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Summary 
Nowadays, massive amounts of data which are often 

geographically distributed and owned by different organizations 

are being mined. As consequence, a large mount of knowledge is 

being produced. This causes the problem of efficient knowledge 

management in distributed data mining (DDM). The main aim of 

DDM is to exploit fully the benefit of distributed data analysis 

while minimizing the communication overhead. Existing DDM 

techniques perform partial analysis of local data at individual 

sites and then generate global models by aggregating the local 

results. These two steps are not independent since naive 

approaches to local analysis may produce incorrect and 

ambiguous global data models. 

 

To overcome this problem, we introduce "knowledge map" 

approach to represent easily and efficiently the knowledge mined 

in a large scale distributed platform such as Grid. This approach 

is developed and integrated in a DDM framework. This will also 

facilitate the integration/coordination of local mining processes 

and existing knowledge to increase the accuracy of the final 

model. Our "knowledge map" is being tested on real large 

datasets.. 

Key words: 
distributed data mining, knowledge map, knowledge 

management. 

1. Introduction 

While massive amounts of data are being collected 

and stored from not only science fields but also industry 

and commerce fields, the efficient mining and management 

of useful information of this data is becoming a scientific 

challenge and a massive economic need. This led to the 

development of distributed data mining (DDM) techniques 

[16][17] to deal with huge and multi-dimensional datasets 

distributed over a large number of sites. This phenomenon 

leads to the problem of managing the mined results, so 

called knowledge, which becomes more complex and 

sophisticated. This is even more critical when the local 

knowledge of different sites are owned by different 

organizations. Existing (DDM) techniques is based on 

performing partial analysis on  local data at individual sites 

and then generating global models by aggregating these 

local  results. These two steps are not independent since 

naive approaches to local analysis may produce incorrect 

and ambiguous global data models. In order to take the 

advantage of mined knowledge at different locations, 

DDM should have a view of the knowledge that not only 

facilitates their  integration but also minimizes the effect of 

the local results on the global models. Briefly, an efficient 

management of distributed knowledge is one of the key 

factors affecting the outputs of these techniques. 

 

Recently, many research projects on knowledge 

management in data mining were initiated [28][13][1]. 

Their goals are to tackle the knowledge management issues 

as well as present new approaches. However, most of them 

propose solutions for centralized data mining and only few 

of them have attempted the issues of large scale DDM. 

Moreover, some recent research works [4] have just 

provided a manner of managing knowledge but not the 

integration and coordination of these results from local 

results. 

 

 

Fig. 1  ADMIRER’s core architecture. 

In this paper, we propose a "knowledge map", an 

approach for managing knowledge of (DDM) tasks on 

large scale distributed systems and also supporting the 

integration views of related knowledge. The concept of 

knowledge map has been efficiently exploited in managing 

and sharing knowledge [23] in different domains but not 

yet in DDM techniques. Our main goal is to provide a 

simple and efficient way to handle a large amount of 

knowledge built from DDM applications in Grid 

environments. This knowledge map helps to retrieve 
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quickly any results needed with a high accuracy. It will 

also facilitate the merging and coordination of local results 

to generate global models. This knowledge map is one of 

the key layers of ADMIRE [18] (Figure  1), a framework 

based on Grid platform for developing DDM techniques to 

deal with very large and distributed heterogeneous datasets. 

 

The  rest of this paper is organized as follows: In section 2, 

we give some backgrounds of knowledge representation 

and knowledge map concept as well as related projects. 

We present the architecture of our knowledge map in 

section 3. Section 4 presents knowledge map's operations. 

Implementation issues of knowledge map are presented in 

section 5 and an evaluation of this approach is presented in 

section 6. Finally, we conclude in section 7. 

2. Background 

In this section, we present some methods for representing 

knowledge in data mining. We discuss the concept of 

knowledge map and its use in managing the knowledge. 

This section will be ended by related work on knowledge 

map and knowledge management. 

2.1 Knowledge representation 

There are many different ways of representing mined 

knowledge in literature, such as decision tables, decision 

trees (Figure 2), classification rules, association rules, 

instance-based and clusters. Decision table is one of the 

simplest ways of representing knowledge. The columns 

contain set of attributes including the decisions and the 

rows represent the knowledge elements. This structure is 

simple but it can be sparse because of some unused 

attributes. Decision tree approach is based on "divide-and-

conquer" concept where each node tests a particular 

attribute and the classification is given at the leaves level.  

