
Demo: PIT a Practical Mutation Testing Tool for Java

Henry Coles
NCR, Edinburgh

henry@pitest.org

Thomas Laurent
Lero@UCD, Ireland & École
Centrale de Nantes, France

thomas.laurent@eleves.ec-
nantes.fr

Anthony Ventresque
Lero@UCD, School of

Computer Science, UCD,
Ireland

anthony.ventresque@ucd.ie
Christopher Henard

University of Luxembourg
christopher.henard@uni.lu

Mike Papadakis
University of Luxembourg

michail.papadakis@uni.lu

ABSTRACT
Mutation analysis introduces program defects with the in-
tend of verifying whether candidate tests are able to trigger
anomalous behaviour. In case the tests can distinguish the
defective behaviour from that of the original program, they
are considered of good quality – otherwise developers need
to design new tests. While, this method has been shown
to be effective, industry-scale code challenges its applicabil-
ity due to the sheer number of mutants and test executions
it requires. In this paper we present PIT, a practical muta-
tion testing tool for Java, applicable on real-world codebases.
PIT is fast since it operates on bytecode and optimises mu-
tant executions. It is also robust and well integrated with
development tools, as it can be invoked through a command
line interface, Ant or Maven. PIT is also open source and
hence, publicly available at http://pitest.org/

Keywords
Mutation Testing, PIT, automated tool

1. INTRODUCTION
Software testing aims at exercising the behaviour of the

software, explicit the normal (expected) behaviour of the
software and exhibit abnormal behaviour which indicate the
presence of bugs (when tests fail to run properly). On the
contrary, if they pass, the program is assumed to have the be-
haviour expected by the tests. Because of its simplicity and
its practicality, software testing has become one of the main
software quality assurance techniques in industry. However,
adequately measuring the quality of testing is hard. Re-
searchers have proposed several metrics, most of them re-
lying on the notion of code coverage, which describes how
much of the source code is covered (i.e., merely executed)
by the tests. Coverage metrics imply that the more coverage
the merrier. This notion, while widely applied, has a major

ACM ISBN X-XXXXX-XX-X/XX/XX.

DOI: http://dx.doi.org/10.1145/0000000.0000000

drawback; it only checks if a line/instruction is tested, not
how well it is tested.

Mutation testing [4] is a technique that gives a better un-
derstanding of what the tests exercise on the program under
analysis. Mutation testing consists of introducing defects, in
the form of small code modifications. Those modifications
should result in an abnormal behaviour when exercised by
the tests. If the tests fail to expose the defects then the
testers/developers can reasonably infer that the tests are not
checking every possible behaviour and that the tests need to
be improved.

This paper presents PIT, a mutation testing system for
Java. PIT is considerably fast as it manipulates bytecode
and runs only the tests that have a chances to kill the used
mutants (i.e., the tests that execute the instruction where
the mutant is located). PIT’s major advantage is that it
is robust, easy to use and well integrated with development
tools [3]. The present paper aims at describing the tool
along with its latest improvements on the supported mu-
tants1. Previous versions of PIT had a limited set of opera-
tors, that we extend to what we call a extended set of mutant
operators. This set is shown to increase the effectiveness of
the mutation process with a limited impact on the execution
time [6]. Also, the extended set of operators complies with
the standards and the beliefs of mutation testers [1] and
thus, making the tool appealing to support future research.

The rest of this paper is organised as follows: Section 2
details mutation testing; Section 3 describes PIT and its cur-
rent extensions (w.r.t. mutant operators); Section 4 presents
a preliminary evaluation and Section 5 concludes the paper.

2. MUTATION TESTING
Mutation analysis produces several variants, called mu-

tants, of the program under analysis. Mutants are created
based on simple syntactic rules, called mutant operators,
that transform the syntax of the program, e.g., transform
the expression ‘a + b’ to a ‘a − b’. Mutants are used to
measure how good our tests are by observing and compar-
ing the runtime behaviour of the non-mutated and mutated
programs. This is performed based the program output and
thus, mutation measures the ability of the tests to project
the syntactic program changes to its behaviour, i.e., identi-
fying semantic differences. When mutants exhibit behaviour

1the new mutants of PIT are still under development and
will be released soon. A beta-version of the tool is available
at http://hibernia.ucd.ie/PITest++/

http://pitest.org/
http://hibernia.ucd.ie/PITest++/

differences, they are called killed, while when they are not,
they are called live. Mutation testing refers to the process
of using mutation analysis as a means of quantifying the
level of thoroughness of the test process. Thus, it measures
the number of mutants that are killed and calculates the
ratio of those over the total number of mutants. This ratio
represents the adequacy metric and is called mutation score.

