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Abstract 

The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of 

drug development and a drying out of drug pipelines. By harnessing advances in –omics technologies 

and moving away from the standard, reductionist model of drug discovery, there is significant 

potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug 

discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a 

network context, will reduce attrition rates by earlier target validation and the introduction of novel 

targets into the current stagnant market. Systems biology approaches also have the potential to 

assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying 

patients to give a greater personalisation of medical treatment. 

DISAPPOINTING PROGRESS FOR DRUG DISCOVERY IN THE POST-GENOMIC ERA 

The standard model of drug discovery is in a bind of increasing costs and risks and decreasing 

efficiency; regulation is failing to reflect scientific advances while industry productivity flatlines.1 The 

average cost for the development of a new drug has been estimated at between $800 million and $2 

billion, with high levels of attrition due to lack of efficacy (sidebar 1).2 Drug discovery was until the 

late 20th century a straight, phenomenological process: a library of compounds was administered to 

an animal model, and then potential rescue of disease phenotypes was measured. This approach 

sought to characterize a disease as a series of symptoms rather than investigating underlying 

molecular mechanisms. Screening was both laborious and haphazard because drug targets and drug 

mechanisms of action were in most cases not known. As such we remained ignorant of the 

molecular effects of these drugs. Even for some of the most common drugs such as aspirin, we still 

lack knowledge on their full effects.3 Developments in the fields of signalling networks, robotics, 

high-throughput arrays and the human genome project have transferred drug discovery away from 

this phenomenological process towards a more targeted approach. We have moved to a more 

‘rational’ targeted screening, in which a specific molecular target is first identified and subsequently 

a compound is sought that interacts with it. This can happen on a much larger scale than the earlier 

phenotypic screening.  

With the successful completion of the human genome project in 2003,4 there was a hope that 

researchers would now have the sequence of all genes, and consequently information on all 

proteins. This vast amount of molecular information would allow for an identification of many more 

targets, with a concomitant boost to drug discovery.5, 6 In reality, progress in drug development has 

been modest: over the last 30 years, an average of 18 new drugs are approved by the US Food and 

Drug Administration every year, with a more or less steady rate of introduction of drugs with novel 

targets.7 Drug attrition remains very high, though this is increasingly due to a lack of efficacy, 

whereas previously the primary cause was toxicity.  



This article focuses on why progress in drug development has not lived up to expectations, and how 

systems biology has the potential to move away from reductionism and deliver significant, cost-

effective improvements to the drug discovery process. We put forward a concept where systems 

biology can improve the discovery of new targets based on a network wide understanding of their 

functions and by affording a more stringent and rational approach to target validation in the early 

stages of the process.  

WHY DID DRUG DISCOVERY NOT SKYROCKET?  

The negligible advances in drug discovery in the genomic age appear to reflect an on-going 

conservatism in research and development, where conceptual thinking has not kept pace with the 

new technological capabilities of the –omics sciences that have revolutionised biological discovery. 

Firstly, focus has not shifted beyond the previously favoured targets, despite the fact that advances 

in a variety of –omics fields and high-throughput assay development have changed molecular 

biology into a data-rich science (sidebar 2). We are only using a small segment of the possible 

targets. The rate of innovation in terms of exploiting drug targets has been stable over the past 30 

years, despite the dramatic increase in investment for drug target research. If we consider targets 

that are encoded by the human genome (excluding for instance virus-encoded targets), less than a 

quarter of the drugs newly approved each year are targeting novel molecules. In 2011, only 435 of 

the estimated 30000 genes in the human genome were used as effect-mediating drug targets (with 

