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Abstract

Suppose that a harmonic function h on a finite cylinder U vanishes
on the curved part A of the boundary. It was recently shown that
h then has a harmonic continuation to the infinite strip bounded by
the hyperplanes containing the flat parts of the boundary. This paper
examines what can be said if the above function h is merely harmonic
near A (and inside U). It is shown that h then has a harmonic extension
to a larger domain formed by radial reflection.

1 Introduction

Let N > 3 and a > 0, and let B’ denote the open unit ball in RV~ The
following harmonic extension result for cylinders was recently established in

[4].

Theorem 1 Any harmonic function on the finite cylinder B'x (—a, a) which
continuously vanishes on OB’ x (—a,a) has a harmonic extension to RN ~1 x

(—a,a).

In the case where N = 2, Theorem 1 is easily verified by repeated appli-
cation of the Schwarz reflection principle. In higher dimensions the result
was proved by a detailed analysis of series expansions involving Bessel func-
tions. It is natural to ask whether some sort of extension result still holds
when the given harmonic function is merely defined near the curved bound-
ary (and inside the cylinder). The corresponding assertion certainly holds
when N = 2, as can again be seen by Schwarz reflection. However, there
is an obstacle to this approach in higher dimensions, since Ebenfelt and
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Khavinson [3] (see also Chapter 10 of [5]) have shown that a point-to-point
reflection law in R? can only hold for planar or spherical surfaces. Neverthe-
less, as will be seen below, it is still possible to establish harmonic extension
to a “radial reflection” of the original domain.

Let (2/,zy) denote a typical point of RV~! x R and ||2’|| denote the
Euclidean norm of z’. Our main result is as follows.

Theorem 2 Let ¢ : (—a,a) — [0,1) be upper semicontinuous. Then any
harmonic function on the domain

{@,zn) oy <a and ¢(zn) < ||o'|| <1} (1)

which continuously vanishes on OB’ X (—a,a) has a harmonic extension to
the domain

{@ zn) oy <a and ¢(zn) < ||2'|| <2 - d(zn)}. (2)

The sharpness of the upper bound 2 — ¢(zy) in (2) is demonstrated by
the example below.

Example Let N = 4 and ¢ : [—a,a] — [0,1) be continuous. Then there
is a harmonic function on the domain (1) which continuously vanishes on
OB’ x (—a,a) and does not have a harmonic extension beyond the domain
(2).

To see this, let w = {(s,t) € R? : ¢(t) < s < 1,|t| < a}, let u be the
logarithmic potential of a measure comprising a dense sequence of point
masses in the set {(s,t) € dw : s # 1}, and let v(s,t) = u(s,t) — u(2 — s,1).
Thus v is harmonic on the domain {(s,t) : ¢(t) < s < 2 — ¢(t),|t| < a}, is
unbounded near each boundary point, and vanishes on {1} X (—a,a). The
function

(@, 2a) = ||| o] 2a) (2 € R3\{0})

is now easily seen (by computation of the Laplacian) to be harmonic on the
domain (2) and to vanish on 9B’ x (—a,a), yet it does not have a harmonic
extension beyond (2).

Remark. The special case of Theorem 2 where the harmonic function
is of the form f(||z’||,zn) follows easily from known reflection results in
the plane (see Lewy [7]), since Af + (N — 2)s~19f/ds = 0 on the domain
{(s,t) : |t| < a,¢(t) < s < 1} and f = 0 on the boundary line segment
{1} X (—a, a). There are even explicit formulae for the extension in this case:
see Savina [8]. (We are grateful to Dima Khavinson for these references.)

The proof of Theorem 2 will combine results from [4] with several addi-
tional arguments.



2 Preparatory material

Let J, and Y, denote the usual Bessel functions of order v > 0, of the
first and second kinds (see Watson [11]). Further, let (j, m)m>1 denote the
sequence of positive zeros of J,, arranged in increasing order. We collect
below a few facts that we will need.
d Ju(z) JZ/+1(Z)

Lemma 3 (z)g o zV

(i) [J,(t)] <1 (t>0).

(iit) jym > (m+3/4)m+v  (m>1).