However, it has to deal with missing value problem. 

Classification rules [9] are a popular alternative to 

decision tree. Association rules [9] are kind of 

classification rules except that they can predict any 

attribute and this gives them the flexibility to predict 

combinations of attributes too. Moreover, association rules 

are not intended to be used together as a set as 

classification rules are. 

 

Classification rules as well as association rules are a kind 

of production rules [2] that are widely used in knowledge 

representation [12]. A rule is a knowledge representation 

technique and a structure that relates one or more causes, 

or a situation, to one or more effects (consequents) or 

actions. It is also called cause-effect relationships 

represented by an "IF {cause expression} THEN 

{conclusion expression}". The IF part of the rule is an 

cause expression composed of causes, and the effects are 

contained in the conclusion expression of THEN, so that 

the conclusions may be inferred from the causes when they 

are true. A rule may also be extended to an uncertain rule 

or a fuzzy rule by adding appropriate attributes. Briefly, the 

knowledge of an intelligent system could be represented by 

using a number of rules. In this case, these rules are usually 

grouped into sets and each set contains rules related to the 

same topic. In the data mining, rules can be used in the 

representation of knowledge learnt from classification 

tasks, association rules tasks, etc. It is also called rule-

based classification [14] in classification problems where a 

set of "IF, THEN" rules including attributes such as 

coverage and accuracy is applied. Moreover, rules can be 

extracted from other kinds of model representations such 

as decision tree, neural network, etc. In association rule 

tasks, knowledge is represented by a set of rules with two 

attributes: confidence and support. 

 

 

 
 

Fig. 2  Knowledge representations 

 

The instance-based knowledge representation uses the 

instances to represent what is mined rather than inferring a 

rule set and store it instead. The problem is that they do not 

make explicit the structures of the knowledge. In the 

cluster approach, the knowledge can take the form of a 

diagram to show how the instances fall into clusters. There 

are many kinds of cluster representations such as space 

partitioning, Venn diagram, table, tree, etc. Clustering [9] 

is often followed by a stage in which a decision tree or rule 

set is inferred allocating each instance to its cluster. Other 

knowledge representation approaches, such as Petri net 
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[25], Fuzzy Petri nets [5] and G-net [8] were also 

developed and used. 

2.2 Knowledge map concept 

A knowledge map is generally a representation of 

"knowledge about knowledge" rather than of knowledge 

itself [7][10][29]. It basically helps to detect the sources of 

knowledge and their structures by representing the 

elements and structural links of the application domains. 

Some kind of knowledge map structure that can be found 

in literature  are: hierarchical/radial knowledge map, 

networked knowledge map, knowledge source map and 

knowledge flow map. 

 

Hierarchical knowledge map, so-called concept map [23], 

provides one model for the hierarchical organization of  

knowledge: top-level concepts are abstractions with few 

characteristics. Concepts of the level below have detailed 

traits of the super concept. The link between concepts can 

represent any type of relations as "is part of", "influences", 

"can determine", etc. A similar approach is radial 

knowledge map or mind map [3], which consists of 

concepts that are linked through propositions. However, it 

is radially organized. Networked knowledge map is also 

called causal map which is defined as a technique "for 

linking strategic thinking and acting, making sense of 

complex problems, and communicating with others what 

might be done about them" [3]. This approach is normally 

used for systematizing knowledge about causes and effects. 

Knowledge source map [10] is a kind of organizational 

charts that does not describe functions, responsibility and 

hierarchy, but expertise. It helps experts in a specific 

knowledge domain. The knowledge flow map [10] 

represents the order in which knowledge resources should 

be used rather than a map of knowledge. 

2.3 Related works 

Little research work on knowledge map is given in 

[11][21]. However, these few projects were not in the 

context of DDM. 

 

The Knowledge Grid project [4] proposed an approach to 

manage the knowledge by using Knowledge Discovery 

Service. This module is responsible  for handling meta-

data of not only knowledge obtained from mining tasks but 

also all kinds of resources such as hosts, data repositories, 

used tools and algorithms, etc. All metadata  information is 

stored in a Knowledge Metadata Repository. However, this 

approach does not provide a management of meta-data of 

knowledge in their relationships to support the integration 

view of knowledge as well as the coordination of local the 

mining process. There is moreover no distinct separation 

between resource, data, and knowledge. 

