
Meshfree, sequentially linear analysis of concrete 1 

A. Salam Al-Sabah
1
 and Debra F. Laefer

2
 2 

Abstract: 3 

New meshfree method employing the Node-based Smoothed Point Interpolation Method 4 

(NS-PIM) is presented as an alternative to the non-linear finite element approach for concrete 5 

members. The non-linear analysis is replaced by sequentially linear analyses (SLA), and 6 

smeared, fixed concrete cracking model was used. A notched concrete beam was employed 7 

for validation. Using a crack band width factor of 2.0 and a 10 mm nodal spacing, the peak 8 

load differed by only 3.5% from experimental ones. Overall results were similar to experi-9 

mental ones, as well as to those published by researchers using finite element SLA. The ap-10 

proach provides two major advantages over finite element-based SLA: (1) nodal distortion 11 

insensitivity and (2) nodal spacing insensitivity. 12 

  13 

Introduction 14 

 15 

The finite element method (FEM) is the most widely used numerical method to study linear 16 

and non-linear behaviour (for both materials and geometric components) of structures. The 17 

method, in its application to non-linear structural analysis, has matured sufficiently to be the 18 

basis of many commercial software packages (ANSYS, Abacus, ATINA, etc.). Despite sig-19 

nificant progress in its theoretical and numerical aspects, some weaknesses persist. These can 20 

be summarised as follows: 21 
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 Results are mesh-dependent, with good results requiring a high quality mesh and each 22 

element’s geometry satisfying shape and aspect ratio limits. 23 

 Models are stiffer than the actual structures. Hence, displacements are underestimat-24 

ed. 25 

 In analysis of geometric non-linearity, elements can become distorted sufficiently to 26 

compromise output accuracy. 27 

 Crack propagation usually requires re-meshing, and the robustness of automatic re-28 

meshers is questionable, particularly in three-dimensional problems. 29 

 30 

Modelling of reinforced concrete is an important topic, as it is one of the most widely used 31 

composite materials in construction. Predicting its behaviour is complicated by factors such 32 

as reinforcement yielding, non-linear reinforcement-concrete bond behaviour, non-linear be-33 

haviour of concrete in compression, and tension cracking of the concrete. This last aspect 34 

contributes most significantly to the early, non-linear behaviour of reinforced concrete beams 35 

and slabs. The application of non-linear FEM in the analysis of reinforced concrete structures 36 

can be traced back to the 1960s when the first reinforced concrete finite element model which 37 

includes the effect of cracking was developed by Ngo and Scordelis (1967).  38 

 39 

When loaded in tension, concrete fails suddenly after reaching its tensile limit. The heteroge-40 

neous nature of concrete results in a quasi-brittle behaviour that is greatly affected by soften-41 

ing damage (Bazant and Jirásek 2002). To represent this, several fracture models have been 42 

proposed as summarized by Rots and Blaauwendraad (1989). An important component of 43 

these models is the Fracture Process Zone (FPZ), defined as the zone ahead of the crack tip in 44 

which concrete undergoes softening behaviour due to microcracking. Two widely used crack-45 

ing models are the Fictitious (or cohesive) Crack Model (FCM) introduced by Hillerborg et 46 



al. (1976), and Crack Band Model (CBM) as proposed by Bazant and Oh (1983). In the first 47 

model, the FPZ is represented as a fictitious line that can transmit normal stress. Fracture en-48 

ergy is then expressed as a function of critical crack separation (or opening width, w ) (Bazant 49 

and Jirásek 2002). In the CBM, fracturing is modelled as a band of parallel, densely distribut-50 

ed microcracks in the FPZ that has a certain width, which is referred to as the crack band 51 

width (Bazant and Oh 1983). The average strain over the FPZ can be related to its defor-52 

mation through the crack band width. The fracture energy can then be represented as a func-53 

tion of a stress-strain curve and the crack band width. 54 

 55 

Concrete fracture models, combined with non-linear models for concrete and steel are typi-56 

cally combined with the FEM to produce numerical procedures for non-linear analysis of re-57 

inforced concrete. Early efforts to overcome this encountered two main challenges. The first 58 

was the numeric instability due to tensile cracking. The second related to the softening por-59 

tion of the behaviour. The first was solved by adopting the incremental-iterative solution 60 

method (Crisfield 1996), where the unbalanced forces were allowed to dissipate through solu-61 

tion iterations. Since the second resulted from the negative tangent stiffness of the softening 62 

part of behaviour, it generated an unstable equilibrium with associated numerical issues in 63 

solving the stiffness equation. To surmount this, several methods were initially proposed to 64 

control the load or the displacement (Crisfield 1996). Prominent amongst these were the arc 65 

length method (Crisfield 1996; Riks 1979) and its variations, the minimum residual dis-66 

