be updated. At its optimum point, ê do not have the part
correlated with 1 − PHRF . It is around zero at last. LMS
algorithm makes DTC tracks the current transfer function by
adjusting DTC gain.

Fig. 4: Block diagram of DTC gain calibration.

As shown in Figure 5, the blue transfer function will at last
tracks the black transfer function. The DTC gain has only one
value to suppress the PVT variation, but not DTC nonlinearity,
INL for example. The analysis proves that when DTC gain is
tuned manually, the first spur can be suppressed while other
spurs’ level may go to even higher values.

For illustration simplicity, assume INL has a sinusoidal
wave and is applied in Figure 5. LMS algorithm has to be
improved. Divide the DTC control words into 4 equal parts.
Each contains 8 control numbers. In each part, the correlation
between the detected phase error and 1− PHRF still exists.
What’s more, there is another correlation relationship in each
piece of the PHRF , as described in [7]. That makes it practical
to calibrate DTC gain with four segments. In Figure 5, 4 gain
values are adaptively updated. As a result four lines tracks the
sinusoidal curve, greatly reducing the phase error amplitude.



Fig. 5: DTC transfer function.

To illustrate the effectiveness of 3-points nonlinearity can-
cellation algorithm, Figure 7 is shown. The peak value of the
nonlinearity applied is 0.1TV . It is so large that the spur
level can be -16.86 dBc if one-value DTC gain calibration
algorithm is used. When 3-points nonlinearity cancellation is
used, the highest spur level is reduced to -42.03 dBc. 3 points
means only when phrf=0.25, phrf=0.5, phrf=0.75 (along with
phrf=0.0), the phase error is fed into the LMS algorithm. With
more points, even lower spur level can be achieved. That
means, with multiple gain values, the LMS can cancel the
nonlinearity.

Fig. 6: DTC transfer function.

V. CONCLUSION

A pseudo phase-domain method is proposed to accu-
rately estimate the level of fractional spurs that are due
to the DTC nonlinearity. Being a scalar value, a wrong
value of the DTC gain produces fractional spurs located at
min(fR/FCWf , fR/(1−FCWf )) and its harmonic frequen-
cies, even though the DTC might be perfectly linear. The
induced phase error behaves like a sawtooth wave in the time
domain. From the analysis, it can be concluded that to keep
the fractional spur level below -38 dBc, DTC gain should be

Fig. 7: Phase noise comparison with the 3-point nonlinearity
cancellation.

calibrated within 1% error. To leave a margin, even smaller
error is required. That highly sensitive characteristic drives the
need to use multiple DTC gains. In this way, DTC nonlinearity
is not a limitation of the DTC-counter-based ADPLL, because
it can be digitally calibrated. With multiple values of DTC gain
adopted in the adaptive algorithm, such as 3-point nonlinearity
cancellation, fractional spurs can be suppressed by more than
20 dB without sacrificing the in-band noise floor level.
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