
Categorizing Compiler Error Messages with Principal Component
Analysis

Brett A. Becker∗ and Catherine Mooney

Abstract: Being a competent programmer is critical for students in all computing disciplines and software engineering

in particular. Novice programming students face a number of challenges and these have been shown to contribute to

worrying dropout rates for students majoring in computing, and the growing number of non-majors who are learning

to program. Methods of identifying and helping at-risk programming students have been researched for decades.

Much of this research focuses on categorizing the errors that novice programmers make, in order to help understand

why these errors are made, with the goal of helping them overcome these errors quickly, or avoid them altogether.

This paper presents the first known work on categorizing compiler errors using Principal Component Analysis. In this,

we find a new way of discovering categories of related errors from data produced by the students in the course of their

programming activity. This method may be used to identify where these students are struggling and provide direction

in efforts to help them.

Keywords: Compiler errors; Compiler error messages; Novice programmers; CS1; Error message categorization; Java
programming; Principal component analysis

1 Introduction

Novice programming students face a number of
challenges, and difficulties with computer programming
in particular have been cited as a contributing factor in
worrying dropout rates [1]. Globally one third of
students fail their introductory programming course [2,
3], often referred to as CS1 [4]. One source of difficulty
is struggling with basic programming concepts
themselves – some students may struggle with repetition
statements, others with relational operators, etc. Another
challenge comes in the form of notoriously cryptic
compiler error messages (CEMs), which result from the
coding errors made by students in source code [5]. One
line of effort to understand these challenges is

categorizing novice errors. Generally these studies fall
into two camps, those that categorize errors committed
by students in source code (referred to in this paper as
simply errors), and those that categorize the compiler
error messages (CEMs) resulting from these errors.
Often, both camps focus on the most frequent errors as
for many languages the majority of students spend the
majority of their time on a minority of error types [6, 7].

This paper presents the first known work on
categorizing compiler errors using Principal Component
Analysis (PCA), a non-parametric method of reducing a
complex data set to reveal hidden, simplified dynamics
within it. This is accomplished by converting a set of
observations of variables (which may be correlated) into
a set of values of linearly uncorrelated principal
components. These principal components may then
reveal relationships between the variables. Using this
technique, we attempt to ‘relate’ two or more CEMs. In
this way we identify several CEMs which if generated
by a student, indicate that the same student has a high
likelihood of generating other identifiable errors. In
effect this forms categories of (related) errors. We focus
on Java errors as Java is the most popular programming
language for teaching novices to program [8, 9] and is

• Brett A. Becker is with the Beijing Dublin International
College, 100 Ping Le Yuan, Chaoyang District, Beijing
100124, China, and School of Computer Science, University
College Dublin, Belfield, Dublin 4, Ireland.
brett.becker@ucd.ie

• Catherine Mooney is with the Physiology and Medical Physics
Department, Royal College of Surgeons, 123 St. Stephen’s
Green, Dublin 2, Ireland. catherinemooney@rcsi.ie
∗ To whom correspondence should be addressed. Manuscript

Becker et al.: Categorizing Compiler Error Messages with Principal Component Analysis 2

also the most popular language in general [10]. We feel
that approaches such as that presented in this paper are
made more necessary as more data-driven metrics
appear [11].

This paper is organized as follows. Section 2 presents
related work, Section 3 presents our aims, methodology
and principal component analysis. Section 4 presents
our results and Section 5 presents our conclusions.

2 Related Work

Both student-committed errors and CEMs lend
themselves to many types of categorization, for
instance: frequency; type (syntax, semantic, logic,
runtime, etc.); defined categories (bracketing, repetition,
variable declaration / initialization, scope, etc.); non-
literal errors (discussed later); and more.

Hristova et al. [12] compiled a list of common Java
errors committed by students, combining data from
sources including teaching assistants, students and
professors from 58 institutions, and members of
SIGCSE. This list of 62 errors was reduced to 20 as
some were deemed too advanced for their students to
encounter, or because the editor they used was capable
of identifying the error in a useful enough way (their
goal was to enhance CEMs). Of these 20, 13 were syntax
errors (such as ‘= versus ==’, ‘&& versus &’, etc.), 6
were logic errors (such as ‘improper casting’), and 1 was
a semantic error (‘invoking class method on object’).
Nine years later Chan Mow [13] gathered the most
common errors generated by her students and
categorized them in the same way as Hristova et al.
94.1% of these errors were syntax, 4.7% semantic, and
1.2% logic.