989 unique approved drugs targeting them). Even more striking is that these targets all belong to a 

few protein classes. For instance, 36% of these targets are G-protein coupled receptors.7 Today’s 

drug discovery efforts in the cancer field are focused on kinases, due to success stories like the Abl-

kinase inhibitor imatinib mesylate (Gleevec), and reagents targeting receptor tyrosine kinases such 

as the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptors 

(VEGFRs).8, 9 

Omics technologies have the potential to point out a less obvious, broader range of drug targets 

beyond the limited set of protein families that are currently taken into consideration, providing a 

more holistic view on the biological system. In the human genome for instance, the numbers of 

protein phosphatases and receptor tyrosine kinases are within the same order of magnitude.10 This 

implies that the versatility of functions and specificity of these kinases and phosphatases could also 

be similar, making phosphatases possible targets of interest.11, 12 This idea has been put forward 

before, but the use of systems biology approaches now allows for the consideration of more 

mechanistic and dynamic detail during target identification, and could therefore reinforce rationales 

that consider less conservative targets.12 For instance, proteomics has characterized how a protein 

phosphatase 4 complex conveys sensitivity to cisplatin13, and how phosphatases shape the kinetics 

of ERK activation and cell fate decisions 14, 15. 

While numbers of novel drug targets remain uninspiring, understanding of the underlying molecular 

functions of the majority of drug targets on cellular or organismal physiology is also surprisingly 

poor. Put simply, for the majority of possible targets we still do not know what they do in the 

context of the biomolecular networks they are embedded in, inhibiting a truly rational drug design. 

Molecular knowledge on drug targets is mostly based on very crude methods such as knock-out 

mice. These methods generally do not give us detailed molecular information to differentiate effects 

due to their diverse functions that include different aspects such as scaffolding effects, subcellular 



compartmentalisation and catalytic activities. There is also a need for a deeper understanding of 

disease states based on the states of biological networks.  

SYSTEMS BIOLOGY: CONSIDERING THE COMPLEX BIOLOGICAL NETWORK ENVIRONMENT  

One important aspect that current reductionist approaches neglect is that drug targets are part of 

complex dynamic biological networks. The topology and dynamics of these networks effectuates 

tight control of signalling responses and their resulting biological effects, and these features should 

be exploited for drug discovery purposes.16-18 It is at this point that a systems biology approach has 

the potential to really improve the drug discovery process, by considering possible targets in the 

context of their surrounding network.  

Advances in a variety of –omics fields have massively increased the amount of data we can gather. 

Systems biology approaches allow for a reduction of the information noise in these large datasets by 

carving out functional relationships, and for the integration of different types of data into 

hypothesis-driven mathematical models. Systems biology provides an integrative, multidisciplinary 

approach that aims to integrate these different types of high-throughput data through knowledge 

and techniques derived from a diverse range of other disciplines, including engineering, information 

science and mathematical modelling. This enables a wider signalling network in all its complexity to 

be considered, instead of adopting the linear, reductionist approaches taken so far. Network based 

methods are not yet commonly employed in drug development, however they already have proven 

useful in deciphering molecular mechanisms of diseases, often with very complex traits. A network-

based approach combining interactome, co-expression and co-morbidity data, for instance, was 

used to predict candidate genes for lipid and lipoprotein traits. Despite the fact that these candidate 

genes had not been picked up in GWAS studies, the predictions were validated by the identification 

of novel disease-associated SNPs.19 Similarly, integrative systems biology approaches combining 

expression and interaction data into networks have been successful in indicating molecular 

mechanisms of diseases in different fields, such as the classification of metastatic versus non-

metastatic breast cancer20 and respiratory diseases21, 22, where different public-private partnership 

consortia have been set up to apply -omics and systems biology techniques to biomarker discovery.23 

Dynamic, mechanistic mathematical models facilitate a holistic perspective on a drug target, 

revealing the complex environment it exists in, bringing to light new information that would 

otherwise have remained obscured. Perturbation of a target will have knock-on effects on the rest of 

the network, and modelling these effects will show which way the network can be best perturbed to 

achieve the desired effect, and therefore which node in the network could be a suitable target 

candidate. This could for instance be the catalytic activity of a specific node, the expression of a 

specific component, but also a particular protein-protein interaction. A tangible example where the 

surrounding network should be considered is kinase inhibitors, one of the major focuses of drug 

development programs in the pharmaceutical industry. Type I kinase inhibitors lock the kinase in its 

active state, while type II kinase inhibitors lock it in the inactive state. The target is in a different 

conformation depending on what kinase inhibitor is used, and this will affect the binding of different 

partners of the kinase in the network, and will therefore have a different effect on the network 

dynamics.24 Omics techniques such as proteomics can help monitor interactions of specific drugs and 

the effects of drugs on the signal transduction network of cells at a large scale, including off-target 

and secondary effects.25, 26 Mathematical modelling on the other hand can help to integrate these 



rather static high-throughput data in a more dynamic model that better reflects the biological 

system.18 We currently do not know of any new drugs in clinical trial that are based on dynamic 

modelling of signalling networks.  

