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Abstract

Suppose that a harmonic function h on a �nite cylinder U vanishes
on the curved part A of the boundary. It was recently shown that
h then has a harmonic continuation to the in�nite strip bounded by
the hyperplanes containing the �at parts of the boundary. This paper
examines what can be said if the above function h is merely harmonic
near A (and inside U). It is shown that h then has a harmonic extension
to a larger domain formed by radial re�ection.

1 Introduction

Let N � 3 and a > 0, and let B0 denote the open unit ball in RN�1. The
following harmonic extension result for cylinders was recently established in
[4].

Theorem 1 Any harmonic function on the �nite cylinder B0�(�a; a) which
continuously vanishes on @B0�(�a; a) has a harmonic extension to RN�1�
(�a; a).

In the case where N = 2, Theorem 1 is easily veri�ed by repeated appli-
cation of the Schwarz re�ection principle. In higher dimensions the result
was proved by a detailed analysis of series expansions involving Bessel func-
tions. It is natural to ask whether some sort of extension result still holds
when the given harmonic function is merely de�ned near the curved bound-
ary (and inside the cylinder). The corresponding assertion certainly holds
when N = 2, as can again be seen by Schwarz re�ection. However, there
is an obstacle to this approach in higher dimensions, since Ebenfelt and
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Khavinson [3] (see also Chapter 10 of [5]) have shown that a point-to-point
re�ection law in R3 can only hold for planar or spherical surfaces. Neverthe-
less, as will be seen below, it is still possible to establish harmonic extension
to a �radial re�ection�of the original domain.

Let (x0; xN ) denote a typical point of RN�1 � R and kx0k denote the
Euclidean norm of x0. Our main result is as follows.

Theorem 2 Let � : (�a; a) ! [0; 1) be upper semicontinuous. Then any
harmonic function on the domain�

(x0; xN ) : jxN j < a and �(xN ) <
x0 < 1	 (1)

which continuously vanishes on @B0 � (�a; a) has a harmonic extension to
the domain�

(x0; xN ) : jxN j < a and �(xN ) <
x0 < 2� �(xN )	 : (2)

The sharpness of the upper bound 2� �(xN ) in (2) is demonstrated by
the example below.

Example Let N = 4 and � : [�a; a] ! [0; 1) be continuous. Then there
is a harmonic function on the domain (1) which continuously vanishes on
@B0 � (�a; a) and does not have a harmonic extension beyond the domain
(2).

To see this, let ! = f(s; t) 2 R2 : �(t) < s < 1; jtj < ag, let u be the
logarithmic potential of a measure comprising a dense sequence of point
masses in the set f(s; t) 2 @! : s 6= 1g, and let v(s; t) = u(s; t)� u(2� s; t).
Thus v is harmonic on the domain f(s; t) : �(t) < s < 2 � �(t); jtj < ag, is
unbounded near each boundary point, and vanishes on f1g � (�a; a). The
function

(x0; x4) 7!
x0�1 v(x0 ; x4) (x0 2 R3nf0g)

is now easily seen (by computation of the Laplacian) to be harmonic on the
domain (2) and to vanish on @B0� (�a; a), yet it does not have a harmonic
extension beyond (2).

Remark. The special case of Theorem 2 where the harmonic function
is of the form f(kx0k ; xN ) follows easily from known re�ection results in
the plane (see Lewy [7]), since �f + (N � 2)s�1@f=@s = 0 on the domain
f(s; t) : jtj < a; �(t) < s < 1g and f = 0 on the boundary line segment
f1g�(�a; a). There are even explicit formulae for the extension in this case:
see Savina [8]. (We are grateful to Dima Khavinson for these references.)

The proof of Theorem 2 will combine results from [4] with several addi-
tional arguments.
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2 Preparatory material

Let J� and Y� denote the usual Bessel functions of order � � 0, of the
�rst and second kinds (see Watson [11]). Further, let (j�;m)m�1 denote the
sequence of positive zeros of J� , arranged in increasing order. We collect
below a few facts that we will need.

Lemma 3 (i)
d

dz

J�(z)

z�
= �J�+1(z)

z�
.

(ii) jJ�(t)j � 1 (t > 0).
(iii) j�;m � (m+ 3=4)� + � (m � 1).
(iv) If y(t) =

p
tJ�(kt), where k is a non-zero constant, then

d2y

dt2
+

 
k2 +

1
4 � �

2

t2

!
y = 0 (t > 0):

(v) j2�;m fJ�+1(j�;m)g
2 � 2

�

q
j2�;m � �2 (m � 1).