Mutation has been demonstrated to be quite effective in
terms of fault revealing [4] and in mimicking the behaviour
of real faults [2]. However, in practice mutation is sensitive
to the underlying mutants that it is using. In other words,
the set of the realised operators can have a major impact
on both scalability [9] and effectiveness [8] of the technique.
Therefore, it is mandatory to equip mutation tools with a
comprehensive set of mutants that can adequately measure
test thoroughness and at the same time is practical. Previ-
ous research has proposed to restrict the mutant operators
to a small set that we call extended set, e.g., [9] [1], [2] [4],
and describe it in the following section.

In the recent years, many mutation testing tools have been
developed mainly to support research. Among the Java
tools, the most popular ones are the MuJava [7] and the
Major [5]. Unfortunately, these tools were built to support
research projects and thus, their practical use is limited [3].
In short PIT offers the following three major advantages
over the other tools: a) it is open source, b) it is well inte-
grated with development tools, as it offers a Maven plugin
and c) it is quite robust and actively maintained. PIT also
operates on the latest version of Java. For further details
regarding the tool please refer to the work of Delahaye et al.
who compared the existing Java mutation testing tools [3].

3. PIT: REAL WORLD MUTATION
PIT is a mutation testing framework for Java developed

to support the day to day development on real codebases.
This means that PIT aims at:

• having a good integration with build tools (e.g., Maven,
Ant, Gradle), integrated development environments
(IDEs, such as, Eclipse or IntelliJ) and static code
analysis tools (e.g., SonarQube). It is easy to start
working with PIT using build tools

• being fast. PIT uses three techniques to obtain its
quick results: working on bytecode instead of source
code, selecting the tests to run against the mutants
and minimising the number of mutant executions.

• providing a clear report of the tests execution, which
makes a navigation between source code and mutants
easy and highlights the mutants that were not killed
(those for which the testers need to investigate).

3.1 Running PIT
PIT is fully integrated to a variety of build tools, IDEs

and static code analysis tools. Thus there is no need for
additional effort when one of these common tools is used.

To use PIT with Ant or Maven we need to add a task
(or plugin) to their build file so that PIT’s behaviour is
configured. PIT’s configuration is straightforward and can
be limited to the specific classes we want to test. We can
also configure the output directory (for the test reports). A
number of other parameters are also offered (e.g., mutation

operators, timeout factor that is used to infer that an infinite
loop has been encountered).

Once the PIT task has been configured, the build tool can
be used without any other concern. This means that PIT
will not change the workflow, it will make its process and
generate its report without any user interference. The tool
will neither leave any artifact nor it will change anything in
the compiled code (the mutants are used only by PIT).

3.2 Mutant Generation and Execution
PIT generates mutants via bytecode manipulation. The

approach taken offers significant performance advantages
when compared with compiled mutant files as it practically
reduces the mutant generation cost to zero (because byte-
code manipulation is computationally inexpensive). Also
PIT avoids input output operations and keep memory over-
head low. The bytecode representation of the mutants does
not require any program to be written on the disk but, in-
stead to keep it in memory (to reduce the memory overheads,
only a single mutant is held in memory at a time).

Mutant generation is a two stage process. An initial scan
is performed in the main controlling process. All classes in
the system under test are examined and possible mutation
points (referred to as MutationIdentifiers) are recorded and
stored in memory. The mutated bytecode is in fact gener-
ated by this scanning process, but is immediately discarded.
Only the MutationIdentifiers are stored.

A MutationIdentifier consists of the precise location of the
mutation and the name of the mutation operator. The lo-
cation is specified by the name of the method and class, the
method signature and the instruction on which the muta-
tion occurs. This little information is sufficient to recreate
each mutant. The descriptions of millions of mutants can
therefore be held in memory by the main process.