However mathematical modelling has already been used to support the FDA approval of Ranolazine, 

a treatment for chronic angina, by showing that drugs that reduce the late sodium current in cardiac 

cells would have therapeutic potential against arrhythmias, therefore indicating the method of 

action of the drug.27, 28 Similarly, computational modelling of the interaction of two commonly used 

anti-arrhythmic drugs, lidocaine and flecainide with sodium channels in the heart could accurately 

predict the clinically beneficial dosing of these compounds.29 This is an important advance, as these 

compounds have a narrow therapeutic window and can exacerbate arrhythmia when dosed 

incorrectly. Another example is the development of chronotherapy for cancer, which has shown that 

both efficacy and side effects of chemotherapy are modulated by the circadian rhythm.30 The 

development of scheduled treatment cycles as well as the elucidation of underlying mechanisms is 

heavily based on mathematical modelling providing an excellent example of how systems biology 

approaches can be used in the clinic.30-33  While these developments are encouraging, there are still 

many challenges ahead. It took more than 4 decades until Denis Noble’s pioneering work on a 

computational heart model led to hard evidence that modelling can produce useful and clinically 

relevant results that can explain the mechanism of drug actions, guide drug development and 

dosing.34 The reasons for this slow uptake only may be guessed but plausibly include an inherent 

scepticism against hard-core mathematics in the biomedical sciences, which traditionally prefer a 

more intuitive approach. On the other hand, it takes a lot of data and validation to generate clinically 

relevant and reliable computational models. Importantly, it is not the data quantity that is lacking, 

but modelling requires particular types of data, such as kinetic biochemical data and data that allow 

reconstructing network structures, which are not routinely measured. The heightened awareness 

and understanding of modelling approaches will hopefully accelerate the closing of this gap. Again, 

chronotherapy is a good example where modelling found its way into clinical application rather 

quickly.   

Drug-target networks are also increasingly being used in network biology. These models utilize 

protein interaction networks (interactome networks), and include specific drugs and knowledge on 

their targets.7, 35, 36 Research at a large drug-interaction network comprising of 989 approved drugs 

and their targets again indicated that most drugs share similar target interaction profiles and that we 

are only targeting a limited part of the proteome. Such studies confirm that the pharmaceutical 

industry has a tendency to target already validated target protein, causing an abundance of follow-

on drugs.7, 36  

These types of networks are not only useful for meta-analysis of current drug discovery. By using a 

specific drug-target interactome network related to myocardial infarction called My-DTome, that 

comprised of approved and other drugs, Azuaje et al. were able to identify novel associations 

between drugs, targets and myocardial infarction related molecular mechanisms in a modular 

manner. This disease-specific network not only allowed for research at drug-drug interaction, 

adverse effects and multidrug treatment, but also indicated possible repositioning of unrelated non-

cardiovascular drugs and pointed at different miRNA as potential novel targets for myocardial 

infarction treatment.35 



A SYSTEMS BIOLOGY EMBEDDED TARGET VALIDATION AS POSSIBLE SOLUTION 

We propose that the lack of drug efficacy causing attrition during clinical drug development (side-bar 

1) is due to insufficient target validation in the pre-clinical stage. We put forward a systems biology 

embedded concept that will significantly increase the efficacy of the drug development process 

(figure 1). Considering complex spatiotemporal dynamics controlled by multiple negative or positive 

feed-forward and feedback loops can shed a different light on where to hit the disease network.16 

For instance, phosphatases can significantly alter signalling dynamics, often more than kinases, and 

could therefore be good targets to alter signalling dynamics. However, there is a need for a deeper 

understanding of these dynamics to decipher the sensitivity and specificity that is necessary for 

therapeutics.12 We feel that the further development of dynamic computational models can 

automatically lead to a broader use of systems biology techniques in the drug discovery field. 