placement method (Chan 1988), and the line search method (Crisfield 1996). Yet challenges 67 

remained. These non-linear solution methods required the specification of many control pa-68 

rameters, which depended upon user experience and did not guarantee convergence. Inherent 69 

to this are expectations that the user is a highly knowledgeable and experienced practitioner 70 

and that the results are obtained after many mesh and parameter refinement attempts. This is 71 



particularly true for concrete, where the sudden release of strain energy due to tensile crack-72 

ing can cause the numerical solution to fail. As such, the aim of this paper was to implement 73 

an alternative to non-linear FEM in its application to concrete members. 74 

 75 

Methodology 76 

 77 

The following paragraphs describe the background and details of the particular meshfree 78 

method adopted for this analysis, as well as the sequentially linear analysis method that was 79 

employed. 80 

 81 

Mesh free methods 82 

When the FEM was introduced in the 1950s, the most widely used numerical method for 83 

solving differential equations was the finite difference method (Courant et al. 1967). This 84 

strong-form method had a simple mathematical foundation and was easy to implement nu-85 

merically. The main previous limitation was the need for a regular grid of points to define the 86 

analysis domain. These limitations added to the general acceptance of the FEM as a better 87 

and more flexible alternative. Although further research related to finite difference overcame 88 

the necessity of a regular grid (Liszka and Orkisz 1980), the FEM came to dominate popular 89 

usage because of its ability to define complicated geometries, its basis on a robust mathemat-90 

ical foundation, and its ease in conducting error analyses (Thomée 2001). 91 

 92 

A fundamental alternative came in the form of meshfree methods. The first member of the 93 

group was the Smoothed-Particle Hydrodynamics (SPH) (Gingold and Monaghan 1977; Lucy 94 

1977) in 1977, which was initially applied in solving astrophysical problems. Since then, 95 

multiple meshfree methods have been proposed (e.g. Li and Mulay 2013; Liu 2009). These 96 



vary in their formulation procedure (strong, weak, weakened weak, or boundary integral) and 97 

their local function approximations (moving least square, integral, differential, point, or parti-98 

tion of unity). Despite its name, most meshfree methods still require background cells to con-99 

duct the numerical integration of the system matrices. However, the meshfree methods that 100 

are based on a strong formulation (e.g. the irregular finite difference method, the finite point 101 

method, and local point collocation methods) do not usually require background cells. Unfor-102 

tunately, most of these methods suffer from reduced accuracy and instability due to node ir-103 

regularity (Atluri and Zhu 1998; Liu 2009).   104 

 105 

In the work presented herein, a special meshfree Point Interpolation Method (PIM) called the 106 

meshfree Node-based Smoothed Point Interpolation Method (meshfree NS-PIM) is used. The 107 

method was first developed by Liu et al. (2005) under the name Linearly Conforming Point 108 

Interpolation Method (LC-PIM). This was later changed to the Nodal Smoothing Operation 109 

(2009) to distinguish it from the Edge-based Smoothed Point Interpolation Methods (ES-110 

PIM). Further details on NS-PIM are presented by Liu and Zhang (2013).  111 

 112 

Meshfree NS-PIM was formulated using polynomial basis functions that have the Kronecker 113 

delta function property, which allowed straightforward implementation of the essential 114 

boundary conditions.  Furthermore, the Generalized Smoothed Galerkin (GS-Galerkin) weak 115 

form was used, which allowed use of incompatible assumed displacement functions. The 116 

method is linearly conforming, with upper bound results that are free from volumetric locking 117 

(Liu, 2009).  118 

 119 

In NS-PIM, as in PIM, the displacement, 
hu , of any domain point, x , is approximated using 120 

a shape (interpolation) function, )(xI . This function operates within a small local domain 121 



around x  (the support domain). The function interpolates the nodal displacement, Iu , of the 122 

nodes within the support domain of x  (or the support nodes, nS ): 123 
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The choice of the support domain size and location relative to x , explicitly influence the 125 

shape function’s ability to interpolate accurately between nodal displacements. If the support 126 

domain has a poor arrangement of support nodes, inaccurate interpolation results will be pro-127 

duced. Different schemes were introduced to resolve this issue. In the research presented 128 

herein, the T3-scheme (Liu 2009) was adopted, Fig. 1. In that scheme, the background cells 129 

that are required to conduct the meshfree weak form integration are used for support node se-130 

lection. The cells can be generated by triangulating between the nodes. Any point inside a tri-131 

angle is surrounded by three nodes. This allows the construction of a linear shape function 132 

that will result in a constant strain approximation. In this work Delaunay triangulation was 133 

used to generate the triangulated support domain used for the T3-scheme. 134 

 135 

           136 

               Fig. 1. T-3 scheme for background cells. 137 

 138 

The triangulated problem domain ( ) is divided into a number of smoothing domains (
sN ), 139 

