
2007

1

Manuscript received October 10, 2007
Manuscript revised

Distributed Knowledge Map for Mining Data on Grid Platforms

Nhien An Le Khac, Lamine M. Aouad and M-Tahar Kechadi,

an.lekhac@ucd.ie lamine.aouad@ucd.ie tahar.kechadi@ucd.ie
School of Computer Science and Informatics

University College Dublin, Belfield, Dublin 4, IRELAND

Summary
Nowadays, massive amounts of data which are often

geographically distributed and owned by different organizations

are being mined. As consequence, a large mount of knowledge is

being produced. This causes the problem of efficient knowledge

management in distributed data mining (DDM). The main aim of

DDM is to exploit fully the benefit of distributed data analysis

while minimizing the communication overhead. Existing DDM

techniques perform partial analysis of local data at individual

sites and then generate global models by aggregating the local

results. These two steps are not independent since naive

approaches to local analysis may produce incorrect and

ambiguous global data models.

To overcome this problem, we introduce "knowledge map"

approach to represent easily and efficiently the knowledge mined

in a large scale distributed platform such as Grid. This approach

is developed and integrated in a DDM framework. This will also

facilitate the integration/coordination of local mining processes

and existing knowledge to increase the accuracy of the final

model. Our "knowledge map" is being tested on real large

datasets..

Key words:
distributed data mining, knowledge map, knowledge

management.

1. Introduction

While massive amounts of data are being collected

and stored from not only science fields but also industry

and commerce fields, the efficient mining and management

of useful information of this data is becoming a scientific

challenge and a massive economic need. This led to the

development of distributed data mining (DDM) techniques

[16][17] to deal with huge and multi-dimensional datasets

distributed over a large number of sites. This phenomenon

leads to the problem of managing the mined results, so

called knowledge, which becomes more complex and

sophisticated. This is even more critical when the local

knowledge of different sites are owned by different

organizations. Existing (DDM) techniques is based on

performing partial analysis on local data at individual sites

and then generating global models by aggregating these

local results. These two steps are not independent since

naive approaches to local analysis may produce incorrect

and ambiguous global data models. In order to take the

advantage of mined knowledge at different locations,

DDM should have a view of the knowledge that not only

facilitates their integration but also minimizes the effect of

the local results on the global models. Briefly, an efficient

management of distributed knowledge is one of the key

factors affecting the outputs of these techniques.

Recently, many research projects on knowledge

management in data mining were initiated [28][13][1].

Their goals are to tackle the knowledge management issues

as well as present new approaches. However, most of them

propose solutions for centralized data mining and only few

of them have attempted the issues of large scale DDM.

Moreover, some recent research works [4] have just

provided a manner of managing knowledge but not the

integration and coordination of these results from local

results.

Fig. 1 ADMIRER’s core architecture.

In this paper, we propose a "knowledge map", an

approach for managing knowledge of (DDM) tasks on

large scale distributed systems and also supporting the

integration views of related knowledge. The concept of

knowledge map has been efficiently exploited in managing

and sharing knowledge [23] in different domains but not

yet in DDM techniques. Our main goal is to provide a

simple and efficient way to handle a large amount of

knowledge built from DDM applications in Grid

environments. This knowledge map helps to retrieve

mailto:an.lekhac@ucd.ie
mailto:lamine.aouad@ucd.ie
mailto:tahar.kechadi@ucd.ie

2007

2

quickly any results needed with a high accuracy. It will

also facilitate the merging and coordination of local results

to generate global models. This knowledge map is one of

the key layers of ADMIRE [18] (Figure 1), a framework

based on Grid platform for developing DDM techniques to

deal with very large and distributed heterogeneous datasets.

The rest of this paper is organized as follows: In section 2,

we give some backgrounds of knowledge representation

and knowledge map concept as well as related projects.

We present the architecture of our knowledge map in

section 3. Section 4 presents knowledge map's operations.

Implementation issues of knowledge map are presented in

section 5 and an evaluation of this approach is presented in

section 6. Finally, we conclude in section 7.

2. Background

In this section, we present some methods for representing

knowledge in data mining. We discuss the concept of

knowledge map and its use in managing the knowledge.

This section will be ended by related work on knowledge

map and knowledge management.

