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Abstract

Let f be a holomorphic function on the unit disc, and (Snk) be a
subsequence of its Taylor polynomials about 0. It is shown that the
nontangential limit of f and limk!1Snk agree at almost all points
of the unit circle where they simultaneously exist. This result yields
new information about the boundary behaviour of universal Taylor
series. The key to its proof lies in a convergence theorem for harmonic
measures that is of independent interest.

1 Introduction

Let f be a holomorphic function on the unit disc D. We assume that its
Taylor series about 0 has radius of convergence 1 and denote by Sn the
partial sum of this series up to degree n. It is natural to ask how the
boundary behaviour of f at a subset A of the unit circle T constrains the
functions on A that can arise as limk!1 Snk for some subsequence (Snk) of
(Sn).

It turns out that even in the simplest situation, where f is holomorphic
on Cnf1g, the sequence (Sn) typically has chaotic behaviour on Dirichlet
subsets of T, that is, compact sets on which (znk) converges uniformly to 1
for some subsequence (nk) of the natural numbers. More precisely, Beise,
Meyrath and Müller [2] have shown recently that, given any Dirichlet set
A � Tnf1g, there is a residual subset of the space of holomorphic functions
on Cnf1g (endowed with the topology of local uniform convergence), each
member f of which has the properties that:

(i) for each continuous function h on A there is a subsequence (Snk) that
converges uniformly to h on A;

(ii) there is a subsequence (Smk
) that converges locally uniformly to f on

Tnf1g.
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Dirichlet sets A can have Hausdor¤dimension 1 but cannot have positive
arc length measure �(A) (see, for example, p.171 of [9]). This leaves open
the question of whether property (i) above can occur on subsets A � T of
positive measure. We show below that this cannot happen, even where the
boundary values of f exist merely as nontangential limits. Let nt limz!� f(z)
denote the nontangential limit of f at a point � 2 T, wherever it exists
(�nitely).

Theorem 1 Given a holomorphic function f on D and a subsequence (Snk)
of the partial sums of its Taylor series about 0, let

E = f� 2 T : S(�) := lim
k!1

Snk(�) existsg

and
F = f� 2 T : f(�) := nt lim

z!�
f(z) existsg:

Then S = f almost everywhere (�) on E \ F .

A classical result in this area is Abel�s Limit Theorem, which says that,
if (Sn(�)) converges for some � 2 T, then nt limz!� f(z) exists, and the two
limits agree. If we merely know that a subsequence (Snk(�)) converges, no
conclusion about the boundary behaviour of f at � may be drawn. Indeed,
for a typical holomorphic function f on D, any continuous function on T is
the pointwise limit of a suitable subsequence (Snk). (See the properties of
the collection U0(D; 0) noted below.) Nevertheless, Theorem 1 still shows
that limk!1 Snk(�) and nt limz!� f(z) must agree almost everywhere on the
set where they simultaneously exist.

Theorem 1 fails if we replace nontangential limits by radial limits. To
see this, let F be a closed nowhere dense subset of T such that �(F ) > 0.
Then, by Theorem 1.2 of Costakis [3], there is a holomorphic function f on D
which has radial limit 0 at each point of F and such that some subsequence
(Snk) converges pointwise to 1 on T.

Now let f be a holomorphic function on a proper subdomain ! of C,
let � 2 !, r0 = dist(�;Cn!) and D0 denote the open disc D(�; r0) of centre
� and radius r0. Further, let Sn(f; �) denote the partial sum up to degree
n of the Taylor series of f about �. Following Nestoridis [13] we call this
series universal, and write f 2 U(!; �), if for every compact set K � Cn!
that has connected complement, and every continuous function h on K that
is holomorphic on K�, there is a subsequence (Snk(f; �)) that converges
uniformly to h on K. Similarly, we write f 2 U0(!; �) if f satis�es the cor-
responding condition in which we only consider compact sets K � @D0n!.
Clearly U(!; �) � U0(!; �), with equality if Cn! � @D0. When ! is simply
connected, U(!; �) is a dense G� subset of the space of all holomorphic func-
tions on !, endowed with the topology of local uniform convergence [14].
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For multiply connected domains ! this collection is often empty. (Impor-
tant known exceptions, in addition to the case where Cn! � @D0 [15], are
where Cn! is either discrete or a continuum [11].) However, Nestoridis and
Papachristodoulos [15] have shown that U0(!; �) is always a dense G� subset
of the space of all holomorphic functions on !. Further, even for simply
connected domains, the inclusion U(!; �) � U0(!; �) is generally strict; for,
if ! 6= D0, we can choose a function in U0(Cn(@!\@D0); �) and restrict it to
! to get a function in U0(!; �), yet functions in U(!; �) cannot be holomor-
phically extended to any larger domain [12]. The authors of [15] observed
that, if f 2 U0(!; �) and @D0n! contains a nondegenerate arc, then f does
not extend continuously to ! [ @D0. We can now give:

Corollary 2 Let f 2 U0(!; �) and suppose that �(@D0n!) > 0. Then, for
�-almost every � 2 @D0n!, the set f(�) is dense in C for every open triangle
� � D0 which has a vertex at � and is symmetric about [0; �].

This follows immediately from Theorem 1, because Plessner�s theorem
(Theorem 2.5 of [8]) tells us that at �-almost every point of @D0n! either f
has a �nite nontangential limit or f(�) is dense in C for every such triangle
�. The special case of this corollary where ! = D0 was recently established
in [5]. (It was stated there for f 2 U(!; �), but the proof is valid also
for f 2 U0(!; �).) For functions in U(D; 0) much more can be said about
boundary behaviour: see [6].

Theorem 1 of [7] tells us that, if � 2 @D0n! and a function f in U(!; �)
is bounded in D(�; �) \ ! for some � > 0, then Cn(! [D0) must be polar.
Corollary 2 yields the additional information that (@D0n!) \D(�; �) must
have zero arc length measure.

Our proof of Theorem 1 relies on the following subtle convergence result
for harmonic measures, which is of interest in its own right. In what follows

 denotes a domain in RN (N � 2) possessing a Green function G
(�; �).
For any (non-empty) open set !, any Borel set A and any point x in RN ,
we denote by �!x (A) the harmonic measure of A \ @! for ! evaluated at x.
(If x 62 !, this measure is assigned the value 0.)

Theorem 3 Let �0 2 
 and ! be an open subset of 
. Suppose that (vk) is
a decreasing sequence of subharmonic functions on ! such that v1=G
(�0; �)
is bounded above and limk!1 vk < 0 on !. If �!x1(@
) > 0 for some x1,

then �fvk<0gx1 (@
) > 0 for all su¢ ciently large k.

The above result fails without the upper boundedness hypothesis on
v1=G
(�0; �), as can be seen from the following examples (there are obvious
analogues in higher dimensions):

(a) 
 = ! = D and vk(z) = 1 + k log jzj, so fvk < 0g = fjzj < e�1=kg:
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(b) 
 = ! = D and vk(z) = 1� k
1� jzj2

j1� zj2
, so fvk < 0g is a disc internally

tangent to T at 1:

A weaker version of this result, where 
 is a simply connected plane
domain and each function vk is harmonic on all of 
, was established in [4].
We will use a substantially di¤erent argument to prove this more general
theorem. When N = 2 the result is valid for domains in the extended
complex plane bC = C [ f1g. In the application of Theorem 3 to the proof
of Theorem 1 it is crucial that, in contrast to the above two examples, the
sequence (vk) need only have a negative limit on a suitable open subset !
of 
, namely one for which �!x (@
) > 0.

Theorem 3 and its proof are based on Chapter 6 of the second author�s
doctoral thesis [10].

2 Proof of Theorem 1

Let f , (Snk), E and F be as in the statement of Theorem 1, and let

D = f� 2 E \ F : S(�) 6= f(�)g:

Also, let �(1) denote the open triangular region with vertices 1; (1 � i)=2
(say), and let

�(�) = f�z : z 2 �(1)g (� 2 T):

Now suppose, for the sake of contradiction, that the conclusion of the
theorem fails. Then we may choose a positive number a su¢ ciently large to
ensure that �(Aa) > 0, where

Aa = f� 2 D : jf j � a on �(�) and jSnk(�)j � a for all kg:

It follows, on multiplication by a suitable unimodular constant, that we can
choose a compact set K of Aa such that infK Re(S�f) > 0 and 0 < �(K) <
2�. The domain 
 = bCnK then possesses a Green function, by Myrberg�s
theorem (Theorem 5.3.8 of [1]), since K is non-polar.