(iv) If y(t) = V/tJ,(kt), where k is a non-zero constant, then

d2 1_ .2
y+<ﬁ+4 V)yzo (t > 0).

a2 t2

(v) 32 0 {Tvi1 Gom) }> > Jim— V2 (m>1).

2
T
Proof. (i) See p.45 of Watson [11].

(ii) See p.406, (10) of [11].

(iii) Laforgia and Muldoon (see (2.4) of [6]) showed that j, m > jom + v,
and we know from p.489 of [11] that jo ., > (m + 3/4)7.

(iv) See p.17, (1.8.9) of Szegd [10].

(v) See Lemma 3(i) of [4]. m

Next, we recall a result of Wimp and Colton [12], which was established
using the theory of Volterra integral equations.

Lemma 4 Let g € C[-0,6], where § > 0, let (c,) be a sequence of non-zero

real numbers, and let (yy) be a sequence of functions on [—d, 8] satisfying
d*yn
dt?

+ (ci — q(t)) yn =0, y,(0)=0, 9,(0)=cp.
If there is a sequence (ay) of real numbers satisfying > |an| < oo and

Zanyn(t> =0 (0<t<9), (3)

then

S amn() =0 (=5 <t<0), (4)

and the series in (3) and (4) converge uniformly in t.

The identities in the following result were previously known to hold when
s <t < 1. We will now extend their range of validity using Lemma 4.



Lemma 5 Let 0 < s < 1.
(a) If v > 0, then

o0

Ju (Jvm3) v (Gumt)

4v > - 5
m=1Jv.m {JV+1 (]V,m)}

=s'(t7" —t") (s<t<2-—y), (5)

and the series converges uniformly in t.
(b) In the case where v =0 we have

oo i0.m ot
9 Z Jogjo, 3)J9(30, 2) _ 710gt (S <t< 9_ S),
m=1 jO,m {Jl(]07m)}

and the series converges uniformly in t.

Proof. (a) Let v > 0, and let

2 1

. . vc-—17
Yom(t) = VL, (Gumt), cm = \[d2m +1, q(t) = ﬁ4ﬂ (m>1,t>0).

Then, for m > 1,

1
e 1 (= al0) o = U5+ (nm + ;) i =0,
by Lemma 3(iv). Further,
Yom(1) =0 and ), (1) = jumT, (Gvm) = —v.mTus1(jvm),
by Lemma 3(i). Also, if we define
Yoo(t) =Vt —t") (t>0) and ¢y =1,

then

d*y, o 2 1,2 N .
dt27 + (C% - q(t)) Yv,o = ﬁ + 4T <t2 v_ tV+2) = 0’

Yo(l) =0 and y;o(l) = —2u.

We know from Lemma 5(a) of [4] that equation (5) holds when ¢ € [s, 1];
that is,

Z Am {bmyu,m(t)} =0 (3 <t< 1)5

\/JZm 1 1
—— (m2>1), bo=-—7

where



Ju(ju,m3>

jl/,mJV—l—l (j%m) \/m

Now by, m(1) = ¢m when m > 0. Also, when m > 1, we note that

|am| < | v (Jiv,ms)| < \/? 1 < 1
v~ Jl%,m | o1 (Gvm)| — V2 Jv,m (]Em - 1/2)1/4 T omd

by parts (ii), (iii) and (v) of Lemma 3, whence ) |ay,| < co. We can thus
apply Lemma 4, on replacing ¢ by 1 — ¢, to deduce that (5) holds and that
the convergence is uniform in ¢.

(b) The argument is directly analogous to part (a). m

am = —4v (m>1), ap=2vs".

If A >0, let P,({\) be the usual ultraspherical (Gegenbauer) polynomial
defined by the expansion

(1 —2tu+u®)=> PMeu" (|t < 1,]ul < 1).
n=0

(See Section 4.7 of Szegd [10], or Chapter IV of Stein and Weiss [9].) Also,
let T;,(t) be the Chebychev polynomial given by cos(ncos™!t) when |t]| < 1.
We define

Vn:n—i-? (n >0),

and note the following basic facts for future reference. (The case of positive
exponents may be found on p.54 of [1], and the remaining case follows on
applying the Kelvin transformation.)

Lemma 6 Let y’ € RN=1\{0'}. Then the functions

H H Py <H$/H H?/H) H H (N24):
e L )

[l {1yl

are harmonic on RN=1\{0'}.