One problem that these studies reveal is the lack of a
one-to-one mapping between errors and CEMs – that is,
a single error may, in different contexts, produce
difference CEMs, and the same CEM may be produced
by entirely different and distinct errors. As the ultimate
goal of these studies is to help students learning to
program, not being able to identify an error based on the
CEM it generates (or vice versa) complicates the
approach, and draws a distinction between research on
errors and research on CEMs, despite both approaches
normally having a common end goal.

Dy and Rodrigo [14] explored ‘non-literal errors’
where the CEM does not match the actual error
committed by the student. In doing so they compiled a
list of the most common CEMs encountered in their

data. ‘Similar’ errors were grouped together, for
instance all cannot find symbol errors formed one
category, regardless of if the symbol was a variable,
method, or class. Unfortunately, such categorization can
introduce difficulty when comparing results to those of
others. However due to the sheer number of possible
CEMs, and the fact that they are not guaranteed to be
stable across Java versions [15], such categorization is
hard to escape, particularly when a study is done without
considering generalization.

McCall and Kölling [16] sought to improve this
situation by developing and validating error categories.
Their results showed that error causes can be manually
analyzed by independent researchers with good
reliability, and that work (using CEMs only) tended to
group some distinct errors together in single categories,
which can be listed more accurately. They identified a
total of 80 categories which were divided into syntax,
semantic, and logic errors. They found that in general,
semantic errors showed a greater tendency to
correspond to CEMs when compared to syntax errors,
showing that categorization scheme can achieve a
higher precision in describing these errors.

Many studies either categorize errors by frequency
[17], or categorize errors (into types, etc.) after being
arranged by frequency. Again, this is because educators
are most concerned with the most frequent errors, which
normally only feature a small subset of possible errors,
particularly in the case of novices who generally do not
utilize many advanced features of a language and
therefore do not encounter errors arising from their use.
Categorizing errors by frequency alone can provide
insight and direct efforts to aid students, but also opens
questions. In [18] Jadud noted that the distributions of
the most frequent errors across six languages including
COBOL, Fortran, Haskell, Java, LOGO and SOLO are
very common given the diversity of these languages. Of
these, Haskell stood out most, with 50% of all errors
encountered being one type. Jadud felt that a refinement
of type error (the most frequent) would bring the
distribution more into line with the other languages. In
[6], we showed that the distributions of the ten most
frequent CEMs from six different studies all focusing on
Java had very similar distributions. This similarity is
despite the fact that some of these studies categorized
some errors together before ranking them by frequency,
while others did not. In fact, four of the top five errors
were common to all six studies, subject to minor

Becker et al.: Categorizing Compiler Error Messages with Principal Component Analysis 3

differences due to using different Java versions, or
study-specific groupings such as some grouping all
cannot find symbol CEMs together, and others reporting
cannot find symbol (variable/method/class) separately.

Recent work by Pritchard [19] examined the link
between errors (in this case CEMs) and statistical
distributions. A good fit was found between Python and
Java error frequency distributions and Zipf-Mandelbrot
distributions. This work gives one possible way to
contrast languages or compilers quantitatively and holds
promise for future research.

Also recently, the Blackbox dataset [15] has begun
storing large-scale naturally accumulating process data
(NAPD). This data is available to researchers and holds
significant potential to explore the behavior of
programmers including categorization of errors.
Altadmri and Brown [20] used a year of this data
involving 250,000 users to investigate 18 errors from
their previous work [21], ultimately derived from [12].
The results are intended to inform tools to target the
most frequent (or hardest to fix) errors. Jadud and Dorn
[22] used this data to explore repeated errors at a large-
scale applying Jadud’s error quotient [18]. Providing
novel insight, but complication in using such large-scale
data for such purposes, their results show quantifiable
and statistically significant country-specific differences.
They conclude that external, objective measures of
student performance, either integrated at the time of
learning or applied post-hoc, hold promise to radically
transform our understanding of novice programming
behavior at both small and large scales.

Rounding out recent developments, Ahadi et al. [23]
explored analyzing NAPD with machine learning
methods to identify high- and low-performing students.
Although not focused on categorizing errors, this
approach holds promise for potential use in
categorization, which would provide another avenue to
detecting at-risk students. Further, such advanced
techniques are most likely required for the analysis of
the large-scale NAPD data that is now available.

The current state of play is summarized by McCall and
Kölling’s conclusion: ‘There still is no real agreement
about the most common problems students encounter’
[16] and by Brown and Altadmri [21] who found that
educators only have a weak consensus about the
frequency of student errors. Nonetheless the availability
of NAPD and tools to analyze such large scale data hold
promise, but currently the complications of such large

data sets make smaller more controlled studies still very
relevant.