We put ! = [�2K�(�), and reduce K, if necessary, to ensure that ! is a
simply connected domain. Clearly jf j � a on !. Since the triangles �(�) are
congruent, the boundary of ! is a recti�able Jordan curve. Thus �!z (K) > 0
when z 2 ! by the F. and M. Riesz theorem (Theorem VI.1.2 of [8]), in view
of the fact that �(K) > 0. Let g : D! ! be a conformal map. It extends to
a continuous bijection g : D! !, by Carathéodory�s theorem. The function
g0 belongs to the Hardy space H1 by Theorem VI.1.1 of [8], so the F. and
M. Riesz theorem shows further that, for almost every � 2 K, the function
g is conformal at g�1(�) and nt limw!g�1(�)(f � g)(w) = f(�). Since f � g
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is a bounded holomorphic function on D, we know that f � g = HD
f�g, using

the usual notation for Dirichlet solutions, whence

f = HD
f�g � g�1 = H!

f on !: (1)

We de�ne

uk =
1

nk
log

jSnk � f j
2a

on D (k 2 N):

Noting from Bernstein�s lemma (Theorem 5.5.7 of [16]) that

jSnk j � aenkG
(1;�) on 
;

we see that uk � G
(1; �) on !. Now lim supk!1 uk(z) � log jzj on D, so
we can choose a sequence (rk) in [0; 1) such that rk " 1 and

uj(z) �
1

2
log jzj (jzj � rk; j � k):

Let vk = H!
 k
, where

 k(z) =

8<:
1
2 log jzj on @! \D(0; rk)
G
(1; z) on @! \ (DnD(0; rk))

0 on @! \ T
:

Then uk � vk on ! and (vk) is a decreasing sequence of harmonic functions
on ! with limit 12 log j�j on @!.

By Theorem 3, and the fact that �!z (K) > 0 when z 2 !, there exists
k0 2 N such that the open set !1 := ! \ fvk0 < 0g is non-empty and

�!1w (@
) > 0 for some w 2 !1: (2)

Clearly uk < 0 on !1 for all k � k0. Thus jSnk � f j � 2a, and so jSnk j � 3a,
on !1 for all k � k0. Now Snk = H!1

Snk
on !1, so by dominated convergence

f = H!1
� on !1, where � =

�
f on @!1 \ D
S on @!1 \ T � K

:

However, we also know from (1) that

f = H!
f = H!1

H!
f
= H!1

f on !1

(see Theorem 6.3.6 of [1]). Thus, by (2) and our choice of K, we arrive at
the contradiction that there is a point w in !1 satisfying

0 = ReH!1
��f (w) � infK Re(S � f)�!1w (@
) > 0;

Theorem 1 is now established, subject to veri�cation of Theorem 3.
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3 Proof of Theorem 3

We will employ some results concerning the Martin boundary and the mini-
mal �ne topology, which are expounded in Chapters 8 and 9 of the book [1].
Let b
 = 
[� denote the Martin compacti�cation of a Greenian domain 

in RN , let M(�; y) denote the Martin kernel with pole at y 2 �, and let �1
denote the set of minimal elements of �. Thus

M(x; y) = lim
z!y

G
(x; z)

G
(x0; z)
(x 2 
; y 2 �);

where x0 denotes the reference point for the compacti�cation. A set E � 

is said to be minimally thin at a point y 2 �1 if REM(�;y) 6= M(�; y), where
RLu denotes the usual reduction of a positive superharmonic function u on

 relative to a set L � 
. Further, a function f is said to have minimal
�ne limit l at y if there is a set E, minimally thin at y, such that f(x)! l
as x ! y in 
nE. Limit notions with respect to the minimal �ne topology
will be pre�xed by �mf�. The main work lies in establishing the following
result, which develops ideas from [5].