each centred on a node. As such, 
sN
 
equals the number of nodes. The boundaries of smooth-140 



ing domains do not overlap and have no gaps in between; hence they cover the whole do-141 

main.  142 

 143 

The Generalized Smoothed Galerkin (GS-Galerkin) weak form, as shown in Eq. (2), can be 144 

converted to its discretized form, as shown in Eq. (3), where the domain integration is con-145 

verted into a summation, thereby adding the effect over the smoothing domains (Liu 2009):  146 
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 149 

where: 150 

iε : smoothed strain of domain i  151 

s

iA : area of smoothing domain i  152 

c : material property matrix 153 

b : body force vector 154 

 : domain bounded by    155 

t : boundary stress vector 156 

sN : number of smoothing domains 157 

The smoothed strain ε  for node i , Fig. 1, can be found as the approximate strain )(~ h
uε  aver-158 

aged over the smoothing domain of the node, 
s

i , as follows: 159 
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 161 

The assumed displacement )(xu
h  can be used to find the smoothed strain matrix

IB , with its 162 

elements representing the smoothed shape function derivatives: 163 
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This matrix can be used to find the approximate smoothed strain (Liu 2009):  165 
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where: 167 

sS : support nodes of the smoothing domain that are used in the interpolation 168 

The numeric integration required to calculate the smoothed strain matrix 
IB  resulting from 169 

the linear shape function can be conducted using one integration point. The integration can be 170 

altered from an area to a line integration using Green’s theorem (Thomas et al. 2004). This al-171 

lows for a more efficient closed-form numerical implementation of the integration. 172 

As in the FEM approach, the stiffness matrix is obtained from the strain matrix as follows: 173 
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            (7) 174 

In the research presented herein, the background triangular cells are generated using a Delau-175 

nay triangulation. Once the nodal stiffness matrices are calculated, the global stiffness matrix 176 

can be assembled. In meshfree NS-PIM, the boundary conditions can be applied explicitly, in 177 

a manner similar to the normal procedure in FEM. The overall solution steps are also similar 178 

to those applied in the FEM. In this research, meshfree NS-PIM was combined with sequen-179 

tial linear analysis. 180 

  181 

Sequentially linear analysis 182 

Sequentially linear analysis (SLA) was first proposed by Rots (Rots 2001) with the aim of 183 

simplifying non-linear finite element analysis of concrete due to tension cracking.  The local-184 

ly brittle, snap-type response of many reinforced concrete structures inspired the idea to cap-185 



ture these events directly rather than trying to iterate around them with a Newton-Raphson 186 

scheme. SLA was based on the finite element re-analyzing of the structure at each cycle from 187 

an unloaded state, with the analysis following the secant modulus rather than the tangent. As 188 

such, the numerical difficulties typically encountered in tangent non-linear analysis, particu-189 

larly in the softening part, were avoided, as the secant modulus is always positive. 190 

Specifically, the non-linear analysis is substituted by a series of linear analyses, with the 191 

structure at each cycle slightly modified from the previous cycle. At each cycle, the element 192 

(or integration point) that is closest to cracking is identified. The following cycle analyses a 193 

structure with a crack at the element (or integration point), as identified in the previous cycle. 194 

The analysis is conducted according to the following steps (Rots and Invernizzi 2004; Rots et 195 

al. 2008). 196 

 197 

a. The structure is loaded and analyzed with a normalized unit load. 198 

b. The critical element closest to cracking is identified. 199 

c. The load and analysis results are scaled to produce a crack at the critical element. 200 

d. The structure is modified by changing the properties of the cracked element. 201 

e. The previous steps are repeated, until the desired damage level is obtained. 202 

 203 

Cracking 204 

The final technical aspect relates to cracking. Cracking can be modeled discretely in both fi-205 

nite element and meshfree methods (Ngo, D. and Scordelis 1967; Rots and Blaauwendraad 206 

1989), (ACI Report:446.3R-97 1997), where the crack tip stress and crack direction can be 207 

identified. The ability to model geometrically actual separation produces a numerical model 208 

that can accurately describe the actual cracking behavior. The main challenge (especially in 209 

three-dimensional bodies) with the discrete crack method is the need to continuously update 210 



the numerical model topology with the crack progression. Furthermore, a refined numerical 211 

model is required, particularly around the crack tip. The cost of conducting a discrete crack-212 

ing analysis is large and, thus, mainly used for particularly detailed analysis of relatively 213 

small structures. 214 

 215 

An alternative is the smeared crack method first introduction in 1968 by Rashid (Rashid 216 