 

Until now, to the best of our knowledge, in spite of the 

popularity of DDM applications, there is only our system 

[19] that  provides knowledge map layer for DDM 

applications on a Grid type platforms. This constitutes one 

of the motivations of our research to provide a fully 

integrated view of knowledge to facilitate the coordination 

of local mining processes and increase the accuracy of the 

final models. 

3. Architecture of knowledge map 

The knowledge map (KM) does not attempt to systematize 

the knowledge itself but rather to codify "knowledge about 

knowledge". In our context, it facilitates (DDM) by 

supporting users coordination and interpretation of the 

results. The objectives of our (KM) architecture are: 

provide an efficient way to handle a large amount of data 

collected and stored in large scale distributed system; 

retrieve easily, quickly, and accurately the knowledge; and 

support the integration process of the knowledge. We 

propose an architecture of the (KM) system as shown in 

Figure 3, 4, 5 and 6 to achieve these goals. KM consists of 

the following components: knowledge navigator, 

knowledge map core, knowledge retrieval, local 

knowledge map and knowledge map manager (Figure 3). 

From now on, we use the term "mined knowledge" to 

represent for knowledge built from applications. 

 

 
 

Fig. 3  Knowledge map systems 

 

3.1 Knowledge navigator 

Usually, users may not exactly know the mined knowledge 

they are looking for. Thus, knowledge navigator 

component is responsible for guiding users to explore the 

KM and for determining the knowledge of interest. The 

result of this task is not the knowledge but its meta-data, 

called meta-knowledge, which includes related 
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information such as data mining task used, data type, and a 

brief description of this knowledge and its location. For 

example, a user may want to retrieve some knowledge 

about tropical cyclone. The application domain 

"meteorology" allows the user to navigate through tropical 

cyclone area and then a list of knowledge related to it will 

be extracted. Next, based on this meta-knowledge and its 

application domain, the users will decide which knowledge 

and its location are to be retrieved. It will interact with 

knowledge retrieval component to collect all mined 

knowledge from chosen locations. 

3.2 Knowledge map core 

This component (Figure 4) is composed of two main parts: 

concept tree repository and meta-knowledge repository. 

The former is a repository storing a set of application 

domains. Each application domain is represented by a 

concept tree that has a hierarchical structure such as a 

concept map [23]. A node of this tree, so called  concept 

node represents a sub-application domain and each 

concept node includes a unique identity, called  concept 

identity, in the whole concept tree repository and a name 

of its sub-application domain. The content of each  concept 

tree is defined by the administrator before using the KM 

system. The concept tree repository could also be updated 

during the runtime. In our approach, a mined knowledge is 

assigned to only one sub-application domain and this 

assignment is given by the users. 

 

 

 
 

Fig. 4  Knowledge map core structure 

 

As shown in Figure 4 for example, the concept tree 

repository contains an application domain named 

"meteorology" which includes sub-application domains 

such as "weather forecasting", "storm" and "climate". And 

then, "thunder storm", "tropical cyclone" and "tornado" are 

parts of "storm". By using concept tree, we can deal with 

the problem of knowledge context. For instance, given the 

distributed nature of the knowledge, some of them may 

have variations depending on the context in which it is 

presented locally. Moreover, we can also extend the 

concept tree of each application domain to an ontology of 

this domain in order to increase the accuracy in retrieving 

knowledge in different contexts. At that moment, the 

concept tree will become a taxonomy tree and a list of term 

as well as slots [12] will be added. The ontology-based 

architecture of this repository will be applied in the next 

version of our KM. 

 

Meta-Knowledge repository (Figure 4): this handles meta-

data of the mined knowledge from different sites. A 

knowledge is mapped to a knowledge object and its meta-

data is represented by a meta-knowledge entry in this 

repository. Figure 4 also shows an example of a meta-

knowledge entry in XML format. In this example, this 

knowledge is built from "pcrgcluster.ucd.ie" (knowledge 

location) and its local identity (knowledge identity KID) is 

1; its concept identity (CID) is 1122 (sub-application 

domain  is tropical cyclone); the location of datasets is 

"/users/test/"; the used mining task is "clustering" and its 

algorithm is "variance-based" [20]. Other related 

information are data type of mined datasets, number of 

instances, dimension of data and a brief description about 

this knowledge. Based on this information, users could 

determine which mined knowledge they want to extract. 