Proposition 4 Let �0 2 
; y 2 �1 and ! be an open subset of 
 such that

n! is minimally thin at y. Suppose that (vk) is a decreasing sequence of
subharmonic functions on ! such that v1=G
(�0; �) is bounded above and
limk!1 vk < 0 on !. Then there exists k0 2 N such that,

mf lim
z!y

vk(z)

G
(�0; z)
< 0 (k � k0):

Proof. Without loss of generality we may assume that �0 coincides with the
reference point x0 for the Martin compacti�cation of 
, and that x0 62 !.
For each k 2 N we de�ne

evk(z) = vk(z)

G
(x0; z)
(z 2 !):

By hypothesis there is a positive constant c such that the function cG
(x0; �)�
v1 is positive and superharmonic on !. Hence, by Theorem 9.6.2(ii) of [1],
each function evk has a minimal �ne limit in the range [�1; c) at y. We
denote this limit by evk(y). Thus, for each k, there is a set Lk, minimally
thin at y, such that

evk(z)! evk(y) (z ! y in b
; z 2 
nLk):
By Lemma 9.3.1 of [1] we can now choose a single set F � 
, minimally
thin at y, such that

evk(z)! evk(y) (z ! y in b
; z 2 
nF ) for all k: (3)
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By Corollary 8.2.9 and Theorem 8.3.1 of [1] we can �nd an open neigh-
bourhood U of �nfyg in b
 such that U is minimally thin at y, and hence
a closed subneighbourhood L of �nfyg with the same property. (A more
detailed explanation of this step may be found in Lemma 7.2.3 of [10].) By
removing L from ! we can ensure that the closure !b
 of ! in b
 meets
� precisely at y. Next, by Lemma 9.2.2(iii) of [1], we can �nd an open
neighbourhood of @!\
 that is minimally thin at y, and hence a subneigh-
bourhood F0 of @!\
 that is closed relative to 
 and has the same property.
We now de�ne the open set !0 = !nF0. Thus !0 \ 
 � !, the set 
n!0 is
minimally thin at y, and !b
0 \� = fyg. We are going to construct a proba-
bility measure � on the boundary @b
!0 of !0 in b
 satisfying �(!b
0 \
) = 1,
whence �(fyg) = 0, and also

evk(y) � Z
!
b

0

evk(�)d�(�) (k 2 N):

Let (
m) be an exhaustion of 
 by bounded open sets satisfying 
m �

m+1 for all m, and de�ne m(z) = minfm : z 2 
mg for z 2 
. For each
z 2 !0 we de�ne a measure on @(
m(z) \ !0) by writing

d��z(�) =
G
(x0; �)

G
(x0; z)
d�


m(z)\!0
z (�):

Since G
(x0; �) is harmonic on a neighbourhood of 
m(z) \ !0,

��z(!
b

0 ) =

1

G
(x0; z)

Z
@(
m(z)\!0)

G
(x0; �)d�

m(z)\!0
z (�) = 1:

Later we will arrive at the desired measure � as a w�-limit of a suitable
sequence of measures (��zn).

As a �rst step we show that there is a potential u on 
 and a set E0 � 
,
minimally thin at y, such that

u(z)

G
(x0; z)
!1 (z ! y; z 2 
n!0) (4)

and
u(z)

G
(x0; z)
! 1 (z ! y; z 2 
nE0): (5)

To see this, we note from Theorem 9.2.7 of [1] that, since 
n!0 is minimally
thin at y, there is a potential G
� such that

a :=

Z


M(x; y)d�(x) <1

and
G
�(z)

G
(x0; z)
!1 (z ! y; z 2 
n!0):
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Also, Fatou�s lemma implies that

lim inf
z!y

G
�(z)

G
(x0; z)
�
Z


lim inf
z!y

G
(x; z)

G
(x0; z)
d�(x) =

Z


M(x; y)d�(x) = a;

while the reverse inequality follows from the result cited above and the fact
that 
 is not minimally thin at y. Hence, by Theorem 9.3.3 of [1], there is
a set E0 � 
, minimally thin at y, such that

G
�(z)

G
(x0; z)
! a (z ! y; z 2 
nE0):

We now obtain (4) and (5) by setting u = a�1G
�.
Let " > 0. Using the above fact, we can �nd r" > 0 such that

u(z) >
G
(x0; z)

"
if z 2 (
n!0) \BM (y; r")

and
u(z) < 2G
(x0; z) if z 2 (
nE0) \BM (y; r");

where BM (y; r) denotes the open ball of centre y and radius r > 0 with re-
spect to some metric compatible with the Martin topology. Since 
m(z) \ !0 �

 and u is positive and superharmonic on 
, we deduce that, for each
z 2 (!0nE0) \BM (y; r"),

��z(@
b
!0 \BM (y; r")) =

1

G
(x0; z)

Z
@b
!0\BM (y;r")

G
(x0; �) d�

m(z)\!0
z (�)

