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1. Introduction 

Bridges are subjected to continuous structural deterioration caused by repeated traffic loading, aging and 

environmental conditions. The degree of deterioration needs to be monitored periodically in order to ensure 

structural safety. If damage is prevented at an early stage, maintenance works will be carried out as required 

and before the bridge can become damaged beyond repair. For this purpose, accelerations due to bridge 

vibrations induced by everyday traffic and environmental loading are commonly collected by structural 

health monitoring systems to capture dynamic characteristics of the bridge (i.e., frequencies and mode 

shapes). The latter is a popular way to identify, locate and quantify deterioration based on the principle that 

damage affecting the mechanical properties of the structure will change the dynamic properties of the 

structure and it will allow the bridge operator to take adequate action. These vibration-based methods 

typically require many sensors and long records to distinguish between true damage and deviations from the 

expected ‘healthy’ results that do not necessarily imply damage (i.e., due to forced vibration and 

environmental conditions) [1-3].  

Abstract  

The growth of heavy traffic together with aggressive environmental loads poses a threat to the safety of 

an aging bridge stock. Often, damage is only detected via visual inspection at a point when repairing 

costs can be quite significant. Ideally, bridge managers would want to identify a stiffness change as 

soon as possible, i.e., as it is occurring, to plan for prompt measures before reaching a prohibitive cost. 

Recent developments in signal processing techniques such as wavelet analysis and empirical mode 

decomposition (EMD) have aimed to address this need by identifying a stiffness change from a 

localised feature in the structural response to traffic. However, the effectiveness of these techniques is 

limited by the roughness of the road profile, the vehicle speed and the noise level. In this paper, 

ensemble empirical mode decomposition (EEMD) is applied by the first time to the acceleration 

response of a bridge model to a moving load with the purpose of capturing sudden stiffness changes. 

EEMD is more adaptive and appear to be better suited to non-linear signals than wavelets, and it 

reduces the mode mixing problem present in EMD. EEMD is tested in a variety of theoretical 3D 

vehicle-bridge interaction scenarios. Stiffness changes are successfully identified, even for small 

affected regions, relatively poor profiles, high vehicle speeds and significant noise. The latter is due to 

the ability of EEMD to separate high frequency components associated to sudden stiffness changes 

from other frequency components associated to the vehicle-bridge interaction system. 

 

 



Still another approach (complementary, but not exclusive) to damage detection is the identification of an 

anomaly in the time history of the total structural response in forced vibration (i.e., static + dynamic) to the 

passage of traffic. Using signal processing techniques, which often combine frequency and time domains 

(such as wavelet analysis), a number of researchers have been able to locate an anomaly in the processed 

signal that can be related to damage and located in the bridge with respect to the position of the moving 

load. These approaches aim to identify and locate damage using less testing requirements in number of 

sensors and test duration than other level II damage detection methods such as those based on mode shape 

curvature.  In the development of these approaches, difficulties in gathering data from a real bridge in both 

healthy and damaged states (or after and before repair) have motivated the use of numerical models for 

theoretical testing based on assumptions that sometimes can be unrealistic, i.e., assuming a linear response 

even for significant stiffness losses. While these numerical models are valid to illustrate a concept, they 

appear to be insufficient to challenge and validate a technique able to capture the initiation of damage before 

stiffness losses become unrealistically large (i.e., leading to section failure). For example, damage modelled 

as a sudden or gradual loss of stiffness in a portion of a bridge assumed to be permanent and respond in the 

linear elastic range for the test duration can be easier to capture (i.e., via a frequency change) than a non-

linearity only revealed when the yielding point is exceeded at a specific section. The latter takes place within 

a narrow time window while the structural response remains unaltered outside this period. However, it 

would be obviously beneficial to identify the first signs of non-linearity before critical damage in the form of 

significant losses of inertia or cracking (leading to catastrophic failure in prestressed concrete sections) 

could take place. 

Therefore, this paper focuses on developing an approach that will capture a non-linear behaviour (modelled 

as a brief stiffness change) from the acceleration response of a structure traversed by a moving load. The 

first question that arises is how to characterize a non-linear response. This has been addressed  in a wide 

range of mechanical and civil engineering applications via methods such as the Continuous Wavelet 

Transform (CWT) [4, 5], Unscented Kalman Filter (UKF) [6, 7], Hilbert-Huang Transform (HHT) [2, 8-10] 

and others. The HHT utilises Empirical Mode Decomposition (EMD) to estimate the Instantaneous 

Frequency (IF) and the Instantaneous Phase (IP). EMD is used to separate the signal (e.g., acceleration) into 

Intrinsic Mode Functions (IMFs), that separate the frequency content of the signal. The lowest IMFs contain 

the part of the signal corresponding to the highest frequencies. Applications of the EMD method to 

nonlinear and non-stationary signals for wide range of signals from speech characterisation to ocean wave 

data have shown its versatility and robustness in detecting inconsistencies. Several authors have attempted to 

identify nonlinearity by applying EMD and HT to a nonlinear damaged structures [2, 11-13]. However, 

detractors of EMD argue its lack of physical meaning due to mode mixing in the IMFs. First introduced by 

Wu and Huang [14], Ensemble Empirical Mode Decomposition (EEMD) has been found to eliminate the 

mode mixing problem of EMD [15]. EEMD has only been recently applied to damage detection in a number 

of applications. For example, An, et al. [16] applies the EEMD with Hilbert transform to analyse the non-

linear and non-stationary signal produced by faulty wind turbines. Zhang and Xie [17] test concrete samples 

using impact echo data for defects by applying the EEMD and find that the white noise amplitude needs to 

be significantly higher compared to other investigations due to the implications of strong surface waves. 

Zheng, et al. [15] are able to successfully implement a new method called Partly Empirical Mode 

Decomposition (PEEMD) to detect faulty signals with high frequency and non-linear and non-stationary 

components. Even though the method proves successful in decomposing the signal by eliminating mode 

mixing, it does not show significant improvements compared to EEMD.  

By the first time, EEMD is applied here to the acceleration response of a structure to a moving load to detect 

a sudden stiffness change. Accelerations are the subject of investigation as they are relatively easy to 

measure on the field and commonly used for monitoring purposes. Acceleration is a global load effect, as 

opposed to strain, where the measurement location needs to be at or nearby the damaged location to be able 

to perceive the damage. In this paper, the stiffness change is introduced using a bi-linear moment-curvature 

relationship in two types of Finite Element Models (FEMs): a 1-D beam and a 2-D plate. For clarity, the 

advantages and drawbacks of employing EEMD are discussed first using the simulations of the response of 



the beam FEM to a moving load and compared to other techniques such as wavelet analysis [4, 5] and EMD 

[18] which have been used in a similar context in the literature. Second, EEMD is tested using the 

accelerations of a plate FEM traversed by a sprung vehicle with different damage extent, road roughness, 

vehicle speed and noise.  

 

2. Application of EEMD to damage detection using the acceleration response of a 

beam to a moving load 

This section uses a relatively simple discretized beam FEM traversed by a moving constant load to illustrate 

the feature in the total acceleration response that denotes non-linearity and how it is captured by a signal 

processing technique. A more sophisticated vehicle-bridge interaction (VBI) simulation model is employed 

in further sections, but it is avoided here as it may hinder characteristics of the damage feature to be 

highlighted. Damage can be detected once it has occurred or as it is occurring, i.e., cracking that causes a 

stiffness loss will remain with the structure as long as repairs (or further deterioration) do not take place. A 

far more challenging task is to detect damage before a deterioration sign such as cracking is visible, namely, 

when the yielding point is exceeded. The duration of the time window where the section enters a plastic 

range may be very short and it needs to be captured as it is occurring (Outside this window, a linear elastic 

stress-strain curve will apply again). Unless the section was very brittle, an element will exceed the elastic 

range before approaching failure [19, 20], and in this window, the affected element will respond in the 

elasto-plastic range [21]. In the case of composite structures, the yielding of steel gives a non-linear nature 

to the response that affects the response and dynamic characteristics of the structure. In reinforced concrete 

bridges, concrete will typically crack before steel yields, whereas in prestressed concrete bridges, concrete 

cracking must be prevented. Therefore, the acceleration response to a moving load is simulated for a beam 

with a localised elasto-plastic response. This acceleration is processed then using wavelet analysis, EMD 

and EEMD to compare their ability to capture brief stiffness changes in an element of the beam.  

 

2.1 Simulation of the response of a beam finite element model to a moving load 

The bridge is modelled as a 15 m simply supported beam model discretised into 30 elements (Fig. 1). Each 

element has two nodes and each node consists of 2 Degrees of Freedom (DOFs): vertical displacement and 

rotation.  