 

The goal of KM core, is not only to detect the sources of 

knowledge and information but also represent their 

relationships with concepts of application domains. The 

location of this component depends on the topology of the 

system. It could be, for example, implemented in a master 

site assigned to a group of sites. The creation and 

maintenance of this component as well as its operations 

such as retrieving knowledge will be presented in section 4. 

3.3 Knowledge retrieval 

The role of this component is to seek the knowledge that is 

potentially relevant. This task depends on the information 

provided by the users after navigating through application 

domains and getting the meta-knowledge needed. This 

component is similar to a search engine which interacts 

with each site and returns knowledge acquired. 

3.4 Local knowledge map 

This component (Figure 5) is located in each site of the 

system where knowledge are built from datasets. Local 

knowledge map is a repository of knowledge entries. Each 
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entry, which is a knowledge object, represents a mined 

knowledge and contains two parts: meta-knowledge and a 

representative. Meta-knowledge includes information such 

as the identity of its mined knowledge that is unique in this 

site, its properties, and its description. Theses attributes are 

already explained in the section Knowledge map core 

above. This meta-knowledge is also submitted to the 

Knowledge map core and will be used in meta-knowledge 

entry of its repository at the global level.  The 

representative of a knowledge entry depends on a given 

mining task. KM supports two kinds of representatives: one 

for knowledge mined from clustering tasks and another for 

mined knowledge represented by production rule. Our 

system has however the capacity of adding more 

representative types for other mining tasks. 

 

 
 

Fig. 5  Organization of local knowledge map 

 

In the clustering case (Figure 5a), a representative of a 

mined knowledge stands in one or many clusters. A cluster 

has one or more representative elements and each element 

consists of fields filled by the user. The number of fields as 

well as data type of each field, which is also defined by the 

user, depends on the clustering algorithm used. The meta-

data of these fields is also included in each representative. 

KM allows the user to define this meta-data with both 

scalar and vector data type.  A cluster also contains 

information about its creation. This information shows how 

this cluster was created: by clustering or integration 

process. In the former case, the information is a tuple of 

(hostname, cluster filename, cluster identity) and in the 

latter, it is a tuple of (hostname, knowledge identity, 

cluster identity). hostname is the location where clustering 

results are stored in files called cluster files with their 

cluster filenames. Each cluster has a cluster identity and it 

is unique in its knowledge entry. For example, a 

knowledge entry which is created by a variance-based 

clustering algorithm [20] on test datasets, has its 

representative in XML format as shown in Figure 7. In this 

example, there are three clusters, each one has only one 

representative. A cluster representative consists of three 

fields: cluster identity, counts, centres and variances with 

their data types which are integer, long, vector 3 of 

doubles and matrix 3x3 of doubles respectively. The 

content of a cluster representative is presented after its 

meta-data. Besides, another important information of 

cluster representative is the creation type which shows how 

this cluster was created: by either a clustering process or an 

integration process which merges sub-clusters from 

different sources to build this cluster. In the integration 

case, the cluster representative shows its integration link 

representing all information needed to build this cluster. 

Figure 5c and Figure 6b show an example of integration 

link. In this figure, the cluster at the root level is integrated 

from three other sub-clusters where the last one is also 

integrated from two others. Note that in Figure 5c, 

representatives (ii) and (iii) belong to the same knowledge. 

 

 
 

Fig. 6 An example of integration link of creation information: (a) one 

level; (b) multi-level 

 