� 1

G
(x0; z)

Z
@(
m(z)\!0)

"u(�) d�

m(z)\!0
z (�)

� "u(z)

G
(x0; z)
� 2":

Since E0 [ F and 
n!0 are both minimally thin at y, we can choose a
sequence (zn) in !0n(E0 [ F ) such that zn ! y. Thus, recalling (3), we see
that evk(zn)! evk(y) (n!1) (6)

and
��zn(@

b
!0 \BM (y; r")) � 2" for all su¢ ciently large n: (7)

Further, since (��zn) is a sequence of probability measures on the compact set

!
b

0 , there is a subsequence (�

�
znj
) which is w�-convergent to some measure

�. Since every upper bounded upper semicontinuous function � on !b
0 is
the pointwise limit of a decreasing sequence of continuous functions, the
monotone convergence theorem yields

lim sup
j!1

Z
!
b

0

� d��znj �
Z
!
b

0

� d�: (8)
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Clearly � is a probability measure with support in @b
!0. Also, for any " > 0,
there exists r" > 0 such that, by (7),

�(fyg) � �(@
b
!0 \BM (y; r")) � 2";

so �(fyg) = 0. Since !b
0 \� = fyg, we conclude that �(@b
!0 \ 
) = 1.
The subharmonicity of vk on ! implies that

evk(znj ) =
vk(znj )

G
(x0; znj )

� 1

G
(x0; znj )

Z
@(
m(znj )

\!0)
vk(�) d�


m(znj )
\!0

nj (�)

=

Z
!
b

0

evk(�) d��znj (�): (9)

Also, the functions evk are upper semicontinuous on ! and bounded above
(by c) on !b
0 . Hence, de�ning � = evk on !b
0 \
 and � = c at y, we see from
(8) that

lim sup
j!1

Z
!
b

0

evk(�) d��znj (�) �
Z
!
b

0

evk(�) d�(�):
From (6) and (9) we conclude that

evk(y) � Z
!
b

0

evk(�) d�(�) (k 2 N):

Finally, (evk) is a decreasing sequence of upper bounded functions on !b
0 , so
we can apply the monotone convergence theorem to conclude that

lim
k!1

evk(y) � Z
!
b

0

lim
k!1

evk(�)d�(�):
Since �(!b
0 \�) = 0 and limk!1 evk < 0 on !, we conclude that limk!1 evk(y) <
0. Thus evk(y) < 0 for all su¢ ciently large k, as required.
Proof of Theorem 3. Without loss of generality we may assume that !
is connected. There is a (unique) probability measure �1 on �1 such that

1 =

Z
�1

M(x; y) d�1(y) (x 2 
):

Hence

�!x (
) = R

n!
1 (x) =

Z
�1

R

n!
M(�;y)(x) d�1(y) (x 2 !); (10)
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by Theorem 6.9.1 and Corollary 9.1.4 of [1]. Thus

�!x (@
) = 1� �!x (
) =
Z
A

n
M(x; y)�R
n!M(�;y)(x)

o
d�1(y) (x 2 !);

where
A = fy 2 �1 : R
n!M(�;y) 6=M(�; y)g;

that is, A is the set of points in �1 at which 
n! is minimally thin. Our
hypothesis that �!x1(@
) > 0 shows that �1(A) > 0.

Let
Ak = fy 2 A : R
nfvk<0gM(�;y) 6=M(�; y)g (k 2 N):

Proposition 4 tells us that, if y 2 A, then 
nfvk < 0g is minimally thin at y
for all su¢ ciently large k. Hence (Ak) increases to A, and so we can choose
k0 such that �1(Ak0) > 0. On each connected component of the open set

fvk0 < 0g either R

nfvk0<0g
M(�;y) =M(�; y) or R
nfvk0<0gM(�;y) < M(�; y). Thus we can

choose a component !0 of fvk0 < 0g on which R
nfvk0<0gM(�;y) < M(�; y) for all
y in a subset of Ak0 of positive �1-measure. Further, we can arrange that
x1 2 !0 by choosing k0 large enough. The preceding calculation, applied to
fvk0 < 0g and Ak0 in place of ! and A, now shows that

�
fvk0<0g
x (@
) =

Z
Ak0

n
M(x; y)�R
nfvk0<0gM(�;y) (x)

o
d�1(y) > 0 (x 2 !0);

as required.
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