 

Fig. 1. Simulation model for a moving load on a beam 

 

The beam cross-section is assumed to be rectangular with 12 m of width and 0.8 m of depth which are 
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frequencies of 5.8, 23.2 and 52.2 Hz respectively. The damping ratio is taken to be 2% [23, 24]. The moving 

load is idealized as a single constant force of 162 kN travelling at 20 m/s. The response of the simply 

supported discretized beam FEM traversed by a moving load is governed by the Equation of motion (1): 

 

          ( ) ( ) ( ) ( )M u t C u t K u t F t    (1) 

 

where [M], [C] and [K] are the global mass, stiffness and damping matrices respectively, {F(t)} is a vector 

representing the moving load on the beam (which varies on location and it is shared differently between the 

DOFs of the bridge at each point in time) and  ( )u t ,  ( )u t , and  ( )u t  are vectors containing the 

acceleration (m/s
2
), velocity (m/s)  and displacement (m) respectively of the DOFs of the beam at time t. The 

moving load is distributed to the degrees of freedom of the element that it is acting on, as a product of the 

hermite shape functions [25]. The latter allows replacing a force acting between nodes by an equivalent 

system of forces and moments acting at the element nodes. The incremental time step (t) is 0.001 s (i.e., a 

sampling frequency of 1000 Hz) in all the simulations.  

A Euler-Bernoulli beam element is employed where the forces and moments at each beam node are related 

to the respective displacements and rotations by the elementary stiffness matrix [Ke] given in Equation (2). 

The global stiffness of matrix [K] is formed by assembling the stiffness matrixes [Ke] for all beam elements.  
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(2) 

 

where a = 4EI/L,  b = 6EI/L2
 and c = 12EI/L3

 form the elemental stiffness matrix. E is the Young’s modulus 

(N/m
2
), I is the moment of inertia (m

4
) and L is the length of the element (m) (L = 0.5 m here). Equation (1) 

is then integrated using a Wilson- scheme, to obtain the acceleration response at mid-span (i.e., at 7.5 m 

from the left support). Deviations in the structural response from a ‘healthy’ state (i.e., perfectly elastic) can 

be modelled by introducing changes in the stiffness matrixes of those beam elements deemed to have 

experienced some form of stiffness loss. The element selected to experience yielding is assumed to be 

located at 9 m from the left support, and its stiffness EI is determined using a bi-linear hysteretic moment-

curvature relationship [26-28]. As a result of this model, the mechanical properties of the bridge (i.e., 

stiffness distribution and frequencies) will vary if the yielding point is exceeded at the selected element, but 

only for a short period of time. The aim of this model is testing EEMD in its ability to capture non-linearity 

(which can be prelude of damage) as it is occurring given that it will become unappreciable outside this 

period. It is acknowledged that surpassing the yielding point and entering the elasto-plastic range is not 

necessarily critical for a structure. 

Fig. 2 shows the bi-linear hysteretic model employed here which interrupts the linear response found up to 

the yielding point. This model has been found to provide close results to reality [29], and for simplification 

purposes,  it is preferred over more complex non-linear representations of stiffness loss such as Bouc-Wen 

[30] or the model by Kikuchi and Aiken [31]. Fig. 2 allows obtaining the stiffness EI of the element to 

include in the elementary stiffness matrix (Equation (2)) from the moment-curvature relationship (M - ). 

The bi-linear hysteresis can be separated into a linear component (Fig. 2(b)) and an elasto-plastic component 



(Fig. 2(c)). In Fig. 2(a), the slope of the moment-curvature relationship is described by the stiffness (a = 

4EI/L) up to the yielding point. Hysteresis relationships for parameters in Fig. 2(a) can be found in the 

literature [26, 30, 32, 33]. In Fig. 2(b), p is the stiffness apportioned to the linear component and in Fig. 2(c), 

q is the stiffness apportioned to the elasto-plastic component (q = 1 - p). Mp is the yielding bending moment 

where change in stiffness occurs. The level of post-yield stiffness loss is determined by p [34].  

 

Fig. 2. Bi-linear moment-curvature relationship: (a) Bi-linear hysteresis relationship;  

(b) Linear component; (c) Elasto-plastic component 

 

The hysteretic bending moment M is related to curvature  by [25]: 

 

 ( , ) ( , ) ( , ) 1 ( , ) ( , )M j t p EI j t j t p EI j t Z j t        (3) 

 

where EI(j,t), ( , )j t and ( , )Z j t are the stiffness (or modulus of elasticity by second moment by area), 

curvature and hysteretic curvature respectively at element j and time t. Z(j,t) is calculated using: 

 

( , ) ( , 1) ( , )Z j t Z j t Z j t t     (4) 

 

where t is the incremental time step and ( , )Z j t  in Equation (4) is obtained from: 

 

3 4 2 1( , ) ( , ) ( ( , )) ( ( , 1) ) ( ( , )) ( ( , 1) )y yZ j t j t H j t H Z j t H j t H Z j t             (5) 

 

In Equation (5), is the rate of change in curvature with time (i.e., 
( , ) ( , 1)
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j t j t
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), and H1, 

H2, H3 and H4 are the Heaviside’s unit step functions given by: 
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(6) 

 

 

Note that  is positive when  is increasing and Z is equal to either zero or  when the system is in 

sliding mode or non-sliding mode respectively. The yield curvature, y, is related to the yield moment, Mp, 

by: 

p

y

M

EI
   

 

(7) 

 

The values adopted for p and q in the simulations are 0.51 and 0.49 respectively [33]. For a value of p = 1 

the  M -  (moment-curvature) relationship is linear, and for p = 0.51, a bilinear hysteresis relationship is 

formed where the slope a1 is 51% of the slope a (Fig. 2). In other words, if  Mp is exceeded, there is 49% 

loss in stiffness for a short period of time. Only within this period, the healthy bridge frequencies of 5.8, 

23.2, 52.2 Hz are transformed into 5.71, 23.0 and 51.6 Hz respectively. At unloading the curve returns to the 

original value (slope a) and the bridge returns to vibrate at frequencies in the elastic range.  

Fig. 3 shows the mid-span acceleration response due to the moving load for two cases: a perfectly elastic 

beam and a beam with an element susceptible to an elasto-plastic response at 9 m. The horizontal axis 

represents the time from the instant that the load enters the beam. A Power Spectral Density (PSD) analysis 

of Figs. 3(a) and (b) provides the same peak for a frequency of about 5.8 Hz. Only in the time domain it is 

possible to appreciate a disturbance between 0.39 to 0.45 s in Fig. 3(b) that did not occur in the linear case of 

Fig. 3(a).  

 
 

(a) (b) 

Fig. 3. Mid-span acceleration to a moving load versus time for: (a) a perfectly elastic beam; (b) a beam 

with a localised elasto-plastic response at 9 m  

 

 

The stiffness of the selected element varies during the load crossing as a result of the adopted bilinear  

hysteretic model. The vertical axis of Fig. 4 represents the true stiffness ratio (defined by actual stiffness 

divided by the stiffness in the elastic range) versus time for the section at 9 m. As expected, the stiffness loss 

takes place at the same time interval where a disturbance is appreciated in Fig. 3(b). The load will be over 
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the element susceptible to an elasto-plastic response at 0.45 s (= 9/20), but as the load approaches the elasto-

plastic element, i.e., at 0.39 s, the moments have got sufficiently large as to exceed the yield point.  

 

Fig. 4. Variation of stiffness ratio for section at 9 m with time corresponding to response in Fig. 3(b) 

 

The question to be addressed next is: “Can sudden stiffness changes in this element be detected from the 

mid-span time-history acceleration using a signal processing technique?”  

 

2.2 Identification of Stiffness Changes Using Wavelets, EMD and EEMD 

 

2.2.1 Wavelet analysis  

The contour plot of Fig. 5(a) is obtained from applying wavelet analysis based on the Mexican Hat to the 

acceleration signal of Fig. 3(b). This contour plot can be exploited to locate damage from the simulated 

response of a structure traversed by a moving load as tested first by Zhu and Law using displacements [35] 

and then by Hester and Gonzalez using accelerations [4]. These authors show that damage can be located 

within the total acceleration at lower speeds, however, at moderate speeds as the one tested here, the 

narrowing of the signal and edge effects make difficult to distinguish the damaged area. Here, the loss in 

stiffness between 0.39 and 0.45 s is only identified at low scales from 1 to 10, corresponding to frequencies 

from 250 to 25 Hz respectively. The scale of 10 is compared to a beam with a fully elastic response in Fig. 

5(b). Although a comparison of the wavelet coefficients with elasto-plastic response to those with an elastic 

response reveal the time instant at which stiffness varies, the duration is unclear (i.e., from 0.39 to 0.45s as 

shown in Fig. 4). It must be acknowledged that the use of more complex simulation models containing high 

frequency components and noise will affect the wavelet coefficients for low scales, and it will become even 

more difficult to establish the instance and duration of a stiffness change occurrence. 

 

 

(a) (b) 

Fig. 5. Wavelet analysis of mid-span acceleration in forced vibration (Fig. 3(b)) of a beam with an elasto-

plastic response at 9 m (between 0.39 and 0.45 s): (a) contour plot of wavelet coefficients versus time and 
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scale; (b) Comparison of wavelet coefficients for a scale of 10 in the case of a perfectly linear elastic beam 

(‘healthy’) and a beam with a localised elasto-plastic response at 9 m 

 

To improve the sensitivity of a wavelet-based damage detection algorithm, Hester and Gonzalez [4] use the 

average wavelet energy content for equally spaced strips along the bridge (i.e., taking into account many 

scales). Although they address the singularities at the start and the end of the processed signal by trimming 

the original signal, they acknowledge the algorithm is not as effective when the speed of the vehicle 

increases and the bridge span decreases (i.e., the signal gets shorter and the impact of edge effects becomes 

more prominent).  