2.1 Knowledge representation

There are many different ways of representing mined

knowledge in literature, such as decision tables, decision

trees (Figure 2), classification rules, association rules,

instance-based and clusters. Decision table is one of the

simplest ways of representing knowledge. The columns

contain set of attributes including the decisions and the

rows represent the knowledge elements. This structure is

simple but it can be sparse because of some unused

attributes. Decision tree approach is based on "divide-and-

conquer" concept where each node tests a particular

attribute and the classification is given at the leaves level.

However, it has to deal with missing value problem.

Classification rules [9] are a popular alternative to

decision tree. Association rules [9] are kind of

classification rules except that they can predict any

attribute and this gives them the flexibility to predict

combinations of attributes too. Moreover, association rules

are not intended to be used together as a set as

classification rules are.

Classification rules as well as association rules are a kind

of production rules [2] that are widely used in knowledge

representation [12]. A rule is a knowledge representation

technique and a structure that relates one or more causes,

or a situation, to one or more effects (consequents) or

actions. It is also called cause-effect relationships

represented by an "IF {cause expression} THEN

{conclusion expression}". The IF part of the rule is an

cause expression composed of causes, and the effects are

contained in the conclusion expression of THEN, so that

the conclusions may be inferred from the causes when they

are true. A rule may also be extended to an uncertain rule

or a fuzzy rule by adding appropriate attributes. Briefly, the

knowledge of an intelligent system could be represented by

using a number of rules. In this case, these rules are usually

grouped into sets and each set contains rules related to the

same topic. In the data mining, rules can be used in the

representation of knowledge learnt from classification

tasks, association rules tasks, etc. It is also called rule-

based classification [14] in classification problems where a

set of "IF, THEN" rules including attributes such as

coverage and accuracy is applied. Moreover, rules can be

extracted from other kinds of model representations such

as decision tree, neural network, etc. In association rule

tasks, knowledge is represented by a set of rules with two

attributes: confidence and support.

Fig. 2 Knowledge representations

The instance-based knowledge representation uses the

instances to represent what is mined rather than inferring a

rule set and store it instead. The problem is that they do not

make explicit the structures of the knowledge. In the

cluster approach, the knowledge can take the form of a

diagram to show how the instances fall into clusters. There

are many kinds of cluster representations such as space

partitioning, Venn diagram, table, tree, etc. Clustering [9]

is often followed by a stage in which a decision tree or rule

set is inferred allocating each instance to its cluster. Other

knowledge representation approaches, such as Petri net

2007

3

[25], Fuzzy Petri nets [5] and G-net [8] were also

developed and used.

2.2 Knowledge map concept

A knowledge map is generally a representation of

"knowledge about knowledge" rather than of knowledge

itself [7][10][29]. It basically helps to detect the sources of

knowledge and their structures by representing the

elements and structural links of the application domains.

Some kind of knowledge map structure that can be found

in literature are: hierarchical/radial knowledge map,

networked knowledge map, knowledge source map and

knowledge flow map.

Hierarchical knowledge map, so-called concept map [23],

provides one model for the hierarchical organization of

knowledge: top-level concepts are abstractions with few

characteristics. Concepts of the level below have detailed

traits of the super concept. The link between concepts can

represent any type of relations as "is part of", "influences",

"can determine", etc. A similar approach is radial

knowledge map or mind map [3], which consists of

concepts that are linked through propositions. However, it

is radially organized. Networked knowledge map is also

called causal map which is defined as a technique "for

linking strategic thinking and acting, making sense of

complex problems, and communicating with others what

might be done about them" [3]. This approach is normally

used for systematizing knowledge about causes and effects.

Knowledge source map [10] is a kind of organizational

charts that does not describe functions, responsibility and

hierarchy, but expertise. It helps experts in a specific

knowledge domain. The knowledge flow map [10]

represents the order in which knowledge resources should

be used rather than a map of knowledge.

2.3 Related works

Little research work on knowledge map is given in

[11][21]. However, these few projects were not in the

context of DDM.

The Knowledge Grid project [4] proposed an approach to

manage the knowledge by using Knowledge Discovery

Service. This module is responsible for handling meta-

data of not only knowledge obtained from mining tasks but

also all kinds of resources such as hosts, data repositories,

used tools and algorithms, etc. All metadata information is

stored in a Knowledge Metadata Repository. However, this

approach does not provide a management of meta-data of

knowledge in their relationships to support the integration

view of knowledge as well as the coordination of local the

mining process. There is moreover no distinct separation

between resource, data, and knowledge.