 

 

Figure 1: A systems biology concept of drug target validation as a mechanistic, diagnostic and therapeutic package. This 

concept comprises that a validated target plays a role in the pathogenic mechanism, is altered in disease, is druggable by 

chemical or biological entities and is assayable in biological and clinical samples. 

Systems biology network models can define a new target space, and will seek to thoroughly validate 

the target earlier in the process, before going further into the clinical phases of the drug 

development process. By taking a less reductionist view, this target space can be broader than what 

is considered a potential target now. Using systems biology approaches from the outset of the 

process will enable target validation to be a continuous process. We propose that preclinical target 

validation should be considered as a package that includes the following elements: a good target 

should be shown to be altered in disease, and play a role in the pathogenic mechanism early on in 

the drug development process. This comprises a mechanistic systems level analysis of the function of 

the target in a network context and the early study of the alterations of the target and its effects in 

clinical samples. In this way the pathogenesis can be tackled specifically, and the development of 

tests to assay the target and its biochemical effects are a direct prelude to the development of 

accompanying diagnostic tests that can guide preclinical animal studies and eventually clinical 



studies with human patients.  

In addition, a good target has to be ‘druggable’. However, what is currently considered ‘druggable’ is 

often narrowly and conservatively conceived. Drug development has in the last decades been 

focused around small molecular weight chemical compounds. There has also been an emphasis on 

the ‘rule-of-5’: poor absorption or permeation into cells is deemed more likely when the number of 

hydrogen-bond donors >5, the number of hydrogen-bond donors >10, the relative molecular mass 

>500 and the calculated logP (cLogP)>5.37 Taking also into account more favourable production 

costs, this means a good drug is small and hydrophobic chemical compound, for instance selectively 

binding to hydrophobic pockets. However, most natural product-based drugs, biomimetics and 

biologics such as antibodies or siRNAs do not correspond to these rules, but are proving themselves 

valid alternatives. Biologics have had a higher success rate in clinical trials than small molecules. 

There was an approximately 32% approval rate for biologics versus an approximately 13% approval 

rate for small-molecule drugs first tested in humans between 1993 and 2004.38 If one for instance 

would take into account protein transporters, a wider range of drug types could be considered, less 

constrained by matters of lipophilicity.39 The use of antibodies for example allows for a more rational 

target based screening, as they can be made against a wide range of targets, and high target 

specificity. We think that the more recent focus on biologics is a way forward to broaden our scope 

of possible drug targets. Considerable efforts should therefore be made to overcome the hurdles 

that prevent biologics from being widely used, such as the higher costs for production, and problems 

with for instance oral delivery.40 

The predictive mathematical models employed in systems biology can significantly accelerate this 

type of target validation described above, not only by identifying the most effective targets, but also 

by facilitating the drug development process. As with all model systems, computational models are 

imperfect. The knowledge of the network interactions, and especially dynamics, is often incomplete. 

However, through our proposed iterative target validation process, data that are generated during 

the drug discovery and development process are being fed back into the model so that the model 

can be constantly refined and extended, for instance to include more biological readouts as the 

model moves with the drug(s) through the development process. Therefore, the target also should 

be assayable in biological and clinical samples. There is a need to co-develop very specific diagnostic, 

molecular assays, hand in hand with the development of the drugs. The same predictive models can 

also anticipate mechanisms of drug resistance and possibly point out side effects. They can therefore 

help identifying clinical risks before the clinical trial phase. Providing more and earlier checkpoints 

for deciding the best course of action, e.g. abandoning the target or reconsidering the target in a 

combinatorial treatment context, will lower the risk of attrition in clinical trials.  