In the rule case (Figure 5b), the mined knowledge is 

represented as a set of the production rules [2]. As 

mentioned above, a rule is of the form "IF cause 

expression THEN conclusion expression" and an 

expression (cause or conclusion) contains a set of items. A 

rule also includes its attributes such as support and 

confidence [9] in association rules task or coverage and 

accuracy [14] in classification task, etc. In order to 

represent these rules by their items, a representative in our 

approach consists of two parts: a rule table and an item 

index table. The former is a table of rules where each line 

represents a rule including its identity, content, attributes 

and creation information. The item index table is a data 

structure that maps items to the rule table. For example, the 

index of a book maps a set of selected terms to page 

numbers. There are many different types of index 

described in literature. In our approach, the index table is 

based on inverted list [30] technique because it is one of 

the most efficient index structures [31]. This index table 
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consists of two parts: items and  a collection of lists, one 

list per item, recording the identity of the rule containing 

that item. For example (Figure 5a), we assume that the 

term "cloud" exists in rules of which identities are 25, 171, 

360, so its list is {25, 171, 360}. This index table also 

expresses the relationship between items and their 

corresponding rule. By using this table, rules which are 

related to the given items will be retrieved by the 

intersection of their lists, e.g. the list of term "pressure" is 

20, 171 so the identity (ID) of rule that contains "cloud" 

and "pressure" is 171. This ID is then used to retrieve the 

rule and its attributes. In addition, a rule can be created by 

using one or more other rules, so its creation information 

keeps this link (Figure 5c). 

 

 
 

Fig. 7 A representative of Clustering in XML format 

3.5 Knowledge map manager 

Knowledge map manager is responsible for managing and 

coordinating the local knowledge map and the knowledge 

map core. For local knowledge map, this component 

provides primitives to create, add, delete, update 

knowledge entries and their related components (e.g. rule 

ne} and item index table) in knowledge repository. It also 

allows to submit local meta-knowledge to its repository in 

knowledge map core. This component provides also 

primitives to handle the meta-knowledge in the repository 

as well as the concept node in the concept tree repository. 

A key role of this component is to keep the coherence 

between the local knowledge map and the knowledge map 

core.  

4. Knowledge Map operations 

4.1 Adding new knowledge 

For any new mined knowledge, its corresponding meta-

data and its representative are generated and mapped to a 

knowledge object. This object will be added to the local 

knowledge repository with an appropriate concept identity. 

Its meta-knowledge is then submitted to the meta-

knowledge repository of knowledge map core. The adding 

operation is realized via the primitive "put". The Figure 8 

shows a flowchart of the adding process. 

 

 
 
Fig. 8 Adding a new knowledge: (1) knowledge built by a mining 

process; (2) get an appropriate Concept Identity; (3) knowledge object is 

added to local knowledge repository; (4) Meta-knowledge is submitted 

to meta-knowledge repository 

 

4.2 Update/Delete knowledge 

KM allows users to update or to delete an existing 

knowledge meta-data via "update" and "delete" 

primitives. These operations are executed at local site and 

then the system will automatically update knowledge map 

core to ensure the coherence between core and local 

knowledge map. This operation is moreover atomic. 
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4.2 Knowledge searching/retrieving 

These operations are functions of find/retrieve primitives 

(Figure 9). KM supports different levels of search: 

concepts or meta-data of mined knowledge. At the concept 

level, KM allows the user to search and retrieve concepts 

acquired through their identity or name. The search 

operation can be done using different criteria such as 

concept (e.g. search all meta knowledge of a selected 

concept), mining task and algorithm used to build its 

knowledge. The retrieve operation is performed through 

the knowledge identity and the location of the knowledge 

needed. This process returns a knowledge object. This 

operation is executed both locally and globally, i.e. users 

can retrieve the knowledge needed at its local site or from 

a group of sites of the system. 

 

 

 
 
Fig. 9 Retrieving knowledge: (1) Concept (ID or name) retrieving; (2) 

Meta knowledge retrieving; (3) Knowledge Retrieving from different 

local KMs 

5. Implementation and Exploitation 

We have implemented a prototype of KM and in the 

current version, the topology of distribution is a flat tree 

where one local site is elected as the host. The meta-

knowledge repository of KM core is located at this host 

while its concept tree resides in every site. In this case, 

only the administrator can define and update the content of 

this concept tree at one site and KM system will then 

update every replicas. The advantages and disadvantages 

of this approach will be discussed in the section 6. 

 

In order to exploit mined knowledge, these 

knowledge should be managed by KM system. If it is not, 

then the first step is to create knowledge objects including 

meta-knowledge and representatives, and then add it in 

each appropriate local KM. In the current implementation, 

a knowledge object has XML format as shown in Figure 7. 