3 Categorizing Errors Using Principal
Component Analysis
3.1 Aims

In this work we seek to categorize CEMs, by relating
them to each other by analyzing how users encounter
them. In other words, we would consider two CEMs to
be related if it can be shown that if a student commits an
error generating a particular CEM, that student has a
high likelihood of also committing an error generating a
different CEM. For instance, if a particular student
frequently forgot closing braces, we would reasonably
expect that student to generate some number of reached
end of file while parsing CEMs as omitting a closing }
at the end of the final class in a file will generate this
CEM. However we might also expect a relatively large
number of ‘else’ without ‘if’ CEMs, as this can result
from omitting a closing brace at the end of an if
statement which is followed by an else. In this
hypothetical case it is fairly easy to predict that this
student will most likely have higher than expected
frequencies of both of these CEMs, thus relating them.
However, would it be possible to analyze the behavior
of a large group of students in a way that may reveal
hidden (or at least not obvious) relations between two or
more errors? In other words is it possible to say that
finding a high frequency of error x is an indication of a
high frequency of error y, or conversely a low frequency
of error z? The ultimate goal of establishing these error
categories is to help students overcome these errors
quickly, or avoid them altogether.

3.2 Methodology

In this study we analyze the compilation behavior of
over 100 students who undertook a CS1 course learning
Java as part of a BSc in Information Technology as
described in [5]. Students used a custom editor that had
the capability of enhancing CEMs, although this feature
was disabled for this group. Student data was logged
during normal activity (working on assignments, labs,
etc. as well as any other programming, such as
individual practice, following along in lecture, etc.) and
no skeleton code or other structures were provided. The
data was filtered to remove students with very low levels
of activity, as there was not necessarily a one-to-one

Becker et al.: Categorizing Compiler Error Messages with Principal Component Analysis 4

mapping between anonymous compiler IDs and actual
students, as described in [5]. Data was logged for six
weeks, resulting in 39,127 errors, across 76 unique
CEMs. This group was typical in that the most frequent
errors accounted for the vast majority of errors: the 15
most frequent errors accounted for 85.3% of all errors,
with the 15th accounting for only 1.7% of all errors in
isolation. Figure 1 shows the number of errors per CEM
for the 15 most frequent CEMs.

Figure 1. Frequency of top 15 CEMs

3.3 Principal Component Analysis

Principal Component Analysis (PCA) is a non-
parametric method of reducing a complex data set to
reveal hidden, simplified dynamics within it [24]. PCA
takes as input a set of variables (in this case CEMs)
which may be correlated and converts them into a set of
linearly uncorrelated principal components (PCs), less
than or equal to the number of original variables. PCA
is useful for retaining data that accounts for a high
degree of variance, and removing data which does not.
We used the ggbiplot1 function for the R
statistical/graphical programming language to perform
PCA.

4 Results

Figure 2 shows a plot displaying PCs 1 and 2, where
each point represents a student. It shows a 68%
confidence ellipse, arrows representing the correlation
of CEMs with the PCs, and a circle representing the
theoretical maximum extent of the arrows. The angle

1 github.com/vqv/ggbiplot

between any two arrows represents the correlation
between those CEMs (90% is linearly uncorrelated).
Thus, for example we could say that the correlation
between CEMs 20 and 12 for PCs 1 and 2 is minimal.

Figure 2. PC2 vs PC1 (<10% of outliers are beyond axis
limits)

Two relative groupings of CEMs are seen (1, 3, 5, 20,
24, 57, 92) and (7, 12, 32, 39, 51, 53, 74, 79). Table 1
shows that all 15 CEMs are positively correlated with
PC1, but for PC2, the first group is positively correlated
while the second is negatively correlated.

Table 1. Pearson Correlation Coefficients of the first 4
principal components with the top 15 CEMs.

CEM PC1 PC2 PC3 PC4
1 0.69 0.20 0.03 -0.26
3 0.88 0.14 -0.05 -0.16
5 0.68 0.37 0.13 -0.23
7 0.87 -0.13 -0.03 -0.26
12 0.40 -0.53 0.15 -0.57
20 0.63 0.60 0 -0.05
24 0.82 0.17 0.09 0.03
32 0.70 -0.30 0.41 0.38
39 0.68 -0.42 0.42 0.06
51 0.91 -0.13 -0.08 -0.01
53 0.74 -0.29 -0.51 0.11
57 0.67 0.48 0.01 0.07
74 0.63 -0.23 -0.68 0.09
79 0.76 -0.34 0.08 0.27
92 0.70 0.29 0.06 0.36

Figure 3 shows PCs 2 and 3 and reveals three groups
(12, 32, 39, 79), (1, 3, 5, 20, 24, 57, 92) and (7, 51, 53,
74). Similarly, Figure 4 also shows three groups (51, 53,
74), (24, 32, 39, 57, 79, 92) and (1, 3, 5, 7, 12, 20).