1968). It is currently widely used in finite element crack analysis mainly due to its numerical 217 

efficiency when compared to the discrete cracking method. This efficiency was achieved 218 

through maintaining the same geometric model and assuming that the actual crack effect can 219 

be distributed over the finite element width by changing the constitutive properties. This 220 

smearing effect is just an approximation of the actual discrete crack. In this approximation, 221 

some of the details are inevitably lost.  222 

 223 

In addition to the above two methods, it is possible to use the extended FEM to model crack-224 

ing. In this method, special enriching functions are added to the finite element approximation 225 

using the framework of partition of unity (Moës et al. 1999). In this approach, there is no 226 

need to modify the model topology with the crack propagation, as strong discontinuities can 227 

be modelled. However, the enrichment requires substantial numerical calculations that can 228 

slow the analysis.  229 

 230 

The approach proposed herein uses the smeared method to model cracking. For such a model, 231 

it was previously observed that finite element results depend on element size (Bazant and 232 

Cedolin 1979; Bazant and Oh 1983; Cedolin and Bazant 1980). To maintain mesh objectivity 233 

and independence, Bazant and Cedolin (Bazant and Cedolin 1979),(Cedolin and Bazant 234 



1980) proposed the concept of crack band width ( h ) to normalize the stress-strain curve with 235 

the aim of maintaining constant fracture energy.  236 

 237 

Finally, two models exist to follow the crack development, the fixed and rotating crack mod-238 

els (Rots and Blaauwendraad 1989). In the first, it is assumed that the crack direction remains 239 

the same after its initiation, while in the second; the crack is allowed to change its direction 240 

with continuous change of stress state. In the approach proposed herein, the fixed crack mod-241 

el is employed. 242 

 243 

Saw-tooth approximation 244 

The application of SLA method to concrete is tightly linked to its tensile cracking. Many 245 

modeling options are available. One approach is to treat concrete as an ideal brittle material 246 

where the secant modulus of elasticity is instantly reduced to zero upon cracking. The results 247 

based of such a model will likely be mesh-dependent, as the crack fracture energy will not 248 

converge to the correct value upon mesh refinement (Bazant and Oh 1983). Alternatively, a 249 

gradual reduction of the secant stiffness in the softening part of the stress-strain curve will 250 

produce the saw-tooth approximation that is typically used in the SLA, Fig. 2. 251 

                                                  252 

                                            Fig. 2. Typical SLA curve. 253 

 254 



The basic stress-strain curve can be modified to maintain the same fracture energy, which is 255 

related to the area under the softening stress-strain curve. The shaded area under the saw-256 

tooth diagram is smaller than the total area under the stress-strain curve. To maintain constant 257 

fracture energy irrespective of the tooth count, the saw-tooth diagram needs to be adjusted. 258 

To achieve this, different regularized curves have been proposed (Rots and Invernizzi 2004; 259 

Rots et al. 2008). The most elegant was called Model C (Rots et al. 2008), which is based on 260 

a linear softening behavior and obtained by modifying both the tensile strength and ultimate 261 

tensile strain. The actual softening stress-strain curve is considered to represent the base val-262 

ue. Modified saw-tooth stresses are allowed to fluctuate around the base value within a spe-263 

cific band. For each tensile strength ( tif ), there is a larger value (


tif ) defining the maximum 264 

fluctuation limit and a smaller value (


tif ) defining the minimum fluctuation limit, Fig. 3. 265 

The resulting softening part can be generated as a series of secant lines, each with a progres-266 

sively reduced tensile strength and slope and with a progressively increased maximum strain.   267 

                            268 

Fig. 3. Saw-tooth model C. 269 

 270 

To regularize the softening behavior against the mesh size, the crack band width normaliza-271 

tion concept was introduced by Bazant and Cedolin (Bazant and Cedolin 1979). Following 272 

that concept, Rots et al. (Rots and Invernizzi 2004; Rots et al. 2008) proposed using Eq. 8 to 273 



regularize the ultimate strain ( u ) by relating it to the fracture energy ( fG ), tensile strength 274 

( tf ), and crack band width ( h ): 275 

tfu fhG /)/(2             (8) 276 

The saw-tooth curve was constructed such that the value of 


tif for the last saw-tooth was 277 

equal to zero. This condition was set to maintain (in all practically) equal positive and nega-278 

tive areas above and below the actual stress-strain curve, to ensure constant total fracture en-279 

ergy.  280 

 281 

In FEM, the value of the crack band width is related to the element size, element type, num-282 

ber of element integration points, and crack direction. The crack band width ( h ) can be ex-283 

pressed as: 284 

bhh fac.               (9) 285 

where  286 

 fach : crack band width factor 287 

 b : element size 288 

For simple plane strain triangles of regular uniform shape, where the cracks are parallel to the 289 

element side, it was found that the crack band width factor equals to 1.0 and that the element 290 

size is the element side length (Rots 1988). 291 

 292 

The meshfree NS-PIM formulation implemented herein uses a linear shape function, as well 293 

as equal, regular, nodal spacing in both directions, with the cracks oriented mainly parallel to 294 

the nodal grid.  For these conditions, it was found in the research herein that the equivalent 295 

element size is the nodal spacing and that a crack band width factor of 2.0 can produce the 296 

best overall results. This crack band width factor value can be related to the formulation of 297 