Proof. (i) See p.45 of Watson [11].
(ii) See p.406, (10) of [11].
(iii) Laforgia and Muldoon (see (2.4) of [6]) showed that j�;m � j0;m+�,

and we know from p.489 of [11] that j0;m � (m+ 3=4)�.
(iv) See p.17, (1.8.9) of Szegö [10].
(v) See Lemma 3(i) of [4].

Next, we recall a result of Wimp and Colton [12], which was established
using the theory of Volterra integral equations.

Lemma 4 Let q 2 C[��; �], where � > 0, let (cn) be a sequence of non-zero
real numbers, and let (yn) be a sequence of functions on [��; �] satisfying

d2yn
dt2

+
�
c2n � q(t)

�
yn = 0; yn(0) = 0; y0n(0) = cn.

If there is a sequence (an) of real numbers satisfying
P
janj <1 andX

anyn(t) = 0 (0 � t � �); (3)

then X
anyn(t) = 0 (�� � t � 0); (4)

and the series in (3) and (4) converge uniformly in t.

The identities in the following result were previously known to hold when
s � t � 1. We will now extend their range of validity using Lemma 4.
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Lemma 5 Let 0 < s < 1.
(a) If � > 0, then

4�
1X
m=1

J�(j�;ms)J�(j�;mt)

j2�;m fJ�+1(j�;m)g
2 = s

�(t�� � t�) (s � t � 2� s); (5)

and the series converges uniformly in t.
(b) In the case where � = 0 we have

2

1X
m=1

J0(j0;ms)J0(j0;mt)

j20;m fJ1(j0;m)g
2 = � log t (s � t � 2� s);

and the series converges uniformly in t.

Proof. (a) Let � > 0, and let

y�;m(t) =
p
tJ�(j�;mt); cm =

q
j2�;m + 1; q(t) =

�2 � 1
4

t2
+1 (m � 1; t > 0):

Then, for m � 1,

d2y�;m
dt2

+
�
c2m � q(t)

�
y�;m =

d2y�;m
dt2

+

 
j2�;m +

1
4 � �

2

t2

!
y�;m = 0;

by Lemma 3(iv). Further,

y�;m(1) = 0 and y0�;m(1) = j�;mJ
0
�(j�;m) = �j�;mJ�+1(j�;m);

by Lemma 3(i). Also, if we de�ne

y�;0(t) =
p
t(t�� � t�) (t > 0) and c0 = 1;

then

d2y�;0
dt2

+
�
c20 � q(t)

�
y�;0 =

(
d2

dt2
+

1
4 � �

2

t2

)�
t
1
2
�� � t�+

1
2

�
= 0;

y�;0(1) = 0 and y0�;0(1) = �2�:

We know from Lemma 5(a) of [4] that equation (5) holds when t 2 [s; 1];
that is,

1X
m=0

am fbmy�;m(t)g = 0 (s � t � 1);

where

bm = �

q
j2�;m + 1

j�;mJ�+1(j�;m)
(m � 1); b0 = �

1

2�
;
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am = �4�
J�(j�;ms)

j�;mJ�+1(j�;m)
q
j2�;m + 1

(m � 1); a0 = 2�s
� :

Now bmy0�;m(1) = cm when m � 0. Also, when m � 1, we note that

jamj
4�

� jJ�(j�;ms)j
j2�;m jJ�+1(j�;m)j

�
r
�

2

1

j�;m
�
j2�;m � �2

�1=4 � 1

m3=2
;

by parts (ii), (iii) and (v) of Lemma 3, whence
P
jamj < 1. We can thus

apply Lemma 4, on replacing t by 1 � t, to deduce that (5) holds and that
the convergence is uniform in t.

(b) The argument is directly analogous to part (a).

If � > 0, let P (�)n be the usual ultraspherical (Gegenbauer) polynomial
de�ned by the expansion

(1� 2tu+ u2)�� =
1X
n=0

P (�)n (t)un (jtj � 1; juj < 1):

(See Section 4.7 of Szegö [10], or Chapter IV of Stein and Weiss [9].) Also,
let Tn(t) be the Chebychev polynomial given by cos(n cos�1 t) when jtj � 1.
We de�ne

�n = n+
N � 3
2

(n � 0);

and note the following basic facts for future reference. (The case of positive
exponents may be found on p.54 of [1], and the remaining case follows on
applying the Kelvin transformation.)

Lemma 6 Let y0 2 RN�1nf00g. Then the functions

x0 7!
x0 3�N2 P

(N�32 )
n

�
hx0; y0i
kx0k ky0k

�x0��n (N � 4);

x0 7! Tn

�
hx0; y0i
kx0k ky0k

�x0�n (N = 3)

are harmonic on RN�1nf00g.