Becker et al.: Categorizing Compiler Error Messages with Principal Component Analysis 5

CEMs 1, 3, 5, 20 appear in common groups in all three
figures, as do CEMs 32, 39, 79 and CEMs 51, 53, 74.
CEMs 1 ‘(’ expected and 3 ‘)’ expected are the only
‘bracketing’ errors in the top 15 and based on that
observation it is not surprising to find them in the same
group. This could be taken as evidence that students who
often generate CEM 1 also often generate CEM 3.
CEMs 32 class, interface, or enum expected, 39 ‘else’
without ‘if’ and 79 reached end of file while parsing all
can result from forgetting a beginning or ending brace
‘{’ or ‘}’ in different contexts, and again it is not entirely
unsurprising to see them grouped together (as discussed
in Section 3.1). Finally, CEMs 51 illegal start of
expression and 53 illegal start of type, both occur when
a construct is expected but not found, while CEM 74 not
a statement typically occurs when an otherwise
syntactically correct statement occurs where it is not
expected. In other words, these three CEMs all occur
when a construct is expected but not found or when a
construct is found where it is not expected. Students
found struggling with this group of errors could
struggling with a significant programming
misconception involving these errors. We find these
groupings (or categories), originating from principal
component analysis, worthy of further investigation as a
potential avenue towards helping students struggling
with particular groups of errors.

Figure 3. PC3 vs PC2 (<10% of outliers are beyond axis
limits)

5 Conclusion

This paper presented an investigation into relating
compiler error messages using principal component
analysis. We found that PCA identified several groups

of related errors that upon inspection provide grounds
for further research. Many of the errors that we find to
be related share common features – for instance, the
only two bracketing errors were found in the same
groups for all PCs investigated. These results are taken
as the beginning of a larger investigation into relating
compiler error messages (and the errors that generate
them). Future work will involve establishing if these
groups of errors can be validated and if so, developing
specific interventions to help students who are found to
make frequent errors in a specific group or groups.

Figure 4. PC4 vs PC3 (<10% of outliers are beyond axis
limits)

References

[1] A. Yadin, "Reducing the dropout rate in an
introductory programming course," ACM Inroads, vol.
2, no. 4, pp. 71-76, 2011.

[2] J. Bennedsen and M. Casperson, "Failure rates in
introductory programming," ACM SIGCSE Bulletin, vol.
39, no. 2, pp. 32-36, 2007.

[3] C. Watson and F. W. Li, "Failure rates in introductory
programming revisited," in Proceedings of the 2014
conference on Innovation & technology in computer
science education, 2014.

[4] M. Hertz, "What do CS1 and CS2 mean? Investigating
differences in the early courses," in Proceedings of the
41st ACM technical symposium on Computer science
education, 2010.

[5] B. A. Becker, An Exploration of the Effects of
Enhanced Compiler Error Messages for Computer
Programming Novices, Dublin Institute of Technology,
2015.

[6] B. A. Becker, "An Effective Approach to Enhancing
Compiler Error Messages," in Proceedings of the 47th
ACM Technical Symposium on Computer Science
Education, Memphis, Tennessee, 2016.

Becker et al.: Categorizing Compiler Error Messages with Principal Component Analysis 6

[7] P. Denny, A. Luxton-Reilly and E. Tempero, "All
syntax errors are not equal," in ITiCSE 12, 2012.

[8] S. Davies, J. A. Polack-Wahl and K. Anewalt, "A
snapshot of current practices in teaching the introductory
programming sequence," in Proceedings of the 42nd
ACM technical symposium on Computer science
education, 2011.

[9] R. M. Siegfried, D. Greco, N. Miceli and J. Siegfried,
"Whatever happened to Richard Reid’s list of first
programming languages?," Information Systems
Education Journal, vol. 10, no. 4, pp. 24-30, 2012.

[10] TIOBE Software, "TIOBE Index for February 2016,"
[Online]. Available:
http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html.

[11] B. A. Becker, "A new metric to quantify repeated
compiler errors for novice programmers," in
Proceedings of the 21st annual conference on
Innovation and technology in computer science
education, Arequipa, Peru, 2016a.