Their meta-knowledge will be automatically submitted to 

the meta-knowledge repository at the knowledge core map 

as an adding operation of a new mined knowledge. Next, 

users can exploit these meta-knowledge and knowledge 

object in their integration process or explore the 

knowledge. In this version, repositories of KM core and 

Local KM are also in XML format. 

Communication Our aim is to provide an efficient KM for 

distributed environments. Our approach provides a flexible 

solution so that KM can be carried on or interact with 

different communication system (e.g. RMI [15]) as well as 

workload management systems on cluster or grid platforms 

(e.g. Condor [6], PBS or OpenPBS [26]). We present a 

scenario, as an example, where KM system is cooperating 

with Condor. In this case, each KM operation is an 

independent executable job with its appropriate parameters 

including input, output files and others. Users write the 

submit description file including resources needed and 

then use the Condor system to submit it. An example of a 

submitted file is shown in Figure 10. In this file, a user 

adds knowledge objects, which are stored in the file 

KO1.xml, of mined knowledge to a local KM at a remote 

site. This mined knowledge already exists on that site or 

has just built after a mining process. The output file 

KMout.xml contains the meta-knowledge of knowledge 

objects added and the user uses this information to submit 

to meta-knowledge repository of KM core. In this case, the 

user is responsible for the coherence between KM core and 

local KM. In addition, the parameter nocom in the 

argument line shows that user does not use the 

communication module of the KM system. 

 

 
 

Fig. 10 An example of a Condor submit file 

 

An alternative way of exploiting the KM system is to use 

its communication module with different communication 

middleware. The current KM uses Java RMI but it can 

easily use other communication middleware. In this 

version, the KM runtime includes a set of KM Daemon 

(Figure 11). Each local site has one KM Daemon that is 

responsible for processing local/remote requests. These 

KM Daemon are created at the start by using the primitive 

"init". The primitive "stop" will terminate all the KM  

Daemons. A KM application can send request to one or 

many remote sites. As shown in Figure 10, for example, 

the application find firstly all the meta-knowledge needed 

via primitive "find" (Figure 11a). This action is composed 
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of four steps: a request is sent to the Host (1) to look for 

the meta-knowledge needed. Then, this will be retrieved 

(2) and sent back to the source site (3), and it extracts the 

results as meta-knowledge objects (4). The application 

extracts knowledge via primitive "retrieve" (Figure 11b). 

This action is also composed of four steps: (1) requests are 

sent to the appropriate sites; (2) retrieve the knowledge 

found at each site; (3) sent back to the source site via KM 

Daemon; (4) extracts results as knowledge objects. 

 

 
 

Fig. 11 An example of using Knowledge Map 

 

Another issue of the KM implementation is the creation 

information of representatives in the integration case (c.f. 

3.4). Normally there are two kinds of links: one level 

integration and multi-level integration. In the first kind, the 

creation information of a representative only contains 

integration information from one sub-level that is its direct 

children. For example, as shown in Figure 6a, cluster 111 

is integrated from three sub-clusters (222, 333, 444) of 

which information are registered in creation information of 

cluster 111. Meanwhile, the cluster 333 is also integrated 

from two other clusters (555 and 666) but this information 

is not shown in the creation information of the cluster 111. 

The advantage of this approach is its simplicity and the 

saving of storage capacity used of creation information. 

However, a global search in each related local KM is 

needed to retrieve all sub-levels of integration in this case. 

Our KM system is implemented with a multi-level 

integration of creation information. In this approach, all 

integration levels of a representative are in its creation 

information (Figure 6b). 

6. Evaluation and Discussion 

We are using this KM in our framework [19][20]. It is 

difficult to evaluate our approach by comparing it to other 

systems because it is unique so far. Therefore, we evaluate 

different aspects of the system architecture for supporting 

the management, mapping, representing and retrieving the 

knowledge. 

 

First, we evaluate the complexity of search/retrieve the 

knowledge object of the system. This operation includes 

two parts: searching relative concept and search/retrieve 

the knowledge. Let N be the number of concept tree entries 

and n be the number of concept nodes for each concept 

tree. The complexity of the first part is O(log N + log n) 

because the  concept tree entries are indexed according to 

the B+tree model. However, the number of concept entries 

as well as of concept nodes of a concept tree is smaller 

compared to the number of knowledge entries. So this 

complexity depends strongly on the cost  of search/retrieve 

operations. Let M be the number of meta-knowledge 

entries in the KM  core, so the complexity of searching a 

meta-knowledge entry at this level is O(log M). The 

complexity of retrieving a knowledge object depends on 

the number of knowledge entries m in local KM. 