Until now, to the best of our knowledge, in spite of the

popularity of DDM applications, there is only our system

[19] that provides knowledge map layer for DDM

applications on a Grid type platforms. This constitutes one

of the motivations of our research to provide a fully

integrated view of knowledge to facilitate the coordination

of local mining processes and increase the accuracy of the

final models.

3. Architecture of knowledge map

The knowledge map (KM) does not attempt to systematize

the knowledge itself but rather to codify "knowledge about

knowledge". In our context, it facilitates (DDM) by

supporting users coordination and interpretation of the

results. The objectives of our (KM) architecture are:

provide an efficient way to handle a large amount of data

collected and stored in large scale distributed system;

retrieve easily, quickly, and accurately the knowledge; and

support the integration process of the knowledge. We

propose an architecture of the (KM) system as shown in

Figure 3, 4, 5 and 6 to achieve these goals. KM consists of

the following components: knowledge navigator,

knowledge map core, knowledge retrieval, local

knowledge map and knowledge map manager (Figure 3).

From now on, we use the term "mined knowledge" to

represent for knowledge built from applications.

Fig. 3 Knowledge map systems

3.1 Knowledge navigator

Usually, users may not exactly know the mined knowledge

they are looking for. Thus, knowledge navigator

component is responsible for guiding users to explore the

KM and for determining the knowledge of interest. The

result of this task is not the knowledge but its meta-data,

called meta-knowledge, which includes related

2007

4

information such as data mining task used, data type, and a

brief description of this knowledge and its location. For

example, a user may want to retrieve some knowledge

about tropical cyclone. The application domain

"meteorology" allows the user to navigate through tropical

cyclone area and then a list of knowledge related to it will

be extracted. Next, based on this meta-knowledge and its

application domain, the users will decide which knowledge

and its location are to be retrieved. It will interact with

knowledge retrieval component to collect all mined

knowledge from chosen locations.

3.2 Knowledge map core

This component (Figure 4) is composed of two main parts:

concept tree repository and meta-knowledge repository.

The former is a repository storing a set of application

domains. Each application domain is represented by a

concept tree that has a hierarchical structure such as a

concept map [23]. A node of this tree, so called concept

node represents a sub-application domain and each

concept node includes a unique identity, called concept

identity, in the whole concept tree repository and a name

of its sub-application domain. The content of each concept

tree is defined by the administrator before using the KM

system. The concept tree repository could also be updated

during the runtime. In our approach, a mined knowledge is

assigned to only one sub-application domain and this

assignment is given by the users.

Fig. 4 Knowledge map core structure

As shown in Figure 4 for example, the concept tree

repository contains an application domain named

"meteorology" which includes sub-application domains

such as "weather forecasting", "storm" and "climate". And

then, "thunder storm", "tropical cyclone" and "tornado" are

parts of "storm". By using concept tree, we can deal with

the problem of knowledge context. For instance, given the

distributed nature of the knowledge, some of them may

have variations depending on the context in which it is

presented locally. Moreover, we can also extend the

concept tree of each application domain to an ontology of

this domain in order to increase the accuracy in retrieving

knowledge in different contexts. At that moment, the

concept tree will become a taxonomy tree and a list of term

as well as slots [12] will be added. The ontology-based

architecture of this repository will be applied in the next

version of our KM.

Meta-Knowledge repository (Figure 4): this handles meta-

data of the mined knowledge from different sites. A

knowledge is mapped to a knowledge object and its meta-

data is represented by a meta-knowledge entry in this

repository. Figure 4 also shows an example of a meta-

knowledge entry in XML format. In this example, this

knowledge is built from "pcrgcluster.ucd.ie" (knowledge

location) and its local identity (knowledge identity KID) is

1; its concept identity (CID) is 1122 (sub-application

domain is tropical cyclone); the location of datasets is

"/users/test/"; the used mining task is "clustering" and its

algorithm is "variance-based" [20]. Other related

information are data type of mined datasets, number of

instances, dimension of data and a brief description about

this knowledge. Based on this information, users could

determine which mined knowledge they want to extract.