To asses each mutant by running tests against it, child
JVM processes are created. The MutationIdentifier and
names of selected tests to run against the mutant are passed
to the child by the controlling process. The mutant byte-
code is then generated within the child process and inserted
into the running JVM using the Java instrumentation API.

Creating a JVM is a very expensive operation, so PIT tries
to minimise the number that are created. Although with a
single child, JVM could be used for assess all mutants, the
process of running tests against a mutant can leave a JVM in
a different state than one that has been freshly started (for
example values may be set in static variables or the JVM
may become low in memory). This may affect the results of
the tests when runed against other mutants. A tradeoff is
therefore made between performance and isolation. By de-
fault PIT launches a new JVM to asses the mutants related
to each class. Hence, it offers a strong guarantee that there
will be no interference between mutants in different classes,
but does not guarantee that mutants from the same class
will not interfere with each other. PIT can be configured
to give stronger guarantees (upto and including launching a
JVM per mutants) at the expense of performance.

3.3 Extension of the Mutation Operators
In its current release, PIT supports a small number of

mutation operators, the objective being to limit the num-
ber of mutants and the execution time, but with the risk,
as pointed out by some previous studies [1], to have a set
of generated mutants of low quality. We have recently pro-

posed [6] to extend the list of mutation operators to increase
the effectiveness of the tool. Next Section presents results
with respect to both sets of mutants. Table 1 lists all the
basic mutation operators (in the current release of PIT) and
the ones from the extended list. Note that the current re-
lease of PIT has only one mutation operator per relational
operator: i.e., PIT mutates < to only <=, while there are
other possibilities, such as, <→>, <→=>, which is taken
care of by the extended list of mutation operators.

3.4 Mutation Report
The HTML report generated by PIT uses a colour code

to show both the line coverage and the mutation score, see
Figure 1 that displays a report on an example application2.
Light green lines correspond to code coverage with no mu-
tant generated: line 11 in the example. Dark green corre-
spond to the lines for which tests were executed and failed
(which means the mutants were killed): this represents the
mutation coverage, for instance lines 9, 12 and 13 in the ex-
ample. Light pink shows lines with no code coverage (outside
the scope of the tests): line 4 in the example. Dark pink is
used to show instructions on which mutants were generated
and not detected by the tests (surviving mutants): line 8.

[...]

Figure 1: Example of output of PIT.

Beside each line number, another number, embedding an
internal web link, gives the number of mutants generated for
the line. For instance in Figure 1 we can see that there are 6
mutants generated for line 8 (in dark pink). Clicking on the
link brings the focus to the list of mutants (at the bottom of
the HTML page) where the colour code shows that among
the 6 mutants generated for line 8, 3 were killed (dark green)
and 3 survived (dark pink).

4. DEMONSTRATION RESULTS
To demonstrate the applicability and the performance of

PIT we select 5 Java projects (recorded in Table 3) that
are frequently employed in academic evaluations. Table 2
records: the version, lines of code (calculated with the Ja-
vaNCSS tool, number of classes (for which test suites exist)
and number of tests are reported. Joda-time is a date and
time manipulation library. Jfreechart is a popular library
for creating charts and plots. Jaxen is an engine for evalu-
ating XPath expressions. Commons-lang provides a set of

2https://github.com/hcoles/triangle-example

utility methods for the commons classes of Java. Finally,
commons-collections is a set of data structures for Java.

Tables 4 and 5 record the results obtained from the se-
lected programs. These demonstrate that PIT is applicable
on real world programs and that the extended operator set
is feasible and practical. The results also demonstrate that
the results vary when using the two sets indicating the need
for using the extended mutants, when possible [6].

5. CONCLUSION
This paper presents PIT, a mutation testing tool for Java.

PIT is a robust and easy to use mutation testing tool. It is
quite popular and has been widely used. In summary, PIT
offers the following major advantages: it is well integrated
with development tools as it supports both Ant and Maven;
it is open source and actively maintained; it is scalable and
supports mutant operators that conform to the current prac-
tice of mutation testing research.

6. REFERENCES
[1] P. Amman. Transforming mutation testing from the

technology of the future into the technology of the
present,
https://sites.google.com/site/mutationworkshop2015/
program/mutationkeynote.pdf?attredirects=0&d=1.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Trans.
Software Eng., 32(8):608–624, 2006.