The following result is taken from Lemma 11 in [4]. (The formula for
the distributional Laplacian is stated there only on B0 � R, but the same
reasoning applies on all of RN .)

Lemma 7 For any n � 0;m � 1 and any y 2 (B0nf00g) � R, let un;m;y be
the function de�ned by

x 7!
x0 3�N2 P

(N�32 )
n

�
hx0; y0i
kx0k ky0k

�
J�n(j�n;m kx0k)J�n(j�n;m ky0k)

j�n;m fJ�n+1(j�n;m)g2
e�j�n;mjxN�yN j (N � 4);
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x 7! Tn

�
hx0; y0i
kx0k ky0k

�
J�n(j�n;m kx0k)J�n(j�n;m ky0k)

j�n;m fJ�n+1(j�n;m)g2
e�j�n;mjxN�yN j (N = 3):

Then un;m;y
(i) is harmonic on

�
RN�1nf00g

�
� (RnfyNg);

(ii) has distributional Laplacian on RN given by

�2j�n;mun;m;y(z0; yN )dz0 on RN�1 � fyNg;

(iii) satis�es

jun;m;y(x)j �
1� ky0k
kx0kN=2�1

�
n+N � 4

n

�
e�j�n;mjxN�yN j

fJ�n+1(j�n;m)g2
;

where the binomial coe¢ cient is interpreted as 1 when N = 3.

3 Proof of Theorem 2

Let 
 denote the in�nite cylinder B0 � R, let G
(�; �) denote its Green
function, and let y 2 
. It will also be convenient to write aN = �N (N � 2)
when N � 3, and a2 = �2, where �N denotes the surface area of the unit
sphere in RN . A natural intermediate step towards proving Theorem 2 is to
establish a harmonic extension result for the function G
(�; y). We already
know from Theorem 13 of [4] that G
(�; y) has a harmonic extension eG
(�; y)
to RN�1 � (RnfyNg) given by

eG
(x; y) = ( aN
aN�1

ky0k(3�N)=2
P1
n=0 2�nhn;y(x) (N � 4)

2h0;y(x) + 4
P1
n=1 hn;y(x) (N = 3)

; (6)

where hn;y =
P1
m=1 un;m;y (n � 0). We need to establish that G
(�; y) also

has a harmonic extension across a certain portion of the set fxN = yNgn
.
To that end we will analyze, in Lemma 9 below, the behaviour of hn;y near
the hyperplane fxN = yNg. First we present a useful observation about
the Newtonian potential of a measure supported by a hyperplane, where the
measure has a harmonic density function with respect to (N�1)-dimensional
measure on some subregion of the hyperplane.

Lemma 8 Let h be an integrable harmonic function on a bounded open set
U 0 � RN�1, let c 2 R and let v be the Newtonian potential

v(x) =

Z
U 0

h(z0)

kx� (z0; c)kN�2
dz0 (x 2 RN ):

Then @2v=@x2N , which is clearly harmonic on RNn(U 0�fcg), has a harmonic
extension to RNn(@U 0 � fcg).
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Proof. Let

h� =

�
h on U 0

0 elsewhere on RN�1 :

Then, provided xN 6= c,

@2v

@x2N
(x) =

Z
RN�1

 
@2

@x2N

1

kx� (z0; c)kN�2

!
h�(z0)dz0

=

Z
RN�1

 
��x0

1

kx� (z0; c)kN�2

!
h�(z0)dz0

=

Z
RN�1

 
��z0

1

kx� (z0; c)kN�2

!
h�(z0)dz0

= (��h�)
�
z0 7!

x� (z0; c)2�N� ;
where �h� denotes the distributional Laplacian on RN�1. From the har-
monicity of h on U 0 we see that the support of the distribution �h� is con-
tained in @U 0, whence @2v=@x2N has a harmonic extension to RNn(@U 0�fcg).

For any y0 2 B0 we de�ne the annular set

Ay0 =
�
x0 2 RN�1 :

y0 < x0 < 2� y0	 :
Lemma 9 Let y 2 (B0nf00g)� R and n � 0. Then the series

P1
m=1 un;m;y

converges locally uniformly on Ay0 � (RnfyNg) to a harmonic function, and
this sum hn;y has a harmonic extension to Ay0 � R. Further,

jhn;y(x)j �
x01�N=2�n+N � 4

n

�
e�njxN�yN j=2

jxN � yN j2 (1� e�jxN�yN j)
(x 2 Ay0�(RnfyNg)):

(7)