The goal of KM core, is not only to detect the sources of

knowledge and information but also represent their

relationships with concepts of application domains. The

location of this component depends on the topology of the

system. It could be, for example, implemented in a master

site assigned to a group of sites. The creation and

maintenance of this component as well as its operations

such as retrieving knowledge will be presented in section 4.

3.3 Knowledge retrieval

The role of this component is to seek the knowledge that is

potentially relevant. This task depends on the information

provided by the users after navigating through application

domains and getting the meta-knowledge needed. This

component is similar to a search engine which interacts

with each site and returns knowledge acquired.

3.4 Local knowledge map

This component (Figure 5) is located in each site of the

system where knowledge are built from datasets. Local

knowledge map is a repository of knowledge entries. Each

2007

5

entry, which is a knowledge object, represents a mined

knowledge and contains two parts: meta-knowledge and a

representative. Meta-knowledge includes information such

as the identity of its mined knowledge that is unique in this

site, its properties, and its description. Theses attributes are

already explained in the section Knowledge map core

above. This meta-knowledge is also submitted to the

Knowledge map core and will be used in meta-knowledge

entry of its repository at the global level. The

representative of a knowledge entry depends on a given

mining task. KM supports two kinds of representatives: one

for knowledge mined from clustering tasks and another for

mined knowledge represented by production rule. Our

system has however the capacity of adding more

representative types for other mining tasks.

Fig. 5 Organization of local knowledge map

In the clustering case (Figure 5a), a representative of a

mined knowledge stands in one or many clusters. A cluster

has one or more representative elements and each element

consists of fields filled by the user. The number of fields as

well as data type of each field, which is also defined by the

user, depends on the clustering algorithm used. The meta-

data of these fields is also included in each representative.

KM allows the user to define this meta-data with both

scalar and vector data type. A cluster also contains

information about its creation. This information shows how

this cluster was created: by clustering or integration

process. In the former case, the information is a tuple of

(hostname, cluster filename, cluster identity) and in the

latter, it is a tuple of (hostname, knowledge identity,

cluster identity). hostname is the location where clustering

results are stored in files called cluster files with their

cluster filenames. Each cluster has a cluster identity and it

is unique in its knowledge entry. For example, a

knowledge entry which is created by a variance-based

clustering algorithm [20] on test datasets, has its

representative in XML format as shown in Figure 7. In this

example, there are three clusters, each one has only one

representative. A cluster representative consists of three

fields: cluster identity, counts, centres and variances with

their data types which are integer, long, vector 3 of

doubles and matrix 3x3 of doubles respectively. The

content of a cluster representative is presented after its

meta-data. Besides, another important information of

cluster representative is the creation type which shows how

this cluster was created: by either a clustering process or an

integration process which merges sub-clusters from

different sources to build this cluster. In the integration

case, the cluster representative shows its integration link

representing all information needed to build this cluster.

Figure 5c and Figure 6b show an example of integration

link. In this figure, the cluster at the root level is integrated

from three other sub-clusters where the last one is also

integrated from two others. Note that in Figure 5c,

representatives (ii) and (iii) belong to the same knowledge.

Fig. 6 An example of integration link of creation information: (a) one

level; (b) multi-level

In the rule case (Figure 5b), the mined knowledge is

represented as a set of the production rules [2]. As

mentioned above, a rule is of the form "IF cause

expression THEN conclusion expression" and an

expression (cause or conclusion) contains a set of items. A

rule also includes its attributes such as support and

confidence [9] in association rules task or coverage and

accuracy [14] in classification task, etc. In order to

represent these rules by their items, a representative in our

approach consists of two parts: a rule table and an item

index table. The former is a table of rules where each line

represents a rule including its identity, content, attributes

and creation information. The item index table is a data

structure that maps items to the rule table. For example, the

index of a book maps a set of selected terms to page

numbers. There are many different types of index

described in literature. In our approach, the index table is

based on inverted list [30] technique because it is one of

the most efficient index structures [31]. This index table

2007

6

consists of two parts: items and a collection of lists, one

list per item, recording the identity of the rule containing

that item. For example (Figure 5a), we assume that the

term "cloud" exists in rules of which identities are 25, 171,

360, so its list is {25, 171, 360}. This index table also

expresses the relationship between items and their

corresponding rule. By using this table, rules which are

related to the given items will be retrieved by the

intersection of their lists, e.g. the list of term "pressure" is

20, 171 so the identity (ID) of rule that contains "cloud"

and "pressure" is 171. This ID is then used to retrieve the

rule and its attributes. In addition, a rule can be created by

using one or more other rules, so its creation information

keeps this link (Figure 5c).