Therefore, this complexity is O(log M + Clog m), where C 

is the communication cost. 

 

Next, we discuss the knowledge map architecture. Firstly, 

the structure of concept tree is based on the concept map 

[23], which is one of the advantages of this model. We can 

avoid the problem of semantic ambiguity as well as reduce 

the domain search to improve the speed and accuracy of 

the results. In our current version, the concept tree is 

implemented at each site. The advantage of this approach 

is to reduce the communication cost of searching/retrieving 

task but the communication cost is high for updating task. 

However, the frequency of this updating task is very low 

compared with the frequency of the searching/retrieving 

tasks. Secondly, the division of knowledge map into two 

main components (local and core) has some advantages: (i) 

the core component acts as a summary map of knowledge 

and it is a representation of knowledge about knowledge 

when combined with local KM; (ii) avoiding the problem 

of having the whole knowledge on one master site (or 

server), which is not feasible in very large distributed 

system such as Grid. By representing meta-knowledge in 

their relationship links, the goal is to provide an integration 

view of this knowledge.  

 

Moreover, our KM system offers a knowledge map with 

flexible and dynamic architecture where users can easily 

update the concept tree repository as well as meta-

knowledge entries. The current index technique used in a 

rule representative is an inverted list. However,  we can 

improve it without affecting to whole system structure by 

using other index algorithms as in [22] or applying 

compressed technique as discussed in [32]. Moreover, 

flexible and dynamic features are also reflected by 

mapping a knowledge to a knowledge object. The goal 
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here is to provide a portable approach where knowledge 

object can be represented by different techniques such as 

an entity, an XML-based record, or a record of database, 

etc. 

 

Although the implementation of the creation information of 

a representative might not be optimal for the storage 

capacity used, it takes an important advantage in the 

communication cost compared to one-level approach in 

retrieving the whole integration links. For example, we 

analyze these costs for two topologies (Figure 12): flat tree 

and binary tree. We assume that one representative is 

integrated by N elements and the information size of each 

element is 32 bytes. In the first topology, information of all 

elements are stored in its creation information for both 

cases: one level and multi-level. There is no 

communication cost and the storage size is 32  N bytes. In 

the second topology, the storage size at this representative 

(root of the tree) is only 32  2 bytes for one-level and 32 

 N bytes for multi-level. Furthermore, in one-level case, 

the storage size at each site (not root) in the tree is always 

32  2 bytes except sites at the leaf level. In the multi-level 

case, this size of a site at the level h is 32  nh bytes with nh 

= 2(nh-1 + 1) and n0 = 0. However, there is no 

communication cost needed for multi-level case, all 

integration links are in this representative. In order to 

evaluate this cost for one-level, we assume that the 

communication is executed in parallel at each level of 

binary tree with the same latency between two sites and the 

searching time at each site is negligible compared with 

communication time. This means that all sites at the same 

level, each one sends two requests to its two children (one 

request/child), will receive their replies at the same time. 

So the communication cost is evaluated by: 2  llog2N 

where l is the communication latency between two sites or 

more general is O(llogpN) with p depends on the chosen 

topology. In the Grid environment, the communication 

latency and the number of participating sites are important 

factors affecting the overall performance of distributed 

tasks. 

 

Fig. 12 Different topology of integration 

7. Conclusion 

 In this paper, we presented an architecture of the 

knowledge map layer. This new approach aims at 

managing effectively the mined knowledge on large scale 

distributed platforms. The purpose of this research is to 

provide a knowledge map to facilitate the management of 

the results as well as  to provide a viable environment for 

the DDM applications.  

Throughout evaluations of each component and it  

function, we can conclude that knowledge map is an 

efficient and flexible system in a large and  distributed 

environment. It satisfies the needs for managing, exploring, 

and retrieving the mined knowledge of  DDM in large 

distributed environment. This knowledge map is integrated 

in the ADMIRE framework. Experimental results on real-

world applications are also being produced [20] and this 

will allow us to test and evaluate deeply the system 

robustness and the distributed data mining approaches at 

very large scale. 
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