[3] M. Delahaye and L. du Bousquet. Selecting a software
engineering tool: lessons learnt from mutation analysis.
Software: Practice and Experience, 45(7):875–891, 2015.

[4] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Trans. Software
Eng., 37(5):649–678, 2011.

[5] R. Just. The major mutation framework: efficient and
scalable mutation analysis for java. In ISSTA, pages
433–436, 2014.

[6] T. Laurent, A. Ventresque, M. Papadakis, C. Henard,
and Y. L. Traon. Assessing and improving the mutation
testing practice of PIT. CoRR, abs/1601.02351, 2016.

[7] Y. Ma, J. Offutt, and Y. R. Kwon. Mujava: a mutation
system for java. In ICSE 2006, pages 827–830, 2006.

[8] A. S. Namin and S. Kakarla. The use of mutation in
testing experiments and its sensitivity to external
threats. In ISSTA 2011, pages 342–352, 2011.

[9] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An Experimental Determination of Sufficient
Mutant Operators. TOSEM, 5(2):99–118, 1996.

https://github.com/hcoles/triangle-example

Table 1: PIT’s basic mutant operators

Name Transformation Example Name Transformation Example

Cond.

Bound.

Replaces one relational operator

instance with another one (single

replacement).

< ≤
Return

Values

Transforms the return value of a

function (single replacement).
return 0 return 1

Negate

Cond.

Negates one relational operator

(single negation).
== !=

Void

Meth.

Call

Deletes a call to a void method. void m()

Remove

Cond.

Replaces a cond. branch with true

or false.
if (...) if (true)

Meth.

Call
Deletes a call to a non-void method. int m()

Math
Replaces a numerical op. by another

one (single replacement).
+ −

Con-

structor

Call

Replaces a call to a constructor by

null.
new C() null

Incre-

ments

Replace incr. with decr. and vice

versa (single replacement).
++ −−

Member

Variable

Replaces an assignment to a variable

with the Java default values.
a = 5 a

Invert

Neg.

Removes the negative from a

variable.
−a a Switch

Replaces switch statement labels by

the Java default ones.

Inline

Const.

Replaces a constant by another one

or increments it.
1 0, a a + 1

Table 2: Extended mutant operator list of PIT

Name Transformation Example Name Transformation Example

ABS Replaces a variable by its negation. a −a OBBN
Replaces the operators & by | and

vice versa.
a&b a|b

AOD
Replaces an arithmetic expression

by one of the operand.
a + b a ROR

Replaces the relational operators

with another one. It applies every

replacement.

< ≥, < ≤

AOR
Replaces an artihmetic expression

by another one.
a + b a ∗ b UOI

Replaces a variable with a unary

operator or removes an instance of

an unary operator.

a a++

CRCR
Replaces a constant a with its

negation, or with 1, 0, a + 1, a− 1.

a −a,

a a − 1.

Com-

mons
All the common operators as described above.

Table 3: Test subjects, lines of code (LoC), number
of classes and number of test cases.

Subjects Version LoC Classes Tests

joda-time 2.8.1 18,611 210 4,129
jfreechart 1.0.19 46,986 290 1,320
jaxen 1.1.6 6,790 152 646
commons-lang 3.3.4 16,286 199 3,373
commons-collections 4.4.0 11,281 243 2,210

APPENDIX
A. SCENARIO OF THE DEMO

We will show during the demo session that:

• PIT is easy to use, even for users who are not familiar
with mutation testing.

• the execution time of PIT is acceptable, even with the
extended list of mutant operators.

• using the extended list of operators improves the effec-
tiveness of the analysis, while the impact on the execu-
tion time is reasonable.

First, we will briefly introduce mutation testing. Then we
will demonstrate how to use it. The users will chose among
a panel of Java libraries, ranging from a very simple exam-
ple (containing 2 classes) to a large code base (250+ classes).
Once the library is chosen, the users can run PIT using either
the Maven goal or Ant target, whichever is available (both

are available for many projects). Figure 2 shows a snapshot
of the execution of a Maven goal on the library triangle-
example3: the users just need to execute one command and
PIT will generate the mutants, run the tests against them
and build a HTML report – beside the log messages dis-
played interactively in the terminal (we have left some of
the messages in Figure 2).

p i t@h ibe rn ia : ˜/ t r i ang l e−example$ mvn verify
[. . .]