Fig. 7 A representative of Clustering in XML format

3.5 Knowledge map manager

Knowledge map manager is responsible for managing and

coordinating the local knowledge map and the knowledge

map core. For local knowledge map, this component

provides primitives to create, add, delete, update

knowledge entries and their related components (e.g. rule

ne} and item index table) in knowledge repository. It also

allows to submit local meta-knowledge to its repository in

knowledge map core. This component provides also

primitives to handle the meta-knowledge in the repository

as well as the concept node in the concept tree repository.

A key role of this component is to keep the coherence

between the local knowledge map and the knowledge map

core.

4. Knowledge Map operations

4.1 Adding new knowledge

For any new mined knowledge, its corresponding meta-

data and its representative are generated and mapped to a

knowledge object. This object will be added to the local

knowledge repository with an appropriate concept identity.

Its meta-knowledge is then submitted to the meta-

knowledge repository of knowledge map core. The adding

operation is realized via the primitive "put". The Figure 8

shows a flowchart of the adding process.

Fig. 8 Adding a new knowledge: (1) knowledge built by a mining

process; (2) get an appropriate Concept Identity; (3) knowledge object is

added to local knowledge repository; (4) Meta-knowledge is submitted

to meta-knowledge repository

4.2 Update/Delete knowledge

KM allows users to update or to delete an existing

knowledge meta-data via "update" and "delete"

primitives. These operations are executed at local site and

then the system will automatically update knowledge map

core to ensure the coherence between core and local

knowledge map. This operation is moreover atomic.

2007

7

4.2 Knowledge searching/retrieving

These operations are functions of find/retrieve primitives

(Figure 9). KM supports different levels of search:

concepts or meta-data of mined knowledge. At the concept

level, KM allows the user to search and retrieve concepts

acquired through their identity or name. The search

operation can be done using different criteria such as

concept (e.g. search all meta knowledge of a selected

concept), mining task and algorithm used to build its

knowledge. The retrieve operation is performed through

the knowledge identity and the location of the knowledge

needed. This process returns a knowledge object. This

operation is executed both locally and globally, i.e. users

can retrieve the knowledge needed at its local site or from

a group of sites of the system.

Fig. 9 Retrieving knowledge: (1) Concept (ID or name) retrieving; (2)

Meta knowledge retrieving; (3) Knowledge Retrieving from different

local KMs

5. Implementation and Exploitation

We have implemented a prototype of KM and in the

current version, the topology of distribution is a flat tree

where one local site is elected as the host. The meta-

knowledge repository of KM core is located at this host

while its concept tree resides in every site. In this case,

only the administrator can define and update the content of

this concept tree at one site and KM system will then

update every replicas. The advantages and disadvantages

of this approach will be discussed in the section 6.

In order to exploit mined knowledge, these

knowledge should be managed by KM system. If it is not,

then the first step is to create knowledge objects including

meta-knowledge and representatives, and then add it in

each appropriate local KM. In the current implementation,

a knowledge object has XML format as shown in Figure 7.

Their meta-knowledge will be automatically submitted to

the meta-knowledge repository at the knowledge core map

as an adding operation of a new mined knowledge. Next,

users can exploit these meta-knowledge and knowledge

object in their integration process or explore the

knowledge. In this version, repositories of KM core and

Local KM are also in XML format.

Communication Our aim is to provide an efficient KM for

distributed environments. Our approach provides a flexible

solution so that KM can be carried on or interact with

different communication system (e.g. RMI [15]) as well as

workload management systems on cluster or grid platforms

(e.g. Condor [6], PBS or OpenPBS [26]). We present a

scenario, as an example, where KM system is cooperating

with Condor. In this case, each KM operation is an

independent executable job with its appropriate parameters

including input, output files and others. Users write the

submit description file including resources needed and

then use the Condor system to submit it. An example of a

submitted file is shown in Figure 10. In this file, a user

adds knowledge objects, which are stored in the file

KO1.xml, of mined knowledge to a local KM at a remote

site. This mined knowledge already exists on that site or

has just built after a mining process. The output file

KMout.xml contains the meta-knowledge of knowledge

objects added and the user uses this information to submit

to meta-knowledge repository of KM core. In this case, the

user is responsible for the coherence between KM core and

local KM. In addition, the parameter nocom in the

argument line shows that user does not use the

communication module of the KM system.