An inconvenience of the wavelet approach is related to the need to select: (1) a mother wavelet which is 

unknown a priori, given that some may work better than others in capturing a specific damage, and (2) a 

scale away from the bridge frequency, which may be corrupted by multitude of other frequencies, including 

noise.  

2.2.2 EMD  

EMD is an adaptive empirical method that removes the need for selecting a mother wavelet or a specific 

scale in a wavelet-based approach. In the EMD process the signal is decomposed into a number of IMFs 

using the ‘sifting’ process. The IMFs can be defined as a counterpart to the simple harmonic function 

representation, but instead of having a constant amplitude and frequency these are variable and time-

dependant. The IMFs must satisfy two conditions: (a) the number of extrema and the number of zero 

crossings must differ by not more than one, and (b) the mean value of the envelope defined by the maxima 

and the minima at any given time must be zero. The EMD to obtain the IMFs is illustrated in Fig. 6.  

 

Fig. 6. Schematic of the EMD process 

 



In Fig. 6, x(t) is the original data set, msk(t) is the mean of the upper and lower envelopes of the signal for the 
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where c1(t) (or h1k(t)) is the first IMF. The process of sifting separates the finest local mode from the data 

first. In order for the IMF to have a physical meaning of amplitude and frequency modulation there needs to 

be criteria for the sifting process to stop (i.e. stoppage criteria for how many times the signal is sifted). 

Separating the first IMF from the rest of the data gives the residual (r1(t) = x(t) - c1(t)) from the first IMF. 

The residual is used as the input to calculate the second IMF (c2(t)) and the decomposition process is 

repeated S times until the value of  rs(t) becomes a monotonic component from which no more IMFs can be 

extracted. Specifically, the normalised squared difference between two successive sifting operations (s) and 

(s+1) needs to be small. In this paper, the stoppage criteria of the sifting process, k-numbers, is based on the 

method by Huang, et al. [8] which states that the sifting process only stops after the number of zero 

crossings and number of extrema are (1) equal or at most differ by one and (2) stay the same for S 

consecutive times. Extensive tests by Yang, et al. [36] suggest that the optimal value of S is between 4-8 

[10]. 

EMD-based damage detection algorithms rely on the principle that a sudden loss in stiffness in a structural 

member will cause a disruption in an otherwise smooth response that can be detected through a distinctive 

spike in the IMF. The IMFs with higher frequency components are more sensitive to this disruption. Some 

authors have proven that a sudden drop in stiffness can be located in time as it is occurring via this 

distinctive spike using EMD, i.e., applied to the accelerations of a building subjected to earthquake 

excitation [37]. The spike in the IMF can be used to locate the affected region either in time – when damage 

occurs – or in space – where damage occurs –. The EMD is applied to the acceleration signal in Fig. 3(b) 

and four IMFs are extracted (c1(t) to c4(t) ) as shown in Fig. 7. The two IMFs with highest frequency 

content, i.e., c1(t) and c2(t), indicate via a series of peaks, the time instant of 0.39 s at which stiffness loss 

occur and its duration (approx. 0.06 s) before the stiffness returning to normal. However, there are other 

peaks of magnitude as high as or even higher than those occurring at the time of change in stiffness for a 

given IMF. While there are signs of the elasto-plastic components between 0.39-0.45 s, EMD is unable 

separate the ‘healthy’ (or perfectly elastic) components of the acceleration signal clearly from the elasto-

plastic ones as a consequence of mode mixing. The latter is a major drawback of EMD, leading to an IMF 

either made of signals with widely disparate frequencies or a signal of sinusoidal frequency residing in 

different IMF components. When mode mixing occurs, an IMF can cease to have physical meaning, 

suggesting falsely that there may be different physical processes represented in a mode. Mode mixing 

appears more clearly in the EMD representation of the response of complex simulation models with many 

frequency components. 



 

Fig. 7. IMFs by EMD of mid-span acceleration in forced vibration (Fig. 3(b)) for a beam with a localised 

elasto-plastic response at 9 m 

 

A different problem to the one investigated here is identifying a weakened location (i.e., with a smaller 

stiffness than the rest of the bridge) that is already present in the structure before being excited and that 

remains constant during the test duration. The latter has been addressed by Meredith, et al. [18] using the 

EMD of the acceleration response to a moving load via the prior application of a moving average filter 

(MAF) to the original signal. The MAF acts as low-pass filter (set up to remove the bridge frequency) 

removing undesired high-frequency components but preserving a significant proportion of the static 

component of the response. The application of EMD to the filtered signal reveals a distinctive spike at the 

damaged location, and the time at which the spike occurs can be related to the position of the moving load to 

locate the damage (based on the vehicle speed and the time taken by the vehicle to reach the spike from the 

bridge support). However, limitations arise when trying to detect multiple damaged locations due to 

disruptions by filter transients, and similarly to wavelets, the algorithm is not as effective at detecting 

damage for higher speeds and noise levels. 

 

2.2.3 EEMD  

A noise-assisted data analysis method based on Wu and Huang [14], the so-called EEMD, is used to 

overcome the mode separating problem of EMD. EEMD defines the true IMF components as the mean of a 

prescribed ensemble number Ne of trials, where Ne is the number of times that white noise is added to the 

signal. The ensemble approach can separate the frequency naturally without any a priori subjective 

selection. Noise is introduced to the original data set, x(t), as if a separate observation was indeed being 

made parallel to a physical experiment that could be repeated many times. Adding noise to the data provides 

a uniformly distributed reference frequency and IMFs associated to different series of noise uncorrelated 

with each other. The effect of EEMD decomposition is that the added white noise series cancel each other in 

the final mean of the corresponding IMFs. The EEMD process is illustrated in Fig. 8.  
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Fig. 8. Schematic of the EEMD process 

 

Noise is added as An{N} where An  is noise amplitude, {N} is a standard normal distribution vector with 

zero mean and unit standard deviation and  is the standard deviation of the noise-free signal. The noise 

amplitude (An) greatly influences the performance of the EEMD method with regard to mode separation. On 

the one hand, too low of a noise amplitude will not introduce enough changes in the extremes of the 

decomposed signal and will have little effect on separating the signal completely. On the other hand, too 

high of a noise amplitude will result in redundant IMFs. If a signal is dominated by a high frequency 

component, white noise with low amplitude An is capable of separating the mixed modes easily. However, if 

the signal is dominated by low-frequency components, the amplitude of white noise An should be higher so 

that the mixed modes are separated. An index termed the relative root mean square error (RMSE) by Guo 

and Tse [38] is introduced to evaluate the performance of the EEMD at different noise amplitudes and to 

select an appropriate An value. In order to calculate RMSE, a number of IMFs (c1(t), c2(t)...) is extracted by 

applying EEMD to the original signal with added noise (i.e., x(t)), and the IMF with the highest correlation 

coefficient between the IMF and the original signal (x(t)) is selected (i.e., cs(t)). The correlation coefficient is 

established using the quality of a least squares fitting to the original signal x(t). Then, cs(t) is used to 

calculate the relative RMSE, defined as the ratio between the root-mean-square of the error and the root-

mean-square of the signal, where the error is the difference between the original signal (x(t)) and the selected 

IMF (cs(t)) as in Equation (9). 
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where M is the number of time samples of the signal, cs(t)  
is the thk  IMF chosen based on the highest 

correlation coefficient and 0x
 
is the mean of the original signal ( )x t . If the relative RMSE was very small or 

close to zero, it indicates that the chosen cs(t)  
is close to the original signal x(t) with presence of white noise 

and the required decomposition process is not reached. If the relative RMSE value was high, the signal is 

separated from the noise and an adequate noise amplitude has been employed. Therefore, the value of An 

that maximizes the relative RMSE is selected to achieve the desired decomposition that will separate the 
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main signal from noise and other low-correlated components.  Once the value of An to be used in the EEMD 

has been established, it is necessary to also prescribe Ne. Disregarding computational time, the higher the 

ensemble number Ne the lower the error. To some degree, continuing increasing Ne results in minor change 

in errors. Ne = 100 is  found to be sufficiently accurate for the acceleration data under investigation and 

adopted here to optimize computational time [15].  

Eight IMFs, shown in Fig. 9, are extracted (c1(t) to c8(t)) when applying EEMD to the acceleration in Fig. 

3(b).
 
The computational time for simulating the acceleration response due to the moving load, programmed 

in MATLAB on a Windows 8.1 pro 2013 platform, is approximately 26 s with a i5 -3230M CPU 2.6 GHz 

processor, 4.00 GB RAM and 64-bit operating system. The time that takes selecting the optimum noise 

amplitude (An) in the iterative RMSE process and obtaining the corresponding IMFs is approximately 180 s. 

The total computational time in producing Fig. 9 is 180 + 26 = 206 s.
 
c1(t) and c2(t) show the higher 

frequency components of the acceleration signal attributed to noise and elasto-plastic response. The time 

interval at which the element responds in an elasto-plastic manner is visualized by spikes at 0.39 s and 0.45 s 

followed by a response (and stiffness) returning to normal (i.e., approximately a flat straight line) in 

agreement with Fig. 4. IMFs c3(t) and c4(t) also show spikes at instants of loss in stiffness although they are 

not as sharp as in c1(t) and c2(t).  c5(t) and c6(t) contain low frequency components already observed for the 

perfectly linear (‘healthy’) beam. The remaining IMFs (c7(t) and c8(t)) do not represent any frequency 

associated to the dynamic oscillations of the beam, but signal content related to the static component of the 

response.  