Proof. By Lemma 7(iii), and then parts (v) and (iii) of Lemma 3,

jun;m;y(x)j
j2�n;m

�
x01�N=2�n+N � 4

n

�
e�j�n;mjxN�yN j

j2�n;m fJ�n+1(j�n;m)g
2

� �

2

x01�N=2�n+N � 4
n

�
e�j�n;mjxN�yN jq
j2�n;m � �2n

(8)

�
x01�N=2�n+N � 4

n

�
e�(m�+n)jxN�yN j

m
: (9)
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Since 1X
m=1

tm

m
= log

1

1� t (jtj < 1)

and (by the concavity of the function t 7! 1� e��t)

1� e��t
t

� 1� e��=2
1=2

> 1

�
0 � t � 1

2

�
;

we see from (9) that

1X
m=1

jun;m;y(x)j
j2�n;m

�
x01�N=2�n+N � 4

n

�
e�njxN�yN j log

1

1� e��jxN�yN j

�
y01�N=2�n+N � 4

n

�
log

1

jxN � yN j
(10)

when kx0k � ky0k and 0 < jxN � yN j < 1=2.
We de�ne the Newtonian potential

vn;m;y(x) =
1

aN

Z
Ay0

2un;m;y(z
0; yN )=j�n;m

kx� (z0; yN )kN�2
dz0:

By Lemma 5 the series

1X
m=1

2

j�n;m
un;m;y(z

0; yN ) (z0 2 Ay0)

converges uniformly on Ay0 to the sum

h(z0) =
z0 3�N2 P

(N�32 )
n

�
hz0; y0i
kz0k ky0k

�
ky0k�n
2�n

�z0��n � z0�n�
when N � 4, and to

h(z0) =

(
Tn

�
hz0;y0i
kz0kky0k

�
ky0kn
2n

�
kz0k�n � kz0kn

�
(n � 1)

� log kz0k (n = 0)

when N = 3. By Lemma 6 the function h is harmonic on Ay0 . Since

1X
m=1

vn;m;y(x) =
1

aN

Z
A0y

h(z0)

kx� (z0; yN )kN�2
dz0;

we see from Lemma 8 that

@2

@x2N

1X
m=1

vn;m;y has a harmonic extension to Ay0 � R: (11)
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We know from Lemma 7(ii) that j�2�n;mun;m;y � vn;m;y is harmonic on
Ay0 � R. Since the function

x 7! log
1

jxN � yN j

is integrable with respect to surface area measure on spheres contained in
Ay0 � [yN � 1=2; yN +1=2], it follows from (10) and the mean value property
that the series of harmonic functions

1X
m=1

�
un;m;y
j2�n;m

� vn;m;y
�

converges locally uniformly on Ay0 � (yN � 1=2; yN + 1=2). Since it also
clearly converges locally uniformly on A0y � (RnfyNg), by (9), we conclude
that it converges locally uniformly on A0y �R to a harmonic function H. In
view of (11) we deduce that there is a harmonic extension to Ay0 �R of the
function

@2

@x2N

 
H +

1X
m=1

vn;m;y(x)

!
, namely,

@2

@x2N

1X
m=1

un;m;y
j2�n;m

:

By (9) and standard estimates for derivatives of harmonic functions (Corol-
lary 1.4.3 of [1]), this series equals

1X
m=1

1

j2�n;m

@2un;m;y
@x2N

; that is,
1X
m=1

un;m;y;

on Ay0 � (RnfyNg). Thus the series
P1
m=1 un;m;y, which converges locally

uniformly on Ay0 � (RnfyNg), has a harmonic extension to Ay0 � R.
Finally, since t2e�at � 4(ae)�2 when t � 0 and a > 0, and j�n;m �

(m+ 3=4)� + �n, we see from (8) that

jun;m;y(x)j � �

2

x01�N=2�n+N � 4
n

�
4

7�
j2�n;me

�j�n;mjxN�yN j

�
x01�N=2�n+N � 4

n

��
42e�2

�
(2=7)

jxN � yN j2
e�j�n;mjxN�yN j=2

�
x01�N=2�n+N � 4

n

�
1

jxN � yN j2
e�njxN�yN j=2�
ejxN�yN j

�m ;
and so (7) holds.