==
Generated 51 mutations K i l l e d 43 (84%)
Ran 150 t e s t s (2 . 94 t e s t s per mutation)
==
[. . .]
[INFO] Total t ime : 5 .685 s
[. . .]

Figure 2: Example of execution of PIT (through
Maven) for one of the projects, with two fragments
of the interactive output.

The first thing that users will notice is that configuring
PIT to run these examples is straightforward (as long as all
the tests defined for the library pass). We will show the

3https://github.com/hcoles/triangle-example

https://github.com/hcoles/triangle-example

Table 4: Number of mutants, killable and mutation score (MS) for the basic and extended lists of operators.

joda-time jfreechart jaxen commons-lang commons-collections

Measure Basic Extended Basic Extended Basic Extended Basic Extended Basic Extended

#Mutants

Min. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Med. 97.00 224.00 98.00 260.50 24.00 39.00 27.00 57.00 27.00 42.00

Mean 164.17 462.06 219.14 685.48 77.48 188.97 156.82 457.05 62.32 126.53

Max. 973.00 2,915.00 3,436.00 9,742.00 3,901.00 14,493.00 4,545.00 14,586.00 1,094.00 2,349.00

#Killable

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Med. 60.99 136.99 26.00 49.00 11.99 21.00 17.00 33.50 5.00 5.00

Mean 117.32 295.71 59.59 131.20 37.91 69.31 124.74 338.86 21.66 41.34

Max. 834.00 2,108.00 1,356.00 2,488.00 773.00 1,793.00 3,928.99 11,522.99 867.00 1,553.00

MS

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Med. 0.80 0.71 0.24 0.16 0.73 0.66 0.84 0.74 0.50 0.45

Mean 0.71 0.64 0.29 0.24 0.60 0.56 0.72 0.66 0.44 0.41

Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: Execution time in seconds for the basic and extended lists of operators.

Basic Extended

Subjects Mutants Killable Time Mutants Killable Time / Overhead

joda-time 2.8.1 35,297 25,224 1,138 99,343 63,578 3,531 / 210%

jfreechart 1.0.19 81,960 22,289 2,398 256,370 49,069 6,589 / 175%

jaxen 1.1.6 14,334 7,014 1,221 34,960 12,823 31,077 / 2,445%

commons-lang 3 3.4 34,502 27,443 2,803 100,553 74,550 8,023 / 186%

commons-collections 4 4.0 24,308 8,449 570 49,354 16,126 1,230 / 116%

users how to set up Maven/Ant and then let them run PIT
on the projects. The reports are generated at the end of the
execution of PIT in a specific target repository. The users
can then load the report in a browser, and we will discuss
then with the users. For instance, Figure 3 shows that one
class, that we thought we fully tested, Triangle.java, has a
100% (line) coverage but has some surviving mutants (mu-
tation score < 100%). Something was wrong with our tests
– something the coverage metrics did not catch.

Figure 3 also shows what the users will see when they
click on the class name: the source code of the class (with
the colour code we described earlier in this paper) followed
by the generated mutants.

[...]

[...]

Figure 3: Example of outputs of PIT.

Here the users will see that PIT helps them to realise that
some values are not properly tested in the condition. During

the demo the users will be encouraged to modify the tests
(here, adding three small tests) and run PIT again. Now
the results show a better mutation coverage (see Figure 4).

[...]

[...]

Figure 4: Example of outputs of PIT for the same
example but after adding a few tests.

After this example, we will show to the users the impact
of using the extended set of mutation operators. We have
Maven goals and Ant targets already set up for the users
– and we will also show them the modifications required to
run PIT with the extended set of mutants. The users will
see that the number of mutants increases quite a lot as well
as the execution time, which stays reasonable though, given
the number of mutants generated. Navigating the report
(see Figure 5), the users will notice this increase in terms of
mutants generated and will be able to see the list of mutants.
For instance, line 8 of the source code has now 36 mutants
instead of the 8 that were generated with the small set of

mutation operators.

Figure 5: Example of PIT output with the extended
set of mutation operators.

	Introduction
	Mutation Testing
	PIT: Real world mutation
	Running PIT
	Mutant Generation and Execution
	Extension of the Mutation Operators
	Mutation Report

	Demonstration Results
	Conclusion
	References
	Scenario of the Demo