Comment [ 1]: Since this relates to FEM 
do we need it. If so, please add a sentence 
relating it to the NS-PIM 



meshfree NS-PIM where the nodal stiffness is based on the support domain and a weak for-298 

mulation. The stiffness matrix is calculated from the smoothed strains, as expressed in Eq. 299 

(7). These strains are calculated from the support nodes extending over the support domain. 300 

For the particular node of interest amongst a regular arrangement of nodes, this domain ex-301 

tends to a distance of twice the nodal spacing in each direction. The authors believe that this 302 

difference in the formulation of meshfree NS-PIM method based on the T3-scheme relative 303 

to the usual FEM formulation is the reason for the crack band width factor having a value of 304 

2.0 rather than 1.0. 305 

      306 

Numerical study 307 

 308 

The meshfree NS-PIM method and its SLA implementation, as described above, were adopt-309 

ed in a new software code. The software, PISLA, has a graphical interface shown in Fig. 4 to 310 

allow the user to follow the analysis progress and present the results graphically. The pro-311 

gress of the load-deflection at any point is shown. The progress of cracks, stress, and deflec-312 

tion can also be selected by the user to be shown on the graphical interface. Maximum stress 313 

and deflection results are also presented numerically, as well as the time required to conduct 314 

the analysis. In this paper, all loads were assumed to be proportional. All the results reported 315 

herein were conducted using a computer with a 3.4 GHz Intel Core i7 CPU with 12 GB 316 

RAM. 317 

 318 

 319 



 320 

Fig. 4. Graphical user interface of PISLA. 321 

 322 

To test the application of a meshfree method on SLA, a test beam model was used. The mod-323 

el was previously used by Rots et al. (Rots and Invernizzi 2004; Rots et al. 2008) to investi-324 

gate the implementation of SLA with a finite element approach. The symmetric concrete 325 

beam was 500 mm long, with a 450 mm span, a 100 mm height, a 50 mm width, and a mid-326 

span notch depth of 10 mm. Load was applied at the third-points of the free 450 mm span 327 

(Fig. 5). The maximum, constant, bending moment was generated within the beam’s middle 328 

third. 329 

 330 

The adopted material properties in this analysis were those used by Rots et al. (Rots and In-331 

vernizzi 2004; Rots et al. 2008):  initial modulus of elasticity 38 GPa, initial tensile strength 3 332 

MPa, and fracture energy 0.06 N mm/mm
2
. The beam was modeled in its entirety, without 333 

any attempt to exploit its symmetry. Sensitivity of the saw-tooth model was tested by varying 334 

the number of teeth:  5, 10, 20, and 40; mesh sensitivity was tested by changing the nodal 335 

spacing:  20 mm, 10 mm, 5 mm, and 3.33 mm (Fig. 6); and the numerical models were re-336 

fined mainly around the notched section. 337 

 338 

Fig. 5.  Experimental notched concrete beam (23, 24). 339 

 340 



  341 

              a- 20 mm nodal spacing model                b- 10 mm nodal spacing model 342 

  343 

       c- 5 mm nodal spacing model   d- 3.33 mm nodal spacing model 344 

                                      Fig. 6. The four numerical models analyzed. 345 

 346 

Results 347 

 348 

In the following sections, the analysis results from the different models are presented. 349 

 350 

Base model 351 

The base model had a nodal spacing of 10 mm and a saw-tooth with 20 teeth. The load-352 

deflection curve of this model was constructed by linking the points resulting from the SLA 353 

(Fig. 7). 354 

 355 

 Fig. 7. Load-deflection results for the 10 mm nodal spacing model, 20 teeth. 356 



 357 

The numerical results correlated well with the experimental behavior. The maximum numeri-358 

cal load was 4.14 kN, only 3.5% more than the maximum experimental value of 4.0 kN. The 359 

results were also found to be close to the results previously obtained using finite elements 360 