The following result is taken from Lemma 11 in [4]. (The formula for
the distributional Laplacian is stated there only on B’ x R, but the same
reasoning applies on all of RV.)

Lemma 7 For anyn > 0,m > 1 and any y € (B'\{0'}) X R, let upmy be
the function defined by

s Hm’H%Bg%) ( (', y) ) S G (21D T Grnam 1Y) =5, o~y (N > 4)
/[yl Gomgn ASvn41(vnm) Y -



It ; ! 1 !

T — Tn < <.'1,7 Y >/ > JVn(]'Vn,m HfI,' H)Jl’n(jynamyy ”)e—jun,m‘xN_le (N = 3)
[l Jvmim ATvn+1(Grnm) }

Then wp m,y

(i) is harmonic on (RN"1\{0'}) x (R\{yn});
(ii) has distributional Laplacian on RY given by

_2jun,mun,m,y(zlvyN)dz/ on RN~ x {yN}§

(iii) satisfies

-y (n +N— 4> o JvnmlEN—yn]|
n

|“n,m, (5'3)| S 57 3 )
! || V72 (o1 Gonm) 1

where the binomial coefficient is interpreted as 1 when N = 3.

3 Proof of Theorem 2

Let © denote the infinite cylinder B’ x R, let Gq(-,-) denote its Green
function, and let y € Q. It will also be convenient to write ay = on (N — 2)
when N > 3, and ay = 09, where oy denotes the surface area of the unit
sphere in RY. A natural intermediate step towards proving Theorem 2 is to
establish a harmonic extension result for the function Gq(-,y). We already
know from Theorem 13 of [4] that Gg(-,y) has a harmonic extension Gg (-, y)
to RY=1 x (R\{yn}) given by

Galey) = | o 0107 S g 2wy () (N
2hoy(2) +4> 07 hny(z) (N

A\

4)
3)
where hpy = > 00 | Upmy (n > 0). We need to establish that Gqo(-,y) also
has a harmonic extension across a certain portion of the set {zy = yn}\Q.
To that end we will analyze, in Lemma 9 below, the behaviour of h,, , near
the hyperplane {zny = yn}. First we present a useful observation about
the Newtonian potential of a measure supported by a hyperplane, where the
measure has a harmonic density function with respect to (N —1)-dimensional
measure on some subregion of the hyperplane.

(6)

Lemma 8 Let h be an integrable harmonic function on a bounded open set
U' c RN=1 let c € R and let v be the Newtonian potential

- h(Z/) Z, T N
v(m)—/U,”x_ d (x € RY).

(=, )I"

Then 0%v/82%;, which is clearly harmonic on RN\(U’ x{c}), has a harmonic
extension to RN\ (AU’ x {c}).



Proof. Let

. h on U’
1 0 elsewhere on RV-1

Then, provided xx # c,

Pugy
0z, ry-1 \ O3 |z — (2, ¢)

()
R )h*
(o

2
0 W (x

N2

=

A h* (2

N-1

=

|z — (2, ¢) ||N 2

= (—Ahr* z»—>Hx— (7 cH2 N
where Ah* denotes the distributional Laplacian on RV~ From the hai-
monicity of A on U’ we see that the support of the distribution Ah* is con-

tained in OU’, whence 9%v/0x3; has a harmonic extension to RN\ (90U’ x {c}).
]

For any y' € B’ we define the annular set

Ay ={a" e RV || < [l < 2= [ly/]]} -

Lemma 9 Let y € (B'\{0'}) xR and n > 0. Then the series > o Un.my
converges locally uniformly on Ay x (R\{yn}) to a harmonic function, and
this sum hy, 4 has a harmonic extension to A,y x R. Further,

1-N/2 [+ N —4 e_n‘xN_yN|/2
gl < [l (" e
n |$N_yN‘ (1—6 |z N yN|)

(z € Ay x(R\{yn}))-
(7)