  

Fig. 9. IMFs by EEMD of mid-span acceleration in forced vibration (Fig. 3(b)) for a beam with a localised 

elasto-plastic response at 9 m 

 

Fig. 10 shows the PSDs of c5(t) and c6(t) leading to frequencies of 5.9 Hz (near the exact 5.8 Hz of the 

perfectly linear elastic beam) and 5.5 Hz (below the frequency of the elasto-plastic beam which is 5.71 Hz) 

respectively. It is worth mentioning that, in a practical situation, the location of the first bridge 

eigenfrequency depends on the characteristics of the signal and noise level, and it must not be necessarily 

found in c5(t) and c6(t). The EEMD utilizes its frequency separation capability of the EMD to become a truly 

dyadic filter bank (decomposing a broadband signal into a collection of sub-bands with smaller bandwidths 

and slower sample rates) for any data. By adding prescribed noise amplitude, the EEMD alleviates the 

problem of mode mixing and preserves the physical meaning of the decomposition to a large degree, 

although complete settlement of the mode mixing problem is still out of reach. 

 

 

(a)                                                                   (b) 

Fig. 10. PSD of (a) IMF5 and (b) IMF6  
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This section has been an illustration of how EEMD can be used to locate the changes in stiffness at 0.39 s 

and 0.45 s. Two distinctive spikes have stood out at the lowest IMF where other ‘healthy’ components have 

been successfully extracted. EEMD has outperformed wavelet analysis and EMD for the beam response 

under investigation. At this point, it is important to reiterate that the simulated response has been produced 

using a simple moving constant load model where no VBI or added contamination has been considered in 

the theoretical acceleration response. These figures have been used only to demonstrate the basic principles 

behind the detection of nonlinear response using EEMD, i.e., that a distinctive spike will appear in problems 

where the mechanical properties of the structure are altered at some instant during the test. Therefore, the 

remaining of the paper focus on identifying an elasto-plastic response from EEMD of the acceleration 

response in more challenging scenarios with influence from the road profile, VBI, noise and different 

measurement locations and sizes of the region affected by the bilinear hysteretic model with respect to the 

travelling path of the vehicle.  

 

3. Application of EEMD to detection of stiffness changes  using the acceleration 

response of a plate to a moving sprung 2-axle  vehicle model  

The same rationale employed in Section 2 is applied here. The VBI system used to simulate accelerations is 

explained first, and a discussion of the results by EEMD in multiple scenarios follows. 

3.1 Vehicle-Bridge interaction simulation model 

FEM has been extensively used in the past to numerically approximate the response of a VBI system [1, 39-

41]. The bridge deck (Section 3.1.1) is discretized into 2-D plate elements with a bi-linear moment curvature 

relationship at selected locations. The vehicle (Section 3.1.2) is modelled as a series of unsprung and sprung 

lumped masses interconnected by spring-dampers. The interaction between both systems can be solved 

using a coupled [23] or uncoupled [41-43] approach. In most of cases both approaches are equivalent, 

therefore, the uncoupled approach is chosen here (Section 3.1.4) on the basis of computational efficiency.  

3.1.1 Bridge model 

The bridge is modelled as simply supported orthotropic thin plate and is based on Kirchhoff’s plate theory 

[25, 44]. The deck is discretised into 30 elements in the x-direction and 24 elements in the y-direction (i.e., 

each plate element is 0.5x0.5m with a thickness of 0.8 m) as shown by Fig 11. Each plate element is defined 

by 4 nodes and a total of 16 DOFs, namely vertical displacement, rotation in the x-direction, rotation in y-

direction and nodal twist (which takes into account the discontinuity in the slope along the edge of the 

elements [42]) in the x-y direction at all nodes. This element differs from Kirchhoff’s plate elements which 

ignore the nodal twist DOFs and consist of a total of 9 DOFs. The bridge has the same dimensions as in 

Section 2 (15x12x0.8 m) and it is assumed to be orthotropic with Young’s modulus in the longitudinal and 

transverse directions assumed to be 31×10
9 

N/m
2
 and 14×10

9 
N/m

2
 respectively. Poisson’s ratio, unit weight 

and damping ratio are taken as 0.15, 1200 kg/m
3
 and 2% [23, 24] respectively. For the original properties in 

the elastic range, the main modes of vibration of the bridge have natural frequencies of 8.23 (longitudinal), 

17.1 (torsional) and 32.88 (longitudinal) Hz. Unless otherwise specified, the plate elements that will 

experience a change in stiffness are assumed to be located at 9 m from the left support and they stretch along 

the width of the bridge.  

Acceleration signals are simulated at mid-span as in the previous section, with a scanning frequency of 1000 

Hz, which is within the operative range of modern accelerometers. A high scanning frequency does not 

necessarily improve resolution but can be beneficial in dealing with signals corrupted with noise. The bi-

linear hysteretic moment-curvature formulation used for a beam element in Section 2.1 is expanded to plate 

elements in Appendix A and applied to selected elements in the deck model. Acceleration data is obtained at 

25 locations across the mid-span section (i.e., for a longitudinal coordinate of 7.5 m) corresponding to the 

vertical displacement DOF of each node. 



 

Fig. 11. Simply supported bridge FEM  

 

The general equation of motion for a bridge under a moving load is given by: 

 

 

             ( ) ( ) ( ) ( )b b b bb b b
M u t C u t K u t F t    (10) 

 

where [M]b, [C]b and [K]b are the bridge mass, damping and stiffness matrices respectively, {Fb(t)} is the 

external force exerted on the DOFs of the bridge (N), and  ( )bu t , ( )bu t and ( )bu t
 
are the acceleration 

(m/s
2
), velocity (m/s) and displacement (m) respectively at each DOF and time t . 

 

3.1.2 Vehicle model 

A 2-axle 3-D vehicle is modelled with axles represented as rigid bars connecting lumped masses at both 

ends corresponding to the mass of the wheel and suspension. Axle spacing is 5.5 m [45] and the wheelbase 

distance is 2 m ( Fig. 12). The vehicle path within the bridge is 2 m from the right edge of the deck as shown 

in Fig. 11. Fig. 12 illustrates the vertical displacement, v, and rotational DOFs, x and y, of the sprung mass. 

The vertical displacements of the front right, front left, rear right and rear left un-sprung masses are denoted 

by vu,fr , vu,fl , vu,rr and vu,rl respectively. 
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(a)                                                                    (b) 

Fig. 12. Schematic illustration of the vehicle model: (a) Right side view and (b) Front view 

 

The centre of the body mass is located at the centre of the vehicle (i.e., it is equidistant from the four 

wheels). It is assumed that the values of vehicle tyres and suspensions’ stiffness and viscous damping are the 

same for all wheels and axles. The mechanical properties of the vehicle are based on values available in the 

literature [42, 46, 47] and given in Table 1. 

Table 1: Vehicle properties (where second subscript ‘f’ and ‘r’ stand for front and rear axles respectively, 

and third subscript ‘l’ and ‘r’ refer to left and right sides of the axle respectively) 

 Value Symbol in Fig. 12 

Sprung mass (kg) 16.5×10
3 

m  

Un-sprung mass (kg) 375 
, , , ,, , ,u fr u fl u rr u rlm m m m  

Mass moment of inertia (kg·m
2
) 425×10

3 

xI  

425×10
3 

yI  

Suspension stiffness (N/m) 1×10
6 

, , , ,, , ,s fr s fl s rr s rlk k k k  

Suspension damping (N·s/m) 5×10
3 

, , , ,, , ,s fr s fl s rr s rlc c c c  

Tyre stiffness (N/m) 1×10
6
 

, , , ,, , ,t fr t fl t rr t rlk k k k  

Tyre damping (N·s/m) 3×10
3 

, , , ,, , ,t fr t fl t rr t rlc c c c  

Suspension offset (m) 0 d  

 

The dynamic forces of the vehicle are obtained by imposing the equilibrium of forces and moments acting 

on the vehicle and expressing them in terms of their DOFs [41, 46, 47]. The equation of motion of the 

vehicle dynamic system is given by: 

 

           ( ) ( ) ( ) ( )v v v vv v v
M v t C v t K v t F t    (11) 

 

where [M]v, [C]v and [K]v are the global mass, damping and stiffness matrices of the vehicle respectively, 

Fv(t) is the force at the contact point with the road profile (N), and vv , vv and vv are the accelerations (m/s
2
), 

velocities (m/s) and displacements (m) respectively of the vehicle DOFs.  