Fig. 10 An example of a Condor submit file

An alternative way of exploiting the KM system is to use

its communication module with different communication

middleware. The current KM uses Java RMI but it can

easily use other communication middleware. In this

version, the KM runtime includes a set of KM Daemon

(Figure 11). Each local site has one KM Daemon that is

responsible for processing local/remote requests. These

KM Daemon are created at the start by using the primitive

"init". The primitive "stop" will terminate all the KM

Daemons. A KM application can send request to one or

many remote sites. As shown in Figure 10, for example,

the application find firstly all the meta-knowledge needed

via primitive "find" (Figure 11a). This action is composed

2007

8

of four steps: a request is sent to the Host (1) to look for

the meta-knowledge needed. Then, this will be retrieved

(2) and sent back to the source site (3), and it extracts the

results as meta-knowledge objects (4). The application

extracts knowledge via primitive "retrieve" (Figure 11b).

This action is also composed of four steps: (1) requests are

sent to the appropriate sites; (2) retrieve the knowledge

found at each site; (3) sent back to the source site via KM

Daemon; (4) extracts results as knowledge objects.

Fig. 11 An example of using Knowledge Map

Another issue of the KM implementation is the creation

information of representatives in the integration case (c.f.

3.4). Normally there are two kinds of links: one level

integration and multi-level integration. In the first kind, the

creation information of a representative only contains

integration information from one sub-level that is its direct

children. For example, as shown in Figure 6a, cluster 111

is integrated from three sub-clusters (222, 333, 444) of

which information are registered in creation information of

cluster 111. Meanwhile, the cluster 333 is also integrated

from two other clusters (555 and 666) but this information

is not shown in the creation information of the cluster 111.

The advantage of this approach is its simplicity and the

saving of storage capacity used of creation information.

However, a global search in each related local KM is

needed to retrieve all sub-levels of integration in this case.

Our KM system is implemented with a multi-level

integration of creation information. In this approach, all

integration levels of a representative are in its creation

information (Figure 6b).

6. Evaluation and Discussion

We are using this KM in our framework [19][20]. It is

difficult to evaluate our approach by comparing it to other

systems because it is unique so far. Therefore, we evaluate

different aspects of the system architecture for supporting

the management, mapping, representing and retrieving the

knowledge.

First, we evaluate the complexity of search/retrieve the

knowledge object of the system. This operation includes

two parts: searching relative concept and search/retrieve

the knowledge. Let N be the number of concept tree entries

and n be the number of concept nodes for each concept

tree. The complexity of the first part is O(log N + log n)

because the concept tree entries are indexed according to

the B+tree model. However, the number of concept entries

as well as of concept nodes of a concept tree is smaller

compared to the number of knowledge entries. So this

complexity depends strongly on the cost of search/retrieve

operations. Let M be the number of meta-knowledge

entries in the KM core, so the complexity of searching a

meta-knowledge entry at this level is O(log M). The

complexity of retrieving a knowledge object depends on

the number of knowledge entries m in local KM.

Therefore, this complexity is O(log M + Clog m), where C

is the communication cost.

Next, we discuss the knowledge map architecture. Firstly,

the structure of concept tree is based on the concept map

[23], which is one of the advantages of this model. We can

avoid the problem of semantic ambiguity as well as reduce

the domain search to improve the speed and accuracy of

the results. In our current version, the concept tree is

implemented at each site. The advantage of this approach

is to reduce the communication cost of searching/retrieving

task but the communication cost is high for updating task.

However, the frequency of this updating task is very low

compared with the frequency of the searching/retrieving

tasks. Secondly, the division of knowledge map into two

main components (local and core) has some advantages: (i)

the core component acts as a summary map of knowledge

and it is a representation of knowledge about knowledge

when combined with local KM; (ii) avoiding the problem

of having the whole knowledge on one master site (or

server), which is not feasible in very large distributed

system such as Grid. By representing meta-knowledge in

their relationship links, the goal is to provide an integration

view of this knowledge.