We recalled at the beginning of this section that G
(�; y) has a harmonic
extension eG
(�; y) to RN�1� (RnfyNg). We will now show that it also has a
harmonic extension across part of the set fxN = yNgn
. This is the crucial
additional fact that will allow us to establish Theorem 2.
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Lemma 10 Let y 2 (B0nf00g)�R. Then G
(�; y) has a harmonic extensioneG
(�; y) to Ay0 � R. Further, if b=2 � ky0k � b and " 2 (0; b), where
b 2 (0; 1), then there is a constant C(N; b; ") such that

eG
(�; y) � C(N; b; ") (b+ " <
x0 < 2� b� "; jxN � yN j < 1). (12)

Proof. Let hn;y be as in the statement of Lemma 9. We claim that the
functions

x 7!
1X
n=0

�nhn;y(x) (N � 4) and x 7!
1X
n=1

hn;y(x) (N = 3) (13)

have harmonic extensions to Ay0 � R. We will show this when N � 4, the
argument when N = 3 being similar and simpler.

Now

�n

�
n+N � 4

n

�
�

�
n+

N � 3
2

�
(n+N � 4)N�4

� (n+N � 3)N�3 � ((N � 2)n)N�3 (n � 1):

Thus, using the fact that
P1
n=0 n

ke�nt = k!(1 � e�t)�k�1 when t > 0 and
k � 0, we see that

1X
n=0

�n

�
n+N � 4

n

�
e�njxN�yN j=2 � NN

1X
n=0

nN�3e�njxN�yN j=2

� NN (N � 3)!�
1� e�jxN�yN j=2

�N�2 :
Hence, by (7),

1X
n=0

j�nhn;y(x)j � kx0k1�N=2

jxN � yN j2 (1� e�jxN�yN j)

1X
n=0

�n

�
n+N � 4

n

�
e�njxN�yN j=2

� C(N) ky0k1�N=2

jxN � yN j2 (1� e�jxN�yN j=2)N�1
(x 2 Ay0 � (RnfyNg)):

Let My(xN ) denote the expression on the right hand side of the above
inequality and let b � ky0k. Since log+My is locally integrable on R, we can
apply a result of Domar (Theorem 3 and Remark 1 of [2]) to see that the
series in (13) converges locally uniformly on Ay0 �R to a harmonic function
Hy satisfying

jHy(x)j � C(N; b; ") (b+ " <
x0 < 2� b� "; jxN � yN j < 1);

where C(N; b; ") is a positive constant depending at most on N; b; ".
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Finally, in view of (6), G
(�; y) has a harmonic extension eG
(�; y) to
Ay0 � R satisfying an estimate of the form (12).

We now establish the special case of Theorem 2 in which we consider a
constant function � = �0.

Theorem 11 Let �0 2 (0; 1). Then any harmonic function h on the domain�
(x0; xN ) : jxN j < a and �0 <

x0 < 1	
which vanishes on @B0 � (�a; a) has a harmonic extension to the domain�

(x0; xN ) : jxN j < a and �0 <
x0 < 2� �0	 :

Proof. Let h be as in the statement of the theorem, and let 0 < " <
minf(1 � �0)=2; �0=3; ag. We may assume, without loss of generality, that
a 2 (0; 12). Then there is a C

2 function h0 on 
 which equals h on the set

f(x0; xN ) : jxN j � a� " and �0 + " <
x0 < 1g

and vanishes on

f(x0; xN ) : jxN j � a� " and
x0 < 2�0=3g:

Let h1 = h0 + v0, where

v0(x) = a
�1
N

Z
B0�(�a+";a�")

eG
(x; y)�h0(y)dy:
Then h1 is harmonic on B0�(�a+"; a�") and vanishes on @B0�(�a+"; a�
"). By Theorem 1 it has a harmonic extension to RN�1 � (�a + "; a � ").
Further, the support of (�h0)jB0�(�a+";a�") is contained in the set where
2�0=3 � ky0k � �0 + " � 4�0=3. Thus we can appeal to Lemma 10, with
b = �0 + ", to see from (12) that v0 has a harmonic extension to

f(x0; xN ) : jxN j � a� " and �0 + 2" <
x0 < 2� �0 � 2"g:

Hence h0, and so also h, has a harmonic extension to the above set. Since "
can be arbitrarily small, the theorem is proved.

The general case of Theorem 2 may now be deduced as follows. Let
(z0; zN ) be a point of the domain (1) and choose �0 2 (�(zN ); kz0k). By the
upper semicontinuity of � we can �nd " 2 (0; a � jzN j) such that �(t) <
�0 when jt� zN j < ". If h is harmonic on the set (1) and vanishes on
@B0 � (�a; a), then it is harmonic on�

(x0; xN ) : jxN � zN j < " and �0 <
x0 < 1	

and vanishes on @B0 � (zN � "; zN + "). By Theorem 11 and a translation
in the xN -direction, we see that h has a harmonic extension to the domain�

(x0; xN ) : jxN � zN j < " and �0 <
x0 < 2� �0	 :

Since �0 can be arbitrarily close to �(zN ), we arrive at the desired conclusion.
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