 



3.1.3 Road profile  

The height of road profile irregularities, r(x), for a single track can be generated from PSDs as a random 

stochastic process using an inverse fast Fourier transform method or adding sinusoids as in: 

 

1
( ) 2 ( ) cos(2 - )

W

k k i
i

r x G n n n x 

   (12) 

 

where G(nk) is the PSD function in m
2
/cycle/m; nk is the wave number (cycle/m); i is a random number 

uniformly distributed from 0 to 2; Δn is the frequency interval (‘Δn = (nmax – nmin) / W’ where nmax and nmin 

are the upper and lower cut-off frequencies respectively); W is the total number of waves used to construct 

the road surface and x is the longitudinal location for which the road height is being sought. G(nk) is 

determined by a/(2nk)
2 

according to ISO [48] where a (m
3
/cycle) is the roughness coefficient, which is 

related to the amplitude of the road irregularities. Road classes vary from smooth (class ‘A’ with a low 

roughness coefficient) to very poor (class ‘E’ with a high roughness coefficient) [48]. In particular, 

roughness coefficients a of 4×10
-6

, 96×10
-6

, and 1536×10
-6

 m
3
/cycle have been adopted for road classes ‘A’, 

‘C’ and ‘E’ respectively. The approach length prior to the bridge has significant implications on the response 

of the vehicle and hence, the response of the bridge. An approach length of 150 m has been adopted in the 

investigation and possible expansion joints or potholes have not been considered. 

The 3D vehicle model has left- and right-hand wheel tracks, and thus, it requires two input profiles. One of 

the tracks can be generated by applying random phase angles i to Equation (12) for a given PSD. When 

calculating the second track, it must be noted that it is statistically related to the first track via a coherence 

function. Coherence functions vary between 0 (totally uncorrelated) and 1 (perfectly correlated) and they 

have the purpose of guaranteeing good and poor correlation between two parallel tracks for long and short 

wavelengths respectively. If an isotropic and homogeneous road surface is assumed (i.e., same PSD for both 

tracks), then, the coherence function will vary with wave number nk as in Equation (13): 

( )
( )

( )

lr k

k

coh n
lr k

G n

G n
  (13) 

 

where Glr(nk) and G(nk) are the cross-spectral and direct spectral densities of the individual tracks 

respectively. 

Taking into account the aforementioned, an isotropic correlated road surface is generated using the inverse 

Fourier transform method proposed by Cebon and Newland [49]. In VBI studies, it is normally assumed that 

the road and vehicle make contact at a single point which ignores the width of the tyre. Therefore, a MAF 

with a length corresponding to the width of the tyre (0.24 cm is used here) is applied to the randomly 

generated road profile in order to simulate the effect of a tyre [50, 51]. An example of road class ‘A’ surface 

with a geometric spatial mean of 4×10
-6

 m
3
/cycle resulting from this process is shown in Fig. 13. In the 

simulations that follow, the irregularities of the left- and right-hand wheel tracks are selected from this 

carpet unless otherwise specified. 



 

Fig. 13. Example of class ‘A’ road profile over the bridge after applying the moving average filter 

 

3.1.4 Interaction between vehicle and bridge systems  

VBI is solved based on an uncoupled iterative system [41, 42] with small changes to incorporate the 

nonlinear elementary stiffness matrixes of Appendix A at selected locations. The process is as follows: 

(a) The vehicle vertical forces (Fv(t)) due to the road profile only are obtained using Equation (11). 

(b) The displacement (ub(t)) and bending moment (Mn(t)) of the bridge under each tyre due to dynamic 

loads (Fv(t)) in (a) is obtained applying Equation (10). 

(c) If the bending moment (Mn(t)) exceeds the yield bending moment (Mp), the nonlinear stiffness matrix 

of the plate is introduced at selected DOFs. Otherwise, the existing linear stiffness matrix [Kb] is 

employed. 

(d) The displacement response (ub(t)) is added to the road profile (r(t)). 

(e) The vertical forces due to a new profile (ub(t)+ r(t)) are obtained using Equation (11). 

(f) Steps (b) to (e) are repeated until a tolerance value is reached. Here, the tolerance value is defined by 

the difference between consecutive values of the maximum bending moment in the plate being less 

than 0.1%. This value is a stoppage criteria in which the difference between consecutive maximum 

bending moments becomes negligible, i.e. tolerance > (max bending moment at time ‘t’)-(max. 

bending moment at the preceding time ‘t-t’)/ (max bending moment at time ‘t’) ×100.  

The iterative process above has advantages over a coupled solution because of its efficiency and flexibility 

that allows modelling and solving bridge and vehicle responses separately (i.e., using the Wilson-
integration method in these simulations). The results match solutions provided by Cantero, et al. [42] and 

Dowling, et al. [52]. 

 

3.2 Calibration of EEMD parameters and application to identification of changes in  

stiffness  

Section 2.2.3 has demonstrated the improvement in detecting a sudden stiffness change when using the 

EEMD method over the conventional EMD method for a beam under moving point load, mostly due to the 

reduction of the mode mixing problem. Two aspects of the EEMD to be addressed prior to its 

implementation are the noise amplitude (An) and number of ensemble trails (Ne). These values are going to 

depend on the simulated signal. For instance, Fig. 14 plots the relative RMSE (using Equation (9)) against 

noise amplitude for different levels of post-yield stiffness loss in the simulated signal (i.e., different p values 

in Fig. 2(b) at the damaged location shown in Fig. 11). From Fig. 14, the most appropriate value of noise 

amplitude (i.e., maximizing relative RMSE) would be around 0.55 for post-yield stiffness losses of 0% (p = 

1), 10% (p = 0.9) and 50% (p = 0.5), and 1.85 for a post-yield stiffness loss of 30% (p = 0.7).  The ensemble 

number  Ne is fixed at 100. 



 

Fig. 14. Relative RMSE versus noise amplitude for different levels of post-yield stiffness loss  

 

The first natural frequencies of the bridge for the short time period when selected elements are in the elasto-

plastic range will vary for different p values or stiffness loses. In the 15 m long plate model with the elasto-

plastic region at 9 m under investigation, these frequencies are 8.23, 8.21, 8.18 and 8.13 Hz for 0%, 10%, 

30% and 50% stiffness losses respectively. For p = 0.51, the first frequencies of the plate (which are 8.23, 

17.1 and 32.88 Hz for the ‘healthy’ state, i.e., p = 1) become 8.13, 17.05 and 32.39 Hz for the short time 

window when selected elements enter the elasto-plastic range. Fig. 15 shows the acceleration signal of the 

bridge at mid-span for lane 1 where the vehicle is travelling (at 3 m from bridge centreline) in time and 

frequency domains. The first (8.03 Hz) and second (17.3 Hz) natural frequencies can be visualized in the 

PSD of Fig. 15(b), although there are small differences with the true values due to the partial elasto-plastic 

response and time resolution.  

  

(a) (b) 

Fig. 15. Mid-span acceleration response (at 3 m from bridge centreline in lane 1) versus time of a bridge 

with an elasto-plastic region with p = 0.51 at 9 m: (a) time domain; (b) frequency domain 

 

Fig. 16 shows the true time instances at which all the transverse elements at 9 m from the left support 

experience a change in longitudinal stiffness: 0.45-0.5 s, 0.55-0.62 s and 0.72-0.76 s. Stiffness ratio is 

defined as the actual stiffness divided by the stiffness in the elastic range. There are no changes in the 

transverse stiffness. 1
st
 and 2

nd
 axle loads will reach the elasto-plastic region at 0.45 s (= 9/20) and 0.72 s (= 

14.4/20) respectively and these time intervals approximately cover the period when the vehicle travels over 

the region. The acceleration in Fig. 15(a) reflects this elasto-plastic response by a noticeable increase in 

amplitude after 0.45 s, however, it is unclear at what time instance this drop in stiffness returns to the 

original value or when it drops again. 
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Fig. 16. Variation of longitudinal stiffness ratio of elements at 9 m from left support with time 

 

 

The EEMD method is applied to the acceleration signal of Fig. 15(a) and the resulting IMFs (c1(t) to c8(t)) 

are plotted in Fig. 17. The first IMFs (c1(t) to c3(t)) extract the higher frequency components of the signal 

associated with noise and elasto-plastic periods. In the first IMF (c1(t)), the jumps in amplitude between 

0.45-0.5 s, 0.55-0.62 s and 0.7-0.76 s are associated with the stiffness drops shown in Fig. 16 at similar time 

instances. These stiffness drops are not as clear in IMFs c2(t) and c3(t) where high frequency components of 

the VBI system are also captured.   

  

Fig. 17. IMFs by EEMD of mid-span acceleration response (3 m from bridge centreline in lane 1) in the case 

of a structure with a localised elasto-plastic response with p = 0.51 at 9 m 

 

Fig. 18 shows the IMF1 from Fig. 17 together with the stiffness variation from Fig. 16, to highlight how 

accurately the spikes in IMF1 correspond to instant changes in stiffness. 

 

Fig. 18. Comparison of stiffness ratio and IMF1 of elements at 9 m from left support versus time 
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Fig. 19(a) shows the PSD associated to IMF4 (c4(t)) with two peaks at 8.3 Hz and 17.3 Hz in good 

agreement with the first two natural frequencies of the ‘healthy’ state of the bridge. Fig. 19(b) shows the 

PSD associated to IMF5 (c5(t)) which extracts the first frequency, with a lower value than that of elasto-

plastic range (8.13 Hz). These results are similar to those experienced for the 1-D beam model in Section 

2.2.3, which suggest that some aspects of mode mixing still exist in the decomposition process, although to a 

smaller extent than that observed in the EMD method. Higher IMFs (c6(t) to c8(t)) are residues that are 

mostly attributed to static content of the response.  