Proof. By Lemma 7(iii), and then parts (v) and (iii) of Lemma 3,

|un7m7y(x)| 7111-N/2 n+N—4 @*jun,m@N*yN\
@l ) i o
JVT“m n jun,m {JVn+1(]V7L7 )}
+ N — 4\ e Jvrnmlzn—yn]
< St .
jVnm_yz
— —(mm+n)|zN—yn|
< Hx/HlfN/2 <H+N 4)@ mT+n)|TN ?JN. o)

n m



Since -
tm 1

— =1 t <1
S mlog— (<)

m=1

and (by the concavity of the function ¢ — 1 — e~ ™)

l—e™ 1—e7/2
Z >1 OStS* )
t 1/2

we see from (9) that

—_

(e o]

Z Wﬂ < H:E/HI—N/2 <n+ N — 4) e — log;
me1 Jvnm n 1 — e~ Tlen—yn]|
- +N—4 1
o i (1)
n 2N — yn|

when [|2/|| > ||y/]] and 0 < |zny — yn| < 1/2.
We define the Newtonian potential

12 ) /iy
/ unﬂ’my (Z I yN)/] n,M dZI.
Ay/

Unmy () = — _
e an |z — (2, yn) |V 2

By Lemma 5 the series

o0

2

.]Vn 1M

un,m,y(z,a YN) (Z/ € Ay’)

m=1

converges uniformly on Zy/ to the sum

h(z') = HZ/H¥ PTS%) ( (z' ") ) lly'[I” (HZ/H—WL B HZIHVn)

1yl ) 2vm

when N > 4, and to

Ly Ny -n _ n
h(z’)z{ T (gtn) e (1217 = 1207) - (o2 )

—log ||/ (n=0)

when N = 3. By Lemma 6 the function A is harmonic on A,/. Since

> 1 h(z") ,
Un,moy (T) = / —dz’,
2; ! Ay e = () V2

anN Z/) YN

we see from Lemma 8 that

P . .
902 Z Un,m,y has a harmonic extension to A, x R. (11)
N m=1



We know from Lemma 7(ii) that jy_n%mun,m,y — Un,m,y is harmonic on
Ay x R. Since the function

x +— log ——
[N — yn]|

is integrable with respect to surface area measure on spheres contained in
Ay xlyn —1/2,yn +1/2], it follows from (10) and the mean value property
that the series of harmonic functions

> U
2 : 1M, Y
< : : - vn7m7y)

;2
=\ dm

converges locally uniformly on A, x (yny —1/2,yn + 1/2). Since it also
clearly converges locally uniformly on Aj x (R\{yn}), by (9), we conclude
that it converges locally uniformly on A; x R to a harmonic function H. In
view of (11) we deduce that there is a harmonic extension to A,/ x R of the
function

2 o

0? - 9 Un,m.y
% H+n;vn7m7y(x) , namely, 52 Z :

2
N m=1 jVnym

By (9) and standard estimates for derivatives of harmonic functions (Corol-
lary 1.4.3 of [1]), this series equals

o0 2 o]
1 a un7m7y h 3
g 2 g2 that 1s, E Un,m,y»
m=1 Jirn,m TN m=1

on Ay x (R\{yn}). Thus the series Y > | tp my, which converges locally
uniformly on A, x (R\{yn}), has a harmonic extension to A, x R.

Finally, since t?¢=% < 4(ae)™2 when t > 0 and a > 0, and j,, m
(m+3/4)m + vy, we see from (8) that

n

- N4\ 4 , B
unma(@)| < 3 |l (” ) )hjgmme PO—
<l <”+N - 4) (B) QUT) iy mlan-un2
n lzNn — yn]|
< Hm/Hl—N/Q <n + N — 4> 1 e—nlzn—yn|/2

|[L'N — yN’2 (e'xN_yN‘)m ’

and so (7) holds. m

We recalled at the beginning of this section that Gq(+,y) has a harmonic
extension Gq (-, y) to RV =1 x (R\{yn}). We will now show that it also has a
harmonic extension across part of the set {zy = yn}\Q. This is the crucial
additional fact that will allow us to establish Theorem 2.



Lemma 10 Lety € (B'\{0'})xR. Then Gq(-,y) has a harmonic extension
Gao(,y) to Ay x R. Further, if b/2 < ||y|| < b and ¢ € (0,b), where
be (0,1), then there is a constant C(N,b,e) such that

Galy) <C(N,be) (b+e< ||| <2-b—e oy —yn| <1). (12)

Proof. Let h,, be as in the statement of Lemma 9. We claim that the
functions

2= Y Vphny(z) (N>4) and z— Y hoy(z) (N=3) (13)
n=0

n=1

have harmonic extensions to Ay/ X R. We will show this when N > 4, the
argument when N = 3 being similar and simpler.
Now

N -4 N -3
Vn<n+n ) < <n—|—2)(n+N—4)N4

< (n+ N=3)" P <(N=-2m)"F (n>1).

