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Abstract: Being a competent programmer is critical for students in all computing disciplines and software engineering 

in particular. Novice programming students face a number of challenges and these have been shown to contribute to 

worrying dropout rates for students majoring in computing, and the growing number of non-majors who are learning 

to program. Methods of identifying and helping at-risk programming students have been researched for decades. 

Much of this research focuses on categorizing the errors that novice programmers make, in order to help understand 

why these errors are made, with the goal of helping them overcome these errors quickly, or avoid them altogether. 

This paper presents the first known work on categorizing compiler errors using Principal Component Analysis. In this, 

we find a new way of discovering categories of related errors from data produced by the students in the course of their 

programming activity. This method may be used to identify where these students are struggling and provide direction 

in efforts to help them. 
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1     Introduction 

Novice programming students face a number of 
challenges, and difficulties with computer programming 
in particular have been cited as a contributing factor in 
worrying dropout rates [1]. Globally one third of 
students fail their introductory programming course [2, 
3], often referred to as CS1 [4]. One source of difficulty 
is struggling with basic programming concepts 
themselves – some students may struggle with repetition 
statements, others with relational operators, etc. Another 
challenge comes in the form of notoriously cryptic 
compiler error messages (CEMs), which result from the 
coding errors made by students in source code [5]. One 
line of effort to understand these challenges is 

categorizing novice errors. Generally these studies fall 
into two camps, those that categorize errors committed 
by students in source code (referred to in this paper as 
simply errors), and those that categorize the compiler 
error messages (CEMs) resulting from these errors. 
Often, both camps focus on the most frequent errors as 
for many languages the majority of students spend the 
majority of their time on a minority of error types [6, 7]. 

This paper presents the first known work on 
categorizing compiler errors using Principal Component 
Analysis (PCA), a non-parametric method of reducing a 
complex data set to reveal hidden, simplified dynamics 
within it. This is accomplished by converting a set of 
observations of variables (which may be correlated) into 
a set of values of linearly uncorrelated principal 
components. These principal components may then 
reveal relationships between the variables. Using this 
technique, we attempt to ‘relate’ two or more CEMs. In 
this way we identify several CEMs which if generated 
by a student, indicate that the same student has a high 
likelihood of generating other identifiable errors. In 
effect this forms categories of (related) errors. We focus 
on Java errors as Java is the most popular programming 
language for teaching novices to program [8, 9] and is 
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also the most popular language in general [10]. We feel 
that approaches such as that presented in this paper are 
made more necessary as more data-driven metrics 
appear [11]. 

This paper is organized as follows. Section 2 presents 
related work, Section 3 presents our aims, methodology 
and principal component analysis. Section 4 presents 
our results and Section 5 presents our conclusions.   

2     Related Work 

Both student-committed errors and CEMs lend 
themselves to many types of categorization, for 
instance: frequency; type (syntax, semantic, logic, 
runtime, etc.); defined categories (bracketing, repetition, 
variable declaration / initialization, scope, etc.); non-
literal errors (discussed later); and more.  

Hristova et al. [12] compiled a list of common Java 
errors committed by students, combining data from 
sources including teaching assistants, students and 
professors from 58 institutions, and members of 
SIGCSE. This list of 62 errors was reduced to 20 as 
some were deemed too advanced for their students to 
encounter, or because the editor they used was capable 
of identifying the error in a useful enough way (their 
goal was to enhance CEMs). Of these 20, 13 were syntax 
errors (such as ‘= versus ==’, ‘&& versus &’, etc.), 6 
were logic errors (such as ‘improper casting’), and 1 was 
a semantic error (‘invoking class method on object’). 
Nine years later Chan Mow [13] gathered the most 
common errors generated by her students and 
categorized them in the same way as Hristova et al. 
94.1% of these errors were syntax, 4.7% semantic, and 
1.2% logic.  

One problem that these studies reveal is the lack of a 
one-to-one mapping between errors and CEMs – that is, 
a single error may, in different contexts, produce 
difference CEMs, and the same CEM may be produced 
by entirely different and distinct errors. As the ultimate 
goal of these studies is to help students learning to 
program, not being able to identify an error based on the 
CEM it generates (or vice versa) complicates the 
approach, and draws a distinction between research on 
errors and research on CEMs, despite both approaches 
normally having a common end goal. 

Dy and Rodrigo [14] explored ‘non-literal errors’ 
where the CEM does not match the actual error 
committed by the student. In doing so they compiled a 
list of the most common CEMs encountered in their 

data. ‘Similar’ errors were grouped together, for 
instance all cannot find symbol errors formed one 
category, regardless of if the symbol was a variable, 
method, or class. Unfortunately, such categorization can 
introduce difficulty when comparing results to those of 
others. However due to the sheer number of possible 
CEMs, and the fact that they are not guaranteed to be 
stable across Java versions [15], such categorization is 
hard to escape, particularly when a study is done without 
considering generalization.  