  

(a) (b) 

Fig. 19. PSD of: (a) IMF4 and (b) IMF5 from Fig. 17  

 

This section has demonstrated the effectiveness of EEMD in separating higher frequency components 

associated to the added white noise and the elasto-plastic response from the natural frequencies of the 

bridge, a major issue in other signal processing techniques reviewed in Section 2. This is highlighted by the 

spikes that stand out in IMF1 (c1(t)) which correspond to instant changes in stiffness and which are not 

significantly interfered by any other frequency components of the acceleration signal. Therefore, if it was 

possible to identify the entrance and speed of the vehicle on the bridge (i.e., via a weigh-in-motion system 

installed prior to the bridge), damage can be located approximately using the approach suggested by 

Meredith, et al. [18], i.e., multiplying the vehicle speed (20 m/s) by the time between the vehicle entrance 

and the first spike (20 x 0.45 = 9 m, which is the longitudinal location of the section experiencing elasto-

plastic changes). In the following sections, the impact of the number of selected elements across the 

transverse (y) direction experiencing an elasto-plastic response, road profile, vehicle speed and noise on the 

identification of spikes in IMF1 is discussed.    

 

3.3 Impact of extent of elements undergoing an elasto-plastic response  

Fig. 20(a) shows IMF1s (c1(t)) for a ‘healthy’ bridge (all plate elements with p = 1) in 3-D in which the x-

axis is time (s), and the y- and z-axes are measurement location and amplitude of each IMF1 respectively 

across the bridge width. In these 3D plots, acceleration responses are calculated every 0.5 m along the y-

direction of the bridge mid-span section and for each of them, an IMF is calculated using EEMD and 

represented in the figure. Fig. 20(b) shows sections through: A-A) acceleration at a quarter (3 m from the 

bridge edge in lane 1 where vehicle is travelling), B-B) middle (at the bridge centreline) and C-C) three-

quarter (9 m from the bridge edge in lane 1) of bridge width. The purpose of the three sections is to show the 

influence of the load position with respect to the location of the accelerometer on the identification of spikes 

indicative of having exceeded the yielding point.  It can be seen that for a ‘healthy’ plate deck (p = 1 in all 

elements), the amplitudes of the IMF1s in Fig. 20 are relatively smooth in contrast to cases that will 

presented further on with p = 0.51.  
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(a)  (b) 

Fig. 20. IMF1s of accelerations at mid-span for perfectly elastic response in all plate elements: (a) IMF1 

amplitude versus time across the bridge width, (b) IMF1s for three mid-span acceleration locations   

 

In the Section 3.2, all plate elements at 9 m from the left support (i.e., across the entire 12 m width) have 

been assumed to respond following the bilinear hysteretic model defined in Appendix A. However, the 

extent of elements affected by an elasto-plastic response can have profound implications on its 

identification. In this section, the regions shown in Fig. 21 are investigated. ’Case 1’ assumes that the elasto-

plastic elements span the full width (0.5x12 m) of the bridge (as in Section 3.2), ’Case 2’ spans half the 

bridge width (0.5x6 m) and ’Case 3’ is localised around one element (0.5x0.5 m).  

 

Fig. 21. Plan view of bridge with three cases of elasto-plastic regions  

Fig. 22 shows the results of IMF1 of accelerations across the width of the bridge for the three cases of Fig. 

21. The true longitudinal stiffness ratio is plotted against time in Fig. 22 (a) for ‘Case 1’ for all elements at 9 

m from left support. The transverse stiffness remains constant throughout the time that the load is on the 

bridge. This figure is used as reference to validate the local ‘spikes’ identified in IMF1 truly correspond to 

stiffness changes. The spikes with highest amplitude in Figs. 21(b) and (c) closely resemble the stiffness 

changes in Fig. 22(a) at time intervals 0.45-0.5 s, 0.55-0.62 s, and 0.72-0.76 s. Fig. 22(c) analyse the same 

three acceleration locations of Fig. 20(b) with a perfectly elastic response, but here peaks are more 

distinctive. Comparing the three measurement locations in Fig. 22(c), it can be seen that the spikes are more 

significant as the location of the simulated response gets closer to the path of the load as a result of higher 

load concentration and load effects. Nevertheless, all three acceleration locations in Fig. 22(c) are able to 

perceive the stiffness changes for ‘Case 1’ successfully. 

Fig. 22(d-f) show the equivalent graphs for ‘Case 2’. Fig. 22(e) illustrates that the elasto-plastic region is 

noticed by acceleration locations in the same lane where the region is defined. The spikes are identifiable in 

the two of the three sections of Fig. 22(f) for time instances of 0.45-0.5 s, 0.55-0.62 s, and 0.7-0.78 s in 

which a drop in stiffness occur in the elasto-plastic region. It can be seen how the amplitude of the spikes 
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reduces as the acceleration location moves away from the travelling load of the path and from the elasto-

plastic region.  

‘Case 3’ (Figs. 22(g) to (i)) is obviously more difficult to detect than previous cases. Certainly, small 

‘spikes’ in the amplitude of IMF1 at the instant of exceeding the linear elastic limit are observed around 

times of 0.55 s and 0.75 s in section A-A (Fig. 22(i)) which echo those provided by Fig. 22(g), although the 

magnitude of the IMF1 coefficients in ‘Case 1’ are about one tenth smaller than seen before.  The mid-span 

acceleration corresponding to location B-B shows smaller amplitudes than A-A at times of 0.55 s and 0.75 s 

and therefore, they are masked by other spikes of similar magnitude that were already seen in the IMF1 of 

the perfectly elastic plate model of Fig. 20(b). When increasing the distance between the elasto-plastic 

element and the measurement point, the stiffness loss goes unnoticed to the response as shown by section C-

C.  
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(g) 

 

 

 

(h) (i) 

 

Fig. 22. IMF1s using EEMD of accelerations at mid-span for a plate model with three elasto-plastic regions 

at 9 m: (a) True variation of longitudinal stiffness ratio at elements along the width of the bridge at 9 m from 

left support with time for ‘Case 1’, (b) IMF1 amplitude versus time across the bridge width for ‘Case 1’, (c) 

Three sections across (b), (d) True variation of longitudinal stiffness ratio at elements for ‘Case 2’ at 9 m 

from left support with time, (e) IMF1 amplitude versus time across the bridge width for ‘Case 2’, (f) Three 

sections across (e), (g) True variation of longitudinal stiffness ratio at elements for ‘Case 3’ at 9 m from left 

support with time, (h) IMF1 amplitude versus time across the bridge width for ‘Case 3’, (i) Three sections 

across (h) 

 

The sudden and close changes in stiffness observed in Figs. 22(a), (d) and (g) are caused by the short time 

intervals in which the structure exceeds the yield limit. Once the yield limit is exceeded, the stiffness will 

return relatively quickly to its original elastic value at unloading. Bridge elements are exposed to waves of 

cyclic loading and unloading due to the oscillatory nature of the dynamic component of the bridge response. 

The latter derives in sudden drops of stiffness and rises to an original value in those elements experiencing 

an elasto-plastic response which tends to lead to concentration of spikes in the IMF1s.  

 

3.4 Impact of Road Profile  

Road irregularities produce excitations in the vehicle that will affect the bridge response, in particular, its 

high frequency content will have repercussions on the lowest IMFs where the elasto-plastic response is 

identified. A road class ‘A’ has been used in simulations for the results of Sections 3.2 and 3.3. Two rougher 

road classes ‘C’ (average) and ‘E’ (very poor) are defined according to ISO as in Section 3.1.3 and used in 

the simulations. The patterns of stiffness changes for class ‘A’ (Fig. 22(a)), ‘C’ (Fig. 23(a)) and ‘E’ (Fig. 

23(d)) are significantly different. Rougher road profiles induce larger vehicle dynamic forces and larger load 

effects and an earlier stiffness change at the elasto-plastic elements. Fig. 23(a) shows stiffness changes at 

approximately 0.4 s and 0.5 s that are resembled by Figs. 23(b) and (c). Similarly to Fig. 22(c) for a class 

‘A’ profile, the maximum amplitude in Fig. 23(c) for a class ‘C’ occurs at lane 1 where the vehicle is 

travelling. In Fig. 23(c), amplitudes of 0.4 and 0.243 for the spike at 0.43 s are obtained in sections A-A and 

B-B respectively. For class ‘E’ (Figs. 23(d), (e) and (f)), the road irregularities produce multiple stiffness 

changes and as a result, many amplitude variations in the IMF, even after 0.7 s.  The spikes in the IMF 
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distinguish perfectly elastic periods (before 0.3 s and around 0.6 s) from elasto-plastic periods for most of 

the signal duration, except towards the end (the 2
nd

 axle will leave the bridge at 1.025 s). The effect of the 

rougher profiles on the IMFs has been to increase the amplitude of the spikes and their number (in 

agreement with an increase in number of stiffness changes).   

 

(a)  

 

 

(b) (c) 

 

(d) 

  

(e) (f) 

Fig. 23. IMF1s using EEMD of accelerations at mid-span for a plate model with a localised elasto-plastic 

response at 9 m and different road profiles: (a) True variation of longitudinal stiffness ratio at elements 

along the width of the bridge at 9 m from left support with time using road class ‘C’, (b) IMF1 amplitude 

versus time across the bridge width using road class ‘C’, (c) Three sections across (b), (d) True variation of 

longitudinal stiffness ratio at 9 m from left support with time using road class ‘E’, (e) IMF1 amplitude 

versus time across the bridge width using road class ‘E’, (f) Three sections across (e). 