SLA with different saw-tooth curves and mesh densities (Rots and Invernizzi 2004; Rots et 361 

al. 2008).  362 

The load-deflection curve resulting from current numerical method showed irregular behav-363 

ior, particularly in the softening part. This behavior is associated with SLA method where 364 

damage is traced sequentially as it progresses through the structure. The irregular load-365 

deflection behavior can be seen as a global reflection of damage represented on the local lev-366 

el by the saw-tooth approximation (Rots and Invernizzi 2004). 367 

 368 

The presence of the notch resulted in cracking being limited to the area around the notch. The 369 

cracking progression, exaggerated deflection, and stress distribution in the central part of the 370 

beam are shown in Fig. 8. These results are shown at three stages of loading:  3.89 kN, 2.57 371 

kN, and 0.27 kN, corresponding to cycle numbers 41, 195, and 341, respectively. All of these 372 

stages are in the softening part of behavior. In Fig. 8, the crack length is related to the saw-373 

tooth number at the particular stage of cracking. The stress distribution is shown for the mid-374 

dle part of the beam, where the bending moment is constant.  375 

 376 

At an early cracking stage, the cracks were nearly vertical and the stress distribution was 377 

nearly symmetric (Fig. 8-a). Early cracks appeared at the weakest section, corresponding to 378 

the notch location. With the cracking progression, the symmetry in cracking and stress distri-379 

bution was lost. Theoretically symmetric results would have been expected. However, the 380 

presences of slight numerical approximations in the double precision calculations usually re-381 



sult in the loss of exact symmetry. There was no need to vary the section or material proper-382 

ties from one beam location to the other to break the symmetry, as done previously by some 383 

other researchers. The actual behavior of the physically tested model was similar due to slight 384 

imperfections in material properties, dimensions, support conditions, and/or loading posi-385 

tions.  386 

 387 

          388 

a- Crack pattern, exaggerated deflected shape, and principal stresses near mid-span at cycle 389 

41  (load = 3.89 kN)  390 

        391 

b- Crack pattern, exaggerated deflected shape, and principal stresses near mid-span at cycle 392 

195 (load = 2.57 kN) 393 

          394 

c- Crack pattern, exaggerated deflected shape, and principal stresses near mid-span at cycle 395 

341 (load = 0.27 kN) 396 

 397 

Fig. 8. Graphical outputs of the results of the 10 mm nodal spacing model with 20 teeth. 398 



 399 

Fig. 8 shows clearly that the stress across the cracks reduced as the crack lengths increased. 400 

This behavior is related to the saw-tooth diagram, where


tif  reduced with the saw-tooth 401 

number of the crack, i as shown in Fig. 3. 402 

 403 

The following sections present the results obtained from studying the effects of number of 404 

teeth in the saw-tooth model, nodal spacing, and node-distortion. 405 

 406 

Effect of tooth count 407 

Figure 9 shows the base model with 10 mm nodal spacing, the results for 5, 10, 20, and 40 408 

teeth, where n indicates the number of teeth. The results were obtained for a crack band 409 

width factor of 2.0. Increasing the number of teeth improved the quality of results. The load-410 

deflection curve became smoother and with less oscillation amplitude, as the number of teeth 411 

was increased. The overall average curve location remained stable, indicating similar fracture 412 

energy release. This behavior was expected and results from the more gradual release of frac-413 

ture energy, as the number of teeth increases. However, this more refined behavior comes 414 

with a penalty in analysis time proportional to number of teeth.  415 

 416 



Fig. 9. Effect of number of teeth on the load-deflection results for the 10 mm nodal spacing. 417 

 418 

The numerical peak load ranged from a high of 4.45 kN with 5 teeth to a low of 4.06 kN for 419 

40 teeth, respectively (Fig. 9). This value decreased with an increase of teeth count, although 420 

at a reducing rate. This behavior reflects the saw-tooth model, in which the stress value oscil-421 

lates above and below the base curve (Fig. 3). The oscillation amplitude reduces with tooth 422 

count. In this case, the model with 40 teeth was closest to the experimental value of 4.0 kN. 423 

 424 

Effect of model refinement 425 

Four models with nodal spacing of 20 mm, 10 mm, 5 mm, and 3.33 mm were tested (Fig. 6). 426 

The results obtained from these models for a saw-tooth model with 20 teeth are shown in Fig. 427 

10. The results were obtained for a crack band width factor of 2.0. The meshfree method is 428 

known to produce results that are more flexible than the actual structure (Liu 2009). This 429 

trend was also observed in the current analysis. The initial slope of the numerical load-430 

deflection curve was less than the experimental results. The numerical results converged to 431 

the test results, as the model was refined further. The very coarse 20 mm nodal spacing model 432 

showed rough and flexible behavior. There was, however, an overall similarity with the ex-433 

perimental behavior. Results of the other numerical models were closer to the experimental 434 

results. The peak load was predicted accurately by the 10 mm nodal spacing model, with a 435 

difference of 3.5% from the experimental results. The more refined 5 mm and 3.33 mm mod-436 

els predicted slightly higher peak values. Thus, the predicted behavior was still dependent, to 437 

a small degree, on nodal spacing. The maximum load resulting from the four nodal spacing 438 

was as little as 4.06 kN for the 20 mm nodal spacing to as much as 4.21 kN for the 3.33 mm 439 

nodal spacing. 440 



 441 

Fig. 10. Results of mesh refinement study, all results for 20 teeth. 442 

 443 

This behavior relates to the tension cracking of concrete and the implications of using a 444 

smeared cracking method to model the actual cracks. In fracture mechanics, the energy re-445 

leased during the softening behavior per unit volume (or area) of concrete material is the frac-446 

ture energy ( fG ). In a meshfree (as well as finite element) analysis, the smeared crack is as-447 

sumed to cover all of the smoothing domain (or element) regardless of the nodal spacing. 448 