McCall and Kölling [16] sought to improve this 
situation by developing and validating error categories. 
Their results showed that error causes can be manually 
analyzed by independent researchers with good 
reliability, and that work (using CEMs only) tended to 
group some distinct errors together in single categories, 
which can be listed more accurately. They identified a 
total of 80 categories which were divided into syntax, 
semantic, and logic errors. They found that in general, 
semantic errors showed a greater tendency to 
correspond to CEMs when compared to syntax errors, 
showing that categorization scheme can achieve a 
higher precision in describing these errors.  

Many studies either categorize errors by frequency 
[17], or categorize errors (into types, etc.) after being 
arranged by frequency. Again, this is because educators 
are most concerned with the most frequent errors, which 
normally only feature a small subset of possible errors, 
particularly in the case of novices who generally do not 
utilize many advanced features of a language and 
therefore do not encounter errors arising from their use. 
Categorizing errors by frequency alone can provide 
insight and direct efforts to aid students, but also opens 
questions. In [18] Jadud noted that the distributions of 
the most frequent errors across six languages including 
COBOL, Fortran, Haskell, Java, LOGO and SOLO are 
very common given the diversity of these languages. Of 
these, Haskell stood out most, with 50% of all errors 
encountered being one type. Jadud felt that a refinement 
of type error (the most frequent) would bring the 
distribution more into line with the other languages. In 
[6], we showed that the distributions of the ten most 
frequent CEMs from six different studies all focusing on 
Java had very similar distributions. This similarity is 
despite the fact that some of these studies categorized 
some errors together before ranking them by frequency, 
while others did not. In fact, four of the top five errors 
were common to all six studies, subject to minor 
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differences due to using different Java versions, or 
study-specific groupings such as some grouping all 
cannot find symbol CEMs together, and others reporting 
cannot find symbol (variable/method/class) separately.  

Recent work by Pritchard [19] examined the link 
between errors (in this case CEMs) and statistical 
distributions. A good fit was found between Python and 
Java error frequency distributions and Zipf-Mandelbrot 
distributions. This work gives one possible way to 
contrast languages or compilers quantitatively and holds 
promise for future research.  

Also recently, the Blackbox dataset [15] has begun 
storing large-scale naturally accumulating process data 
(NAPD). This data is available to researchers and holds 
significant potential to explore the behavior of 
programmers including categorization of errors. 
Altadmri and Brown [20] used a year of this data 
involving 250,000 users to investigate 18 errors from 
their previous work [21], ultimately derived from [12]. 
The results are intended to inform tools to target the 
most frequent (or hardest to fix) errors. Jadud and Dorn 
[22] used this data to explore repeated errors at a large-
scale applying Jadud’s error quotient [18]. Providing 
novel insight, but complication in using such large-scale 
data for such purposes, their results show quantifiable 
and statistically significant country-specific differences. 
They conclude that external, objective measures of 
student performance, either integrated at the time of 
learning or applied post-hoc, hold promise to radically 
transform our understanding of novice programming 
behavior at both small and large scales. 

Rounding out recent developments, Ahadi et al. [23] 
explored analyzing NAPD with machine learning 
methods to identify high- and low-performing students. 
Although not focused on categorizing errors, this 
approach holds promise for potential use in 
categorization, which would provide another avenue to 
detecting at-risk students. Further, such advanced 
techniques are most likely required for the analysis of 
the large-scale NAPD data that is now available. 

The current state of play is summarized by McCall and 
Kölling’s conclusion: ‘There still is no real agreement 
about the most common problems students encounter’ 
[16] and by Brown and Altadmri [21] who found that 
educators only have a weak consensus about the 
frequency of student errors. Nonetheless the availability 
of NAPD and tools to analyze such large scale data hold 
promise, but currently the complications of such large 

data sets make smaller more controlled studies still very 
relevant.  

3 Categorizing Errors Using Principal 
Component Analysis  
3.1  Aims 

In this work we seek to categorize CEMs, by relating 
them to each other by analyzing how users encounter 
them. In other words, we would consider two CEMs to 
be related if it can be shown that if a student commits an 
error generating a particular CEM, that student has a 
high likelihood of also committing an error generating a 
different CEM. For instance, if a particular student 
frequently forgot closing braces, we would reasonably 
expect that student to generate some number of reached 
end of file while parsing CEMs as omitting a closing } 
at the end of the final class in a file will generate this 
CEM. However we might also expect a relatively large 
number of ‘else’ without ‘if’ CEMs, as