SYSTEMS BIOLOGY AND THE DESIGN OF MULTIDRUG TREATMENT  

The pharmaceutical industry’s research and development strategies are based primarily on the 

premise that high-affinity and high selectivity binding to a single disease-linked target will provide 

efficacious and well-tolerated drugs. Therefore, this thinking governs the drug discovery and 

development process.17, 40 This reductionist view of targeted screens follows a ‘one gene, one drug, 

one disease’ rule. However, a disease phenotype is rarely the consequence of an abnormality in a 

single gene or gene product, but rather it is the result of various pathological processes that interact 

in a complex network. Biological networks often require simultaneous changes in multiple nodes to 



modify a phenotype, and the multiple hit theory for cancer has been widely accepted for a long 

time.41, 42 Indeed, drug-target networks show that a lot of approved drugs have multiple targets.7, 36 

Although it is commonly assumed that a decrease of selectivity will increase the occurrence of side 

effects and toxicity, we may need to rethink this argument. Partially inhibiting an ensemble of 

disease relevant targets actually may have a higher efficacy and less side effects than the highly 

selective and full inhibition of a single target. Indeed, this ‘polypharmacology’ seems to be key to the 

efficacy of some drugs.17, 43 Unfortunately, it is extremely difficult to purposefully develop 

polypharmacological drugs,44 and approaches towards that end are only starting to be developed.45 

Thus, in lieu of developing polypharmacological compounds, we combine drugs. Drug combinations 

or ‘cocktails’ such as the four-drug combination cyclophosphamide, doxorubicin, vincrisitin and 

prednisone for the treatment of non-Hodgkin’s lymphoma, and bleomycin, etoposide and cisplatin 

for testicular cancer, are commonly used in cancer therapy, but are usually the result of empirical 

observations and could benefit from a more rational preclinical design.46, 47  

One of the reasons why systems biology approaches are not yet generally applied early on in the 

drug discovery process is that the pharmaceutical industry is slow to change and generally rather risk 

averse. Buy-in will depend on the successes of currently running public-private partnerships on 

systems biology23, and the continuously on-going development of large-scale mathematical models. 

It could therefore take some time before we see the first drug that is the result of a full systems 

biology embedded development. However, the rational design of drug combinations is one of the 

areas where systems biology approaches can make an imminent clinical impact. Systems biology 

tools can help in predicting synergistic or counteracting effects of combinatorial drugs.48 Synergistic 

effects of combinations of, for instance, phosphatase-targeting drugs and tyrosine kinase inhibitors 

could be studied through mathematical modelling.12 There are several examples in the literature 

where data-driven mathematical modelling has been used to design efficacious multi-treatments 

based on complex features in specific dynamic signalling networks for diseases such as multiple 

myeloma, breast cancer and melanoma, often resulting in surprising findings.49-52 Targeting two 

components of a three-tiered kinase module as the MAPK Raf-MEK-ERK pathway, for instance, may 

at first glance seem redundant. However, a systems level analysis52 showed that this module consists 

of a kinases cascade that affords signal amplification and a negative feedback from ERK back to Ras 

and Raf, thus featuring the design properties of a negative feedback amplifier, which is used in 

electronic circuits for noise reduction during signal amplification. In the biological context these 

properties make MEK a difficult target as the negative feedback keeps adjusting the amplifier 

strength thereby maintaining the output constant over a wide range of MEK inhibition. Weakening 

the feedback strengths by inhibiting Raf by 50% conveys full sensitivity to MEK inhibition. Although 

inhibiting two consecutive components in the same pathway seems counterintuitive from a 

biological point of view, mathematical modelling followed by experimental validation revealed the 

success of this strategy (figure 2).52 Indeed, this combination has also proven its worth in the clinic. A 

phase 1 and 2 trial of combined treatment with dabrafenib, a selective BRAF inhibitor, and 

trametinib, a selective MEK inhibitor showed that progression-free survival was significantly 

improved compared to monotherapy.49 Mathematical modelling does not only predict which drug 

combinations can synergise, but also in which sequential order the drugs should be administered. A 

data-driven mathematical model that was based on the expression levels or activation states of 36 

signalling proteins in multiple signalling pathways was used to analyse the response of triple 

negative breast cancer cells (TNBC) to the EGFR inhibitor erlotinib and the DNA-damaging 



doxorubicin, when applied individually and in combination.50 Interestingly, the study showed that 

pretreatment, and not co-treatment or post-treatment, with EGFR inhibitors significantly rewires the 

signalling network of these cancer cells sensitizing them to subsequently applied DNA damaging 

agents.  