Larger nodal spacing will result in the nodes (or elements) having larger fracture energy. To 449 

maintain constant value of fracture energy, regularization is used (Bazant and Cedolin 1979; 450 

Bazant and Oh 1983). One assumption of regularization is that the element can contain the 451 

material zone affected by the cracks, usually referred to as the FPZ (as described in section 452 

1). The regularization scheme should work for any nodal spacing, as long as the spacing is 453 

larger than the FPZ width. One consequence of using a nodal spacing smaller than the FPZ 454 

width is that each node (or element) contained in the larger FPZ can dissipate the fracture en-455 

ergy. This numerical model will then overestimate the strength due to its ability to handle 456 

more fracture energy. This would explain the current results, with a slight anomaly for the 5 457 

mm nodal spacing relative to those obtained from the 10 mm and 3.33 mm nodal spacing. 458 



One possible reason is the fluctuating nature of the SLA analysis. Therefore, a single peak 459 

value is possibly not the best response measure. An average of many points around the peak 460 

result might be more appropriate. Overall, however, the softening behavior of the numerical 461 

models showed reasonable agreement with the experimental results. The generally similar 462 

overall behavior resulting from the four numerical models also indicates the accurate nodal 463 

stress values resulting from the meshfree NS-PIM analysis. This is one of the advantages of 464 

NS-PIM over the FEM approach with triangular elements (Liu 2009). 465 

 466 

The analysis details of the four, studied, nodal spacings are shown in Table 1. The details in-467 

cluding number of cycles, analysis time per cycle, total analysis time, and total analysis time 468 

expressed as a ratio relative to the total analysis time of the base model. From these results, it 469 

is clear that the analysis time of the most refined model, with 3.33 mm nodal spacing, was 470 

more than 41 times that required for the base model. Although more detailed results can be 471 

obtained from more refined models, the time penalty was disproportionally high. In this anal-472 

ysis, the 10 mm nodal spacing seems to provide a reasonable compromise between running 473 

time and level of result details. Notably the halving of the nodal spacing increases the total 474 

analysis time by more than an order of magnitude. 475 

 476 

Table 1. Analysis details for different nodal spacing 477 

Nodal spac-

ing (mm) 

No. of 

nodes 

No. of analy-

sis cycles 

Analysis 

time/cycle (sec) 

Total analysis 

time (sec) 

Relative total 

analysis time 

20 137 157 0.17 27 0.08 

10 318 363 0.93 338 1 (reference) 

5 679 823 4.81 3959 11.7 

3.33 890 1213 11.55 14019 41.5 



 478 

Effect of crack band width factor 479 

To study the effect of changing the crack band width factor, the 3.33 mm nodal spacing mod-480 

el was used. The results obtained from various crack band width factors and 20 teeth saw-481 

tooth model are shown in Fig. 11. The peak load values were as much as 4.21 kN and de-482 

creased to 4.08 kN, as the crack band width factors went from 2.0 to 2.3. There was a slight 483 

tendency of peak load reduction, as the crack band width factor increased. The general shape 484 

of the load-deflection curve was affected also, progressively dropping below the softening 485 

part of the experimental curve, as the factor value increased.  486 

 487 

Fig. 11. Results of crack band width factor study. 488 

 489 

For the specific problem presented in this research, with a nodal spacing of 10 mm, a crack 490 

band width factor of 2.0 worked well. For smaller nodal spacing, it is still possible to use that 491 

factor; however, the peak load will be overestimated slightly. 492 

 493 

 494 



Sensitivity to nodal distortion 495 

Finite element automatic mesh generators often produce irregular meshes. These can be dis-496 

torted, particularly for complex geometries. In FEM, output accuracy is sensitive to element 497 

distortion. However, the meshfree method is known to be less sensitive to nodal distortion, 498 

(Liu 2009). To study the effect of nodal distortion on the accuracy of the results, the base 499 

model with 10 mm nodal spacing and 20 teeth was randomly distorted by ±10%, ±20%, 500 

±30%, and ±40%, as shown in Fig. 12. The distortion was introduced by adding a random 501 

value within the appropriate range to the nodal coordinates. The random value was calculated 502 

by multiplying a pseudo random number in the range [-1, 1] by the nodal spacing and the 503 

specific distortion percentage. 504 

 505 

     506 

a- Mesh with ±10 distortion   b- Mesh with ±20 distortion 507 

     508 

c- Mesh with ±30 distortion   d- Mesh with ±40 distortion 509 

Fig. 12. Distorted models. 510 

 511 

The initial stiffness for all the numerical models was similar regardless of distortion, thereby 512 

proving that the meshfree NS-PIM method is quite robust and insensitive to distortion. The 513 

peak loads ranged from 4.14 kN at no nodal distortion to 4.18 kN for a nodal distortion of 514 