[12] M. Hristova, A. Misra, M. Rutter and R. Mercuri,
"Identifying and correcting Java programming errors for
introductory computer science students," in Proceedings
of the 34th SIGCSE technical symposium on computer
science education, 2003.

[13] I. Chan-Mow, "Analyses of student programming
errors in Java programming courses," Journal of
Emerging Trends in Computing and Information
Sciences, pp. 739-745, 2012.

[14] T. Dy and M. M. Rodrigo, "A detector for non-literal
Java errors," in Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research, 2010.

[15] N. C. C. Brown, M. Kölling, D. McCall and I. Utting,
"Blackbox: A large scale repository of novice
programmers' activity," in The 45th SIGCSE technical
symposium on computer science education (SIGCSE),
2014.

[16] D. McCall and M. Kölling, "Meaningful
categorisation of novice programmer errors," in
Proceedings of the 2014 International Conference on
Frontiers in Education: Computer Science and
Computer Engineering, 2014.

[17] J. Jackson, M. Cobb and C. Carver, "Identifying top
Java errors for novice programmers," in Frontiers in
Education, 2005. FIE'05. Proceedings 35th Annual
Conference, 2005.

[18] M. C. Jadud, An exploration of novice compilation
behaviour in BlueJ, University of Kent, 2006.

[19] D. Pritchard, "Frequency Distribution of Error
Messages," in Proceedings of the 6th Workshop on
Evaluation and Usability of Programming Languages
and Tools (PLATEAU 2015), 2015.

[20] A. Altadmri and N. C. Brown, "37 million
compilations: Investigating novice programming
mistakes in large-scale student data," in Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, Kansas City, 2015.

[21] N. C. Brown and A. Altadmri, "Investigating novice
programming mistakes: educator beliefs vs student
data," in Proceedings of the tenth annual conference on
International computing education research - ICER '14,
2014.

[22] M. C. Jadud and B. Dorn, "Aggregate Compilation
Behavior: Findings and Implications from 27,698
Users," in Proceedings of the eleventh annual
International Conference on International Computing
Education Research, 2015.

[23] A. Ahadi, R. Lister, H. Haapala and A. Vihavainen,
"Exploring machine learning methods to automatically
identify students in need of assistance," in Proceedings
of the Eleventh Annual International Conference on
International Computing Education Research, 2015.

[24] J. Shlens, "A tutorial on principal component analysis:
derivation, discussion, and singular value
decomposition," 25 March 2003. [Online]. Available:
https://www.cs.princeton.edu/picasso/mats/PCA-
Tutorial-Intuition_jp.pdf. [Accessed 14 August 2015].

[25] P. Denny, A. Luxton-Reilly, E. Tempero and J.
Hendrickx, "CodeWrite: supporting student-driven
practice of java," in Proceedings of the 42nd ACM
technical symposium on Computer science education,
2011.

Brett A. Becker received the M.A.
degree in higher education from the
Dublin Institute of Technology,
Dublin, Ireland in 2015, the Ph.D.
degree in computer science and
M.Sc. degree in computational
science from University College
Dublin, Dublin, Ireland in 2011 and
2003 respectively, and the BA

degrees in computer science and physics from Drew University,
Madison, New Jersey, USA in 2003. In 2006 he joined the
Department of Computing at Griffith College Dublin as a
Lecturer, and in 2009 became a Senior Lecturer. In 2012 he joined
the College of Computing Technology as Head of Faculty and
later served as Head of Academics. Since 2015 he has been a
Lecturer in the School of Computer Science at University College
Dublin. His research interests are computer science education and
high performance computing. He is on the technical program
committee (system software) for Supercomputing 2016, is the
maintainer of the Irish Supercomputer List, the technical editor of
the All-Ireland Society of Higher Education Journal, and has
served with the International Conference on Engaging Pedagogy
since its inception in 2008 having served twice as general chair.
He has authored over 20 papers in computer science and

Becker et al.: Categorizing Compiler Error Messages with Principal Component Analysis 7

pedagogy and is a member of the ACM Special Interest Group on
Computer Science Education.

 Catherine Mooney received the
PhD degree in Computer Science,
from University College Dublin,
Dublin, Ireland in 2008, followed
by a four year post-doctoral
position in clinical bioinformatics
with Prof Denis Shields at UCD.
She is currently a Research Fellow
in the Physiology and Medical
Physics Department, Royal
College of Surgeons in Ireland. She

has published more than 20 peer reviewed research articles and is
a recipient of a prestigious Science Foundation Ireland Advance
Award. Her research focuses on identifying biomarkers for babies
at risk of seizures with the goal of applying these discoveries
towards the development of point-of-care diagnostics.