 

Figure 2: Using mathematical modelling to study drug targets in a network environment can lead to surprising 

conclusions. (a) The three-tiered kinase Raf-MEK-ERK module shows features of a negative feedback amplifier, providing 

robustness to change.
52

 Simulations using a mathematical model, which have been experimentally validated, suggest that 

to reduce downstream ERK activity, one needs to either (b) target outside the negative feedback or (c) target both MEK 

and Raf.     

SYSTEMS BIOLOGY IN LATER PHASES OF DRUG DEVELOPMENT, PERSONALIZED MEDICINE 

AND REPOSITIONING OF EXISTING DRUGS 

Later in the drug development process, systems biology approaches can help to improve the 

effectiveness of clinical trials by enabling trials with smaller cohorts and a flexible trial design that 

optimizes benefits for the trial patients.2, 53 These adaptive clinical trials can aim, for example, to 

optimize dose finding during the trial, integrate diagnostic monitoring, and allow crossovers 



between treatment groups based on projections of treatment efficacies and benefits. This idea is 

appealing, especially in the context of personalized medicine, where clinical trials also need to 

become personalized. Even a back of the envelope calculation shows that, in keeping the currently 

used templates for clinical trial design, we will find neither the number of patients nor the money to 

run all the required highly differentiated trials. Thus, there is an urgent need to develop the 

statistical and modelling tools that will enable adaptive clinical trials. Methods used to model 

biochemical networks and social networks are promising seeds for approaches to tackle the 

challenges of adaptive clinical trial design.  

Systems biology approaches also can help us to re-think how we dose and apply medication. 

Pharmacokinetics/pharmacodynamics and dose-response modelling are well established, but could 

further benefit from systems biology tools.54, 55 For instance, considering compartmentalization and 

organ specific effects may help understanding drug turnover in more mechanistic details. A 

particularly pressing challenge is how we can exploit genetic information that is now widely and 

rapidly becoming available for improving pharmacokinetic and pharmacodynamic profiling for 

individual patients. As already mentioned, an example of the progress that can be made using  

modelling approaches is the pioneering work in the emerging field of chronobiology.33 Here, 

administration of a drug is timed according to the physiological rhythms of the patient in order to 

optimize efficacy. Indeed, it is widely accepted that the timing of glucocorticoid administration 

affects the efficacy of the treatment, and the same could apply to other types of drugs.56  

Thus, using systems biology models to predict the outcome of combinatorial treatments or different 

regimen could become key to not only accommodate but also analyse the long held clinical view that 

every patient is different and responds differently to therapy. A mathematical model can for 

instance be used to stratify patients, by predicting drug resistance based on the expression of 

specific biomarkers, such as has been shown for trastuzimab resistance.57 As such, systems biology 

tools can, through ‘systems medicine’, lead to a more personalized medicine.58, 59 

Finally, the network centred perspective of systems biology also provides a natural home for efforts 

of drug repositioning. All drugs have side effects, some caused by the inhibition of the intended 

target, but more often caused by off-target effects. Can we turn side effects into main mechanisms 

of action? As the supply of new molecular entities is running low while we are simultaneously sitting 

on a wealth of information on drug side effects, drug repositioning is becoming an attractive option 

in particular for personalized medicine. The poster-children of drug repositioning are thalidomide 

and sildenafil. Thalidomide was developed as a mild sedative and sleeping pill. Prescribed to 

pregnant women because of its lack of apparent side effects it triggered a catastrophic avalanche of 

limb malformations in babies. Although the exact mechanism of thalidomide action is still elusive, it 

is an effective inhibitor of angiogenesis.60 This property has positioned a thalidomide derivative to 

become a frontline treatment for multiple myeloma and leprosy.61 The phosphodiesterase 5 (PDE5) 

inhibitor Sildenafil was originally developed for treating hypertension. Instead, it became a 

blockbuster drug for the treatment of erectile dysfunction, and its wondrous metamorphosis is still 

ongoing revealing potential new applications in the treatment of disease as diverse as stroke, 

cognitive dysfunction and gastric ulcers.61 Using systematic search tools to mine drug-target 

networks, clinical data and -omics profiles of patients, we should be able to exploit drug side effects 

and identify new applications known drugs.35, 62, 63 This could form a very cost-effective way of 



generating new efficacious drugs.  