±40%. Furthermore, as shown in Figure 13, the overall shape of the numerical results was 515 

quite close to the experimental ones for distortion values up to ±20%. There was a trend of 516 



increased strength in the descending part of the curve with increased distortion. As the initial 517 

stiffness was unaffected by distortion, it is reasonable to relate the changed softening behav-518 

ior to the effect of distortion on the crack band width, rather than the mesh free analysis. 519 

There are indications from the results that the peak load and the overall behavior are insensi-520 

tive to nodal distortions. However, further work is required to establish solid conclusions in 521 

this regard. 522 

 523 

Fig. 13. Distorted model results. 524 

 525 

Discussion 526 

 527 

Since SLA is not currently supported in commercial FEM programs. So a direct comparison 528 

would be difficult to undertake. However, the general accuracy of results obtained from 529 

meshfree methods, was demonstrated by the current results. The method was quite stable 530 

within the range of the parameters studied. No numerical instability was encountered at any 531 

analysis stage.  532 



One of the main issues of non-linear FEM, as well as finite element-based SLA, is the long 533 

analysis time. In both FEM and meshfree methods, output accuracy is related in part to the to-534 

tal number of degrees of freedom, hence the stiffness matrix size. As a comparison, the 535 

meshfree NS-PIM using the T3 scheme can produce more accurate stress results when com-536 

pared with FEM using triangular elements (Liu 2009). The effect is directly reflected in SLA 537 

with its stress-based softening behavior. The other factor affecting SLA solution time is the 538 

total number of cycles. This number is the summation over all cracked nodes (integration 539 

points) of the last tooth number. Thus, there is an obvious advantage in reducing the total 540 

number of nodes to a level not affecting stress accuracy, as that will directly reduce the num-541 

ber of SLA analysis cycles. In this respect, meshfree NS-PIM can provide an advantage over 542 

comparable FEM approaches, however the exact correlations and comparisons need to be the 543 

subject of future studies. 544 

Conclusions 545 

 546 

Meshfree NS-PIM method was applied in the SLA analysis of cracking concrete. The method 547 

was used to analyze a notched concrete beam that was previously studied by Rots et al. (Rots 548 

and Invernizzi 2004; Rots et al. 2008) using finite element-based SLA. The meshfree SLA 549 

managed to produce numeric results that were close to experimental ones, namely the peak 550 

load and overall load-deflection behavior (including the softening part). The base model with 551 

10 mm nodal spacing and 20 teeth predicted a peak load only 3.5% more than the experi-552 

mental value, and increasing the number of teeth in the saw-tooth model produced a load-553 

deflection curve that was more even and with less oscillation amplitude. The overall average 554 

location of the curves remained stable. However, there was an increase in the analysis time 555 

linearly related to the number of teeth in the saw-tooth mode.  556 

 557 



What was also found was that in spite of maintaining equal fracture energy for the different 558 

numerical models with different nodal spacing, the results still depended slightly on nodal 559 

spacing. The normal crack band width factor value used in the analysis was 2.0. To maintain 560 

the same peak load output from the different models, the crack band width factor needs to be 561 

increased slightly with more refined models. More research is required to study this behavior. 562 

 563 

Additionally, the numerical results were shown to be relatively insensitive to nodal spacing 564 

and model size. By reducing the nodal spacing by a factor of 6 from 20 mm to 3.33 mm, the 565 

peak load changed by less than 3.7%. This is an indication of the generally accurate stress re-566 

sults obtained from meshfree methods and the possibility of using smaller number of nodes to 567 

model large structures while still obtaining accurate results at the benefit of reduced analysis 568 

time. Furthermore, since the meshfree approach generates models that are less stiff than the 569 

actual structures, the displacements are not underestimated. Finally, and perhaps most im-570 

portantly the predicted peak load was found to be insensitive to nodal distortions up to ±40%, 571 

and the overall behaviour insensitive to distortions of up to ±20%. Thus, there are two areas 572 

where a meshfree approach may hold strategic advantages over a FEM. The first is in the in-573 

vestigation of large deformation (in concrete, as well as other materials). The second is in the 574 

auto-generation of meshes from remote sensing data (e.g. laser scanning, photogrammetry). 575 

In such a case, the external geometry of an existing structure can be captured and transformed 576 

directly into a solid model. This could be of tremendous value in the assessment of older 577 

metal bridges and will be the subject of further study by the authors. 578 

 579 
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