 

3.5 Impact of Vehicle Speed 
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The speed of the vehicle travelling over the bridge is a key parameter that influences both the bridge 

vibrations and duration of the signal. Fig. 24(a) shows the true variation of stiffness ratio at all the elements 

along the width of the bridge at 9 m from left support with time for the same bridge scenario of Figs. 22(a) 

to (c), except this time the vehicle is driven at a slower speed of 10 m/s. The time instances where stiffness 

changes take place from 0.87 to 1 s and from 1.2 to 1.55 s (Fig. 24(a)). Figs. 24(b) and (c) show IMF1 is 

able to recognise the same time instances of Fig. 24(a) for any transverse location of an accelerometer across 

mid-span, although higher amplitudes of the spikes can be observed for measurement locations closer to the 

vehicle path. For a speed of 30 m/s (Figs. 24(d), (e) and (f)), the signal is shortened with respect to 10 m/s, 

but unlike processing by wavelet analysis, the performance of EEMD is not affected by the signal length. It 

is still possible to find a good agreement between the targeted changes in Fig. 24(d) (approximately between 

0.31 and 0.51 s) and the spikes of the IMFs in Figs. 24(e) and (f). 

 

(a)  

  

(b) (c) 

 

(d) 

 

 

(e) (f) 

Fig. 24. IMF1 using EEMD of accelerations at mid-span for a plate model with a localised elasto-plastic 

response at 9 m traversed by a vehicle at different speeds: (a) True variation of longitudinal stiffness ratio at 

all elements along the width of the bridge at 9 m from left support with time  at 10 m/s, (b) IMF1 amplitude 

versus time across the bridge width at 10 m/s, (c) Three sections across (b), (d) True variation of 
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longitudinal stiffness ratio at 9 m from left support with time at 30 m/s, (e) IMF1 amplitude versus time 

across the bridge width at 30 m/s, (f) Three sections across (e). 

 

 

3.6 Impact of noise 

Up to this point, all VBI simulations have ignored the presence of noise in the theoretical acceleration 

response. In practise, true measurements from field tests will contain noise. For that reason, the theoretical 

noise-free signal is corrupted here using the additive noise model [34]: 

 

{ ( )} { ( )} { }bn b lu t u t n N    (14) 

 

where { ( )}bnu t is the acceleration corrupted by noise, { ( )}bu t is the acceleration of the bridge at time t, nl 
is 

the noise level, {N} is the standard normal distribution vector with zero mean and unit standard deviation 

and  is the standard deviation of the noise-free signal.  

This additive noise model is the same employed by the EEMD method to calculate the noise amplitude that 

maximises the relative RMSE (Equation (9)). The difference between the noise added to corrupt the 

acceleration signal and the noise added in step 1 of EEMD illustrated in Fig. 8, lies on that the level of noise 

is random and have no specific value in the first case while the noise level used in the EEMD method is 

chosen based on maximising the RMSE. The acceleration corrupted with 5% noise level (i.e., nl = 0.05 in 

Equation (14)) is shown in time and frequency domains in Figs. 25(a) and (b) respectively. This noisy 

response is clearly less smooth than the one shown in Fig. 15 for a noise-free response. The PSD still clearly 

gives first and second natural frequencies of 8.03 Hz and 17.3 Hz respectively.  

 

 

(a) (b) 

Fig. 25. Mid-span acceleration response (at 3 m from bridge centreline in lane 1) corrupted with 5% noise 

versus time of a bridge with an elasto-plastic region at 9 m: (a) time domain; (b) frequency domain  

 

By applying the EEMD method with optimal noise amplitude (i.e., maximizing Equation (9)), and an 

ensemble number equal to 100 trials, the IMFs are calculated and plotted in Fig. 26. IMF1 (c1(t)) captures 

peaks related to stiffness changes in the intervals 0.45-0.5 s, 0.55-0.62 s, and 0.72-0.76 s (in agreement with 

true stiffness changes shown in Fig. 16) and other peaks of smaller magnitude related to noise that was not 

present in previous sections. IMF2 (c2(t)) and IMF3 (c3(t)) contain frequency content of the VBI system and 

noise mixed with some elasto-plastic related frequency content. The first mode of vibration of the bridge in 

the ‘healthy’ state is captured by c5(t) and  c6(t) which is similar to what has been seen in Fig. 17 for 

acceleration without noise.   
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Fig. 26. IMFs of mid-span acceleration response (3 m from bridge centreline in lane 1) corrupted with 5% 

noise in the case of a structure with a localised elasto-plastic response at 9 m 

 

The same theoretical acceleration response is further corrupted with a 10% noise level (nl = 0.10 in Equation 

(12)) and the resulting IMFs are shown in Fig. 27. In spite of the significant noise, the relevant peaks in 

IMF1 denoting stiffness changes have the largest amplitude and are distinguishable, although they do not 

stand above the others as clearly as before. As in Fig. 26, c2(t) and c3(t) contain elasto-plastic related 

frequency content mixed at similar amplitudes with noise and high frequency content of the VBI system 

which does not make them suitable for identifying sudden stiffness changes. c5(t) and c6(t) contain the main 

modes of vibration of the bridge and the rest of the IMFs (c7(t) and c8(t)) are residues of lower frequencies, 

i.e., related to the static component of the response. 

  

Fig. 27. IMFs of mid-span acceleration response (3 m from bridge centreline in lane 1) corrupted with 10% 

noise in the case of a structure with a localised elasto-plastic response at 9 m 

 

From the figures above, it is evident that noise has some impact on the performance of EEMD, but the 

frequency content related to the elasto-plastic region appears to be successfully separated from other 

undesired high frequency components even for a 10% noise.  

 

4. Conclusions   

Past research has employed wavelet analysis and EMD to identify a stiffness change from the response of a 

structure to a moving load, however, these methods have been applied to perfectly linear elastic systems and 

they have shown to be severely limited by the roughness of the road profile, the vehicle speed and the level 

of noise. In this paper, the EEMD method has been applied to the mid-span acceleration response of a bridge 

model to demonstrate its capability in identifying brief stiffness changes even with rough profiles, high 

vehicle speeds and noisy signals. The change in stiffness has been modelled using a bi-linear hysteretic 

moment-curvature relationship at selected finite elements. In this model, the stiffness returns to its original 

value at unloading, i.e., stiffness changes happen in short time windows that make difficult its identification 

using only a frequency analysis. The IMF1 obtained using EEMD has been shown to successfully separate 

the elasto-plastic response component in these short windows from other frequency components of the VBI 

system. Spikes have been clearly distinguished in the IMF1 at instants of stiffness changes for different 

extents of the elasto-plastic region (full-width, half-width and localised at one single element) and transverse 

locations of the simulated accelerations. Exceptions are made for the case of using acceleration responses far 

from small localised regions. The closer the accelerometer is to the elasto-plastic region and the higher is the 
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stiffness loss, the higher the amplitudes of the spikes identified in IMF1 have become. As expected, higher 

spike amplitudes have been observed in mid-span measurement locations in lane 1, where the vehicle is 

travelling and where the elasto-plastic region is located. The influence of the road profile, speed of the 

moving vehicle and noise on the identification of stiffness changes by EEMD have also been tested, and in 

all cases, the IMF1 has been able to identify the instants at which changes take place and their approximated 

duration. From this investigation, the authors conclude that the EEMD method has shown considerable 

potential as a future tool for damage detection applications.  
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Appendix A 

 

This Appendix describes the non-linear plate element used in simulations at selected locations. Fig. A.1(a) 

shows the moments (Mx, My and Mxy) and vertical forces (V) acting at the four nodes, labelled i, j, k and l of 

a plate element. Each node has four DOFs defining rotations (xi, yi  and xyi) and displacements (ui is the 

vertical displacement at node i) as shown in Fig. A.1(b) for the linear component and in Fig. A.1(c) for the 

elasto-plastic component (only node k is shown for illustration purposes).  



 

Fig. A.1. (a) Moments and shear forces acting on the plate element; (b) linear component of DOFs and (c) 

elasto-plastic component of DOFs 

 

The elasto-plastic component in Fig. A.1(c) shows the rotations ( '

xk ,
'

yk  and
'

xyk ) and plastic angles (xk, yk 

and xyk) associated to node k (xyk, xyk and 
'

xyk are not shown in the figure for clarity) given by:    

     

0; 0; 0xk yk xyk      (A.1) 

' ' '; ;xk xk xk yk yk yk xyk xyk xyk               (A.2) 

 

In Equation A.1, xk, yk and xyk are the plastic angles which are the difference between the elasto-plastic 

component and the linear component. For xyk, subscripts x, y and k indicate the x-direction, y-direction, and 

node k respectively. In Equation A.2, '

xk ,
'

yk  and
'

xyk  are the end rotations of the elasto-plastic component 

and xk, yk  and xyk  are the end rotations of the linear component.  

Moments and forces acting on the non-linear plate element are assumed to be subjected to three possible 

states: 

1. All nodes are linear 
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2. Nodes i and l are nonlinear  

3. Nodes j and k are nonlinear  

In states 2 and 3, a state of yield has been reached (i.e., where the bending moment in the element exceeds 

the yield bending moment). For state 1, the stiffness matrix is linear and it is simply the elementary 16x16 

stiffness matrix [Ke] given by Equation (A.3).  