Moreover, our KM system offers a knowledge map with

flexible and dynamic architecture where users can easily

update the concept tree repository as well as meta-

knowledge entries. The current index technique used in a

rule representative is an inverted list. However, we can

improve it without affecting to whole system structure by

using other index algorithms as in [22] or applying

compressed technique as discussed in [32]. Moreover,

flexible and dynamic features are also reflected by

mapping a knowledge to a knowledge object. The goal

2007

9

here is to provide a portable approach where knowledge

object can be represented by different techniques such as

an entity, an XML-based record, or a record of database,

etc.

Although the implementation of the creation information of

a representative might not be optimal for the storage

capacity used, it takes an important advantage in the

communication cost compared to one-level approach in

retrieving the whole integration links. For example, we

analyze these costs for two topologies (Figure 12): flat tree

and binary tree. We assume that one representative is

integrated by N elements and the information size of each

element is 32 bytes. In the first topology, information of all

elements are stored in its creation information for both

cases: one level and multi-level. There is no

communication cost and the storage size is 32  N bytes. In

the second topology, the storage size at this representative

(root of the tree) is only 32  2 bytes for one-level and 32

 N bytes for multi-level. Furthermore, in one-level case,

the storage size at each site (not root) in the tree is always

32  2 bytes except sites at the leaf level. In the multi-level

case, this size of a site at the level h is 32  nh bytes with nh

= 2(nh-1 + 1) and n0 = 0. However, there is no

communication cost needed for multi-level case, all

integration links are in this representative. In order to

evaluate this cost for one-level, we assume that the

communication is executed in parallel at each level of

binary tree with the same latency between two sites and the

searching time at each site is negligible compared with

communication time. This means that all sites at the same

level, each one sends two requests to its two children (one

request/child), will receive their replies at the same time.

So the communication cost is evaluated by: 2  llog2N

where l is the communication latency between two sites or

more general is O(llogpN) with p depends on the chosen

topology. In the Grid environment, the communication

latency and the number of participating sites are important

factors affecting the overall performance of distributed

tasks.

Fig. 12 Different topology of integration

7. Conclusion

 In this paper, we presented an architecture of the

knowledge map layer. This new approach aims at

managing effectively the mined knowledge on large scale

distributed platforms. The purpose of this research is to

provide a knowledge map to facilitate the management of

the results as well as to provide a viable environment for

the DDM applications.

Throughout evaluations of each component and it

function, we can conclude that knowledge map is an

efficient and flexible system in a large and distributed

environment. It satisfies the needs for managing, exploring,

and retrieving the mined knowledge of DDM in large

distributed environment. This knowledge map is integrated

in the ADMIRE framework. Experimental results on real-

world applications are also being produced [20] and this

will allow us to test and evaluate deeply the system

robustness and the distributed data mining approaches at

very large scale.

References
[1] S. S. R. Abidi and Cheah Yu-N, A Convergence of

Knowledge Management and Data Mining: Towards

"Knowledge-Driven" Strategic Services, 3rd International

Conference on the Practical Applications of Knowledge

Management, Manchester, 2000

[2] B. G. Buchanan and E.H. Shortliffe, Rule-Based Expert

Systems: The MYCIN Experiments of The Standford

Heuristic Programming Projects, Reading, MA: Addison-

Wesley, 1984.

[3] T. Buzan and B. Buzan, The Mind Map Book, Plume,

1996.

[4] M. Cannataro, D. Talia and P. Trunfio, Distributed Data

Mining on the Grid, Future Generation Computer Systems,

North-Holland vol. 18, no. 8, pp. 1101-1112.

[5] S. M Chen, J-S. Ke and J-F. Chang, Knowledge

Representation Using Fuzzy Petri Nets, IEEE transaction on

Knowledge and Data Engineering vol.2, no.3, 1990, 311-

319

[6] http://www.cs.wisc.edu/condor/

[7] T. H Davenport and L. Prusak, Working Knowledge,

Havard Business School Press, 1997.

[8] Y. Deng, S-K. Chang, A G-Net model for Knowledge

Representation and Reasoning, IEEE transaction on

Knowledge and Data Engineering vol.2, no.3, 1990, 295-

310

[9] M. H. Dunham, Data Mining Introductory and Advanced

Topics, Prentice Hall, 2002.