Thus, using the fact that > o0 jnFe™™ = k(1 — e*)™*~1 when ¢ > 0 and
k > 0, we see that

0o o0
Zyn(n+N_4>e—n|mN—yN/2 < NNZnN_ge_n|$N_yN|/2

n
n=0

NY(N - 3)!
)N72‘

n=0

IN

(1 — e-len—unl/2

Hence, by (7),

o=

o0
S <” +N - 4) ER—DE
n

n=0

Z by (z)] <
n=0

lzn —yn|? (1 — e~len—unl)
C(N) Iy~
lzn — ?/N|2 (1-— 6_|xN_yN|/2)N—1

(z € Ay x (R\{yn}))-

Let My(xn) denote the expression on the right hand side of the above
inequality and let b > ||y/||. Since log* M, is locally integrable on R, we can
apply a result of Domar (Theorem 3 and Remark 1 of [2]) to see that the
series in (13) converges locally uniformly on A, x R to a harmonic function
H, satisfying

|Hy($)| < C(N,bas) (b+6 < Hx,H <2- b*57|$N *yN| < 1)a

where C'(N,b,¢) is a positive constant depending at most on N, b, e.

10



Finally, in view of (6), Ga(-,y) has a harmonic extension Ggo(,y) to
Ay x R satisfying an estimate of the form (12). m

We now establish the special case of Theorem 2 in which we consider a
constant function ¢ = ¢y.

Theorem 11 Let ¢y € (0,1). Then any harmonic function h on the domain
{(@, zn) oy <a and ¢ < ||2'|| <1}
which vanishes on OB’ x (—a,a) has a harmonic extension to the domain
{(@,zn) : Jon| <a and ¢ < ||2'|| <2— g} .

Proof. Let h be as in the statement of the theorem, and let 0 < € <
min{(1 — ¢g)/2, ¢y/3,a}. We may assume, without loss of generality, that
a € (0, %) Then there is a C? function hg on Q which equals h on the set

{(z',an) s Jan] <a—e and ¢y +e < [|2[| <1}
and vanishes on
{(@',2n) : |ox| <a—e and la'[| < 260/3}.

Let hy = hg + vg, where
vo(z) = a]_\,l/ Gal(x,y) Aho(y)dy.
B'x(—a+¢e,a—¢)

Then h; is harmonic on B’ X (—a+e¢,a—¢) and vanishes on 0B’ x (—a+¢,a—
¢). By Theorem 1 it has a harmonic extension to RV =1 x (—a +¢,a — ¢).
Further, the support of (Aho)|p/x(—ate,a—e) s contained in the set where
200/3 < ||| < ¢ + ¢ < 4¢y/3. Thus we can appeal to Lemma 10, with
b= ¢y + ¢, to see from (12) that vg has a harmonic extension to

{(@,an) i lon] Sa—e and ¢y +2e < ||2'|| <2 — ¢y — 2¢}.

Hence hg, and so also h, has a harmonic extension to the above set. Since ¢
can be arbitrarily small, the theorem is proved. =

The general case of Theorem 2 may now be deduced as follows. Let
(', zn) be a point of the domain (1) and choose ¢, € (¢(zn), ||2']|). By the
upper semicontinuity of ¢ we can find € € (0,a — |zn]|) such that ¢(¢) <
¢o when |t —zy| < e. If h is harmonic on the set (1) and vanishes on
OB’ x (—a,a), then it is harmonic on

{(@,zn): |ty — 2| <& and ¢ < Hx'H <1}

and vanishes on OB’ x (zy —¢,2zn + ¢). By Theorem 11 and a translation
in the x-direction, we see that h has a harmonic extension to the domain

{(@,zn) : |oy — 2n] <e and ¢y < ||2|| <2— ¢} -

Since ¢ can be arbitrarily close to ¢(zxy), we arrive at the desired conclusion.

11
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