 

  1 1

0 0

[[ ][ ] ] [ ][[ ][ ] ]

b a

T

eK C H D C H dxdy     
(A.3) 

 

In Equation A.3, the matrix [C]  is given by: 

[ ] [ ][ ]C B H  

 

where [B] is the strain displacement matrix, [H] is a 16×16 matrix that contains the lengths of the plate in the 

x- and y- directions (a is the length of the plate in x-direction and b is the length of the plate in y-direction 

respectively) which is commonly found in orthotropic plate elements, and [D] is the constitutive matrix for 

an orthotropic plate given by: 

 

11 12 0

[ ] 12 22 0

0 0 66

D D

D D D

D

 
 


 
  

 

 

where D11,  D12 and D22 contain the Young’s modulus and Poisson’s ratio in the x- and -y directions, and 

D66 contains the Young’s modulus in the x-y direction. Further details on the derivation of the coefficients 

of the matrix [Ke] can be found in  [53].  

For the condition where all nodes are linear, the rotations and plastic angles in Equations (A.1) and (A.2) 

become: 

 
0; 0; 0xk yk xyk      (A.4) 

' ' '; ;xk xk yk yk xyk xyk         (A.5) 

 

For the nonlinear states 2 and 3, the elemental stiffness matrix can be derived by expressing plastic angles 

(x, y and xy) in terms of the rotations and displacements. Since the moments applied to the elasto-plastic 

components of the DOFs of a nonlinear node are constant, an increase in moments Mx, My and Mxy at any 

node are due to Mpx, Mpy and Mpxy, which are the moments applied to the linear component of the DOFs. 

This can be written in incremental form as: 

 

; ;x px y py xy pxyM M M M M M          (A.6) 

 

From Equation (A.6), the ’s can be determined in terms of rotations and displacements (shown in Equation 

(A.7) for nodes i and l). 



 

 

In Equation (A.7), the values of matrix [R] correspond to stiffness values of the nonlinear nodes i and l. 

They are extracted from the elemental stiffness matrix ([Ke]) of a plate defined in Equation (A.3) and are 

given by: 

 

3 3

2 52 / 35* / * 22 8 / 25 / * * 12 16 / 25 / * * 66 4 / 35 / * 11*b a b D a b D a b D a D b     

2 2 2 2

3 61/ 50* 12 11/ 35 / * * 11 1/ 25* 66 11/ 35 / * 22*b D a b D D b D a      

2 2 3

4 22 /105* / * 22 4 / 25* 12* 4 / 75* * 66 2 / 35 / * * 11b a b D D b b D a b D      

3 3

14 4 / 25 / * * 66 26 / 35* / * 22 3/ 35 / * 11* 2 / 25 / * * 12b a b D a b D a D b a b D      

2 2 2 2

15 3/ 25* 12 1/ 25* 66 11/ 35 / * 22* 13/ 70 / * * 11b D D b D a a b D     

2 2 3

16 11/105* / * 22 1/ 25* 12* 1/ 75* * 66 3/ 70 / * * 11b a b D D b b D a b D      

2 2 3

2 11/105* / * 22 1/ 25* 12* 1/ 75* * 66 3/ 70 / * * 11c a b D D b b D a b D      

3 3

3 52 / 35 / * * 11 8 / 25* / * 12 16 / 25* / * 66 4 / 35 / * 22*c a b D a b D a b D b D a     

2 2 3

4 22 /105 / * * 11 4 / 25* 12* 2 / 35 / * 22* 4 / 75* * 66c a b D D a b D a a D     

2 2 2 2

14 1/ 25* 66 11/ 35 / * 22* 13/ 70 / * * 11 3/ 25* 12c D b D a a b D D      

3 3

15 18 / 35 / * * 11 8 / 25* / * 12 16 / 25* / * 66 4 / 35 / * 22*c a b D a b D a b D b D a     

2 2 3

16 13/105 / * * 11 2 / 75* 12* 4 / 75* * 66 2 / 35 / * 22*c a b D D a a D b D a      

2 2 3

2 22 /105* / * 22 4 / 25* 12* 4 / 75* * 66 2 / 35 / * * 11d a b D D b b D a b D      

2 2 3

3 22 /105 / * * 11 4 / 25* 12* 2 / 35 / * 22* 4 / 75* * 66d a b D D a b D a a D     

3 3

4 4 /105 / * 11* 8 / 225* 12* * 16 / 225* * * 66 4 /105* / * 22d a D b D a b a b D a b D     

2 2 3

14 11/105* / * 22 1/ 25* 12* 1/ 75* * 66 3/ 70 / * * 11d a b D D b b D a b D      

2 2 3

15 13/105 / * * 11 2 / 75* 12* 4 / 75* * 66 2 / 35 / * 22*d a b D D a a D b D a     

3 3

16 2 /105* / * 22 4 / 225* * * 66 1/ 35 / * 11* 2 / 225* 12* *d a b D a b D a D b D a b     

3 3

2 4 / 25 / * * 66 26 / 35* / * 22 3/ 35 / * 11* 2 / 25 / * * 12n a b D a b D a D b a b D      

2 2 2 2

3 1/ 25* 66 11/ 35 / * 22* 13/ 70 / * * 11 3/ 25* 12n D b D a a b D D      

2 2 3

4 11/105* / * 22 1/ 25* 12* 1/ 75* * 66 3/ 70 / * * 11n a b D D b b D a b D      



3 3

14 52 / 35* / * 22 8 / 25 / * * 12 16 / 25 / * * 66 4 / 35 / * 11*n a b D a b D a b D a D b     

2 2 2 2

15 11/ 35 / * * 11 61/ 50* 12 1/ 25* 66 11/ 35 / * 22*n a b D D D b D a     

2 2 3

16 22 /105* / * 22 4 / 25* 12* 4 / 75* * 66 2 / 35 / * * 11n a b D D b b D a b D      

2 2 2 2

2 3/ 25* 12 1/ 25* 66 11/ 35 / * 22* 13/ 70 / * * 11o D D b D a a b D     

3 3

3 18 / 35 / * * 11 8 / 25* / * 12 16 / 25* / * 66 4 / 35 / * 22*o a b D a b D a b D b D a     

2 2 3

4 13/105 / * * 11 2 / 75* 12* 4 / 75* * 66 2 / 35 / * 22*o a b D D a a D b D a     

2 2 2 2

14 11/ 35 / * * 11 61/ 50* 12 1/ 25* 66 11/ 35 / * 22*o a b D D D b D a     

3 3

15 52 / 35 / * * 11 8 / 25* / * 12 16 / 25* / * 66 4 / 35 / * 22*o a b D a b D a b D b D a     

2 2 3

16 4 / 75* * 66 22 /105 / * * 11 2 / 35 / * 22* 4 / 25* 12*o a D a b D b D a D a      

2 2 3

2 11/105* / * 22 1/ 25* 12* 1/ 75* * 66 3/ 70 / * * 11r a b D D b b D a b D      

2 2 3

3 13/105 / * * 11 2 / 75* 12* 4 / 75* * 66 2 / 35 / * 22*r a b D D a a D b D a      

3 3

4 2 /105* / * 22 4 / 225* * * 66 1/ 35 / * 11* 2 / 225* 12* *r a b D a b D a D b D a b     

2 2 3

14 22 /105* / * 22 4 / 25* 12* 4 / 75* * 66 2 / 35 / * * 11r a b D D b b D a b D      

2 2 3

15 4 / 75* * 66 22 /105 / * * 11 2 / 35 / * 22* 4 / 25* 12*r a D a b D b D a D a      

3 3

16 4 /105 / * 11* 8 / 225* 12* * 16 / 225* * * 66 4 /105* / * 22r a D b D a b a b D a b D     

 

 Matrix [A] can be written in the form: 

   nA A  (A.8) 

 

where n = [2,3,4,14,15,16], corresponding to nodes i and l and: 

                n n n n n n n n n n n n n n n n nA a b c d e f g h i j k l m n o r   (A.9) 

 

The ’s in Equation (A.7) are shown for node i and l(i.e., an element where the left nodes are nonlinear). 

From Equation (A.8), the nonlinear elemental stiffness matrix for an element can be written as: 

        
1

enl eK K q S R A
  

 
 

(A.10) 

 

where [Kenl] is the nonlinear stiffness matrix of an element where left nodes are nonlinear, q is the post-yield 

stiffness value (Section 2.1) and [S] is given by: 

  [ ]tS A  (A.11) 

 

where [A]
t
 is the transpose of matrix [A]. Equation (A.11) can be modified to include any node that has a 

nonlinear stiffness by simply varying the corresponding nodal values in matrix [S], [A] and [R].  

In modelling the elasto-plastic response of selected elements, Equation (A.10) is used to obtain their 

elemental stiffness matrix where left nodes are nonlinear (n = [2,3,4,14,15,16]). For elements where right 

nodes are nonlinear, n becomes n = [6,7,8,10,11,12] which correspond to nodes j and k in Fig. A.1. The 

approach can be modified to include a smooth transition and more complicated hysteresis behaviour such as 



the Bouc-Wen model. The elemental stiffness matrix remains the same and only post-yield stiffness value 

(q) needs to be varied depending on the moment-curvature relationship. 

 