[10] M. J. Eppler Making Knowledge Visible through Intranet

Knowledge Maps: Concepts, Elements, Cases Proceedings

of the 34th Hawaii International Conference on System

Sciences, 2001.

[11] C. Faloutsos and K. Lin, FastMap: A Fast Algorithm for

Indexing, Data-Ming and Visualization of Traditional and

http://www.cs.wisc.edu/condor/

2007

10

Multimedia Datasets, Proceedings of SIGMOD'95

Conference, 1995, 163-174.

[12] D. Gasevic, D. Djuric and V. Devedzic, Model Driven

Architecture and Ontology Development Springer-Verlag,

2006, 46-57

[13] S. K. Gupta, V. Bhatnagar and S.K. Wasan, A propasal

for Data Mining Management System, Integrating Data

Mining and Knowledge Management Workshop, IEEE

ICDM, 2001.

[14] J. Han and M. Kamber, Data Mining: Concepts and

Techniques, 2nd ed.Morgan Kaufmann Publishers, 2006.

[15] http://java.sun.com/javase/technologies/

[16] H. Kargupta and P. Chan, Advances in distributed and

Parallel Knowledge Discovery, 1st ed. AAAI Press/The

MIT Press, London, 2000

[17] J-C. Silva, C. Giannella, R. Bhargava, H. Kargupta, and M.

Klusch, Distributed Data Mining and Agents International

Journal of Engineering Applications of Artificial

Intelligence, 18 (7), Elsevier Science, 2005.

[18] N-A. Le-Khac, M.T. Kechadi, J. Carthy ADMIRE

framework: Distributed data mining on data grid platforms,

Proceedings of 1st International Conference on Software

and Data Technologies ICSOFT’06,2006, 67-72

[19] N-A. Le-Khac, Lamine M. Aouad and M.T. Kechadi

Knowledge Map: Toward a new approach supporting the

knowledge management in Distributed Data Mining, KUI

Workshop, IEEE International Conference on Autonomic

and Autonomous Systems ICAS’07, Athens, Greece,2007.

[20] Lamine M. Aouad, N-A. Le-Khac and M.T. Kechadi

Variance-based Clustering Technique for Distributed Data

Mining Applications, International Conference on Data

Mining (DMIN’07), USA, 2007

[21] F. Lin and C.M. Hsueh, Knowledge map creation and

maintenance for virtual communities of practice, Journal of

Information Processing and Management, vol. 42, 2006,

551-568.

[22] M. Martynov and B. Novikov, An Indexing Algorithm for

Text Retrieval, Proceedings of the International Workshop

on Advances in Databases and Information system

(ADBIS’96), Moscow, 1996, 171-175.

[23] J.D. Novak and D.B. Gowin, Learning how to learn,

Cambridge University Press, 1984.

[24] M.C.F. Oliveira and H. Levkowitz, From Visual Data

Exploration to Visual Data Mining: A survey, IEEE

transaction on visualization and computer graphics vol.9,

no.3, 2003, 378-394

[25] J-L. Peterson, ”Petri Nets”, Journal of ACM Computing

Surveys vol 9 no.3, 1977, 223252.

[26] http://www.openpbs.org/

[27] P-N. Tan, M. Steinbach and V. Kumar, Introduction to

Data Mining,1st ed. Pearson Education, 2006.

[28] A. Veloso, B. Possas, W. Meira and M. B. Carvalho,

Knowledge Management in Association Rule Mining,

Integrating Data Mining and Knowledge Management

Workshop, IEEE ICDM, 2001

[29] M.N. Wexler, The who, what and why of knowledge

mapping, Journal of Knowledge Management, vol. 5, 2001,

249-263.

[30] J. Zobel, A. Moffat, R. Sacks-Davis An efficient indexing

technique for full-text database systems, Proceeding of the

18th VLDB Conference Vancouver, British Columbia,

Canada, 1992, 352-362.

[31] J. Zobel, A. Moffat, R. Sacks-Davis Searching Large

Lexicons for Partially Specified Terms using Compressed

Inverted Files, Proceeding of the 19th VLDB Conference

Dublin, Ireland, 1993, 290-301.

[32] J. Zobel and A. Moffat Inverted Files for Text Search

Engines, Journal of ACM Computing Surveys, Vol. 38,

No.2, Article 6, 2006

http://www.openpbs.org/