Sidebar 1: Drug development attrition 

The overall development rate of novel drug compounds has remained largely constant over the last 

six decades. However, the costs per newly FDA approved drug has steadily increased and has 

reached into billions of dollars.64 Until the 1990s one major factor influencing this overall cost was 

the long development times of 10-15 years. The last two decades have however seen even larger 

increases due to “development risk” – i.e. the risk of attrition due to efficacy, safety or commercial 

concerns.38 This risk seems to be the most limiting factor in new molecular entity (NME) output. 

Since about two thirds of the cost stem from clinical development, many potential compounds never 

make it out of preclinical discovery.65 Those that do are tested for safety in Phase I and then for 

efficacy in subsequent Phases II and III. While the risk of failure in any of these Phases is high, Phase 

II forms the biggest hurdle: only 18% of development projects pass this stage. 51% of attrition is due 

to insufficient efficacy, 29% to strategic and 19% to safety reasons. Interestingly, even drugs that fall 

into the latter two categories still have issues relating to efficacy, like lack of differentiation or 

advantage over existing drugs.66 In recent years Phase III failures have been around 50%. Again, 

more than two thirds of these failures can be attributed to efficacy issues, and only 21% to safety 

concerns.67  

 

Sidebar 2: -OMICS data and the necessity for systems biology 

Life science and medical research has traditionally followed a reductionist approach – reducing large 

and complicated processes into simple components to make them more accessible to 

experimentation and interpretation.68 In the last decade, through substantial advances in 

technologies like next generation sequencing large scale datasets have become not only more 

thorough but also more readily available. In addition, dynamic technologies like transcriptomics, 

proteomics and metabolomics are now becoming widely available in robust high throughput 

formats. RNA sequencing supplements DNA mapping with a second layer of information, and 

proteomics is used to study protein expression profiles, protein-protein interactions and 

posttranslational modifications. As sensitivity increases and quantification of these data becomes 

more and more accurate, they are opening integrative ways to identify disease states and monitor 

them.69 Thanks to concomitant advances in computing power, Genome Wide Association Studies, or 

GWAS, have become feasible in the past years. This has resulted in projects such as HapMap, 

containing information on millions of genetic variants (SNPs). These inherent trait analyses can be 

associated with common diseases and also can provide information on drug targets.70 All these –

omic technologies generate large sets of data and integrating them requires computational tools and 

methods borrowed from disciplines such as chemistry, mathematics, physics, engineering and 

information sciences. The utilization of these multidisciplinary tools results in the ability to consider 

complex biological systems, moving away from reductionism. 

Conclusion 

Systems biology approaches have the potential to significantly improve drug discovery through the 

provision of tools that reflect the complex network environment that drugs and their targets exist in. 



Such a multidisciplinary approach could have a positive impact on the on-going current problems 

with lack of efficacy during drug development by improving target identification and target 

validation. Systems biology can help to broaden the conservative views adopted by the 

pharmaceutical industry of possible targets. This will have to coincide with a more opened up 

concept of what a ‘druggable’ target is. However, the greatest potential for significant advances with 

systems approaches can be made on target validation. This should be a continuous process, in which 

predictive models are being set up from the start and with the provision of continuous feedback 

from target validation assays. Systems biology will provide the tools needed for a rational design of 

multidrug treatment, for repositioning of known drugs, and for personalized treatment.  

We feel that public-private partnerships will be necessary for drug discovery to truly benefit from 

the advances in systems biology. To interrogate how systems biology can contribute more to more 

clinical needs and to formulate which specific issues have to addressed, the European Commission 

has funded the Coordinating Action Systems Medicine consortium (CASyM, www.casym.eu) under 

the Seventh Framework Programme for Research to formulate a roadmap that will guide this 

European-wide implementation of systems medicine. CASyM aims to be integrative, bringing all 

stakeholders in this multidisciplinary field together. This includes researchers, physicians, 

pharmaceutical industry and policy makers, as well as the patient him or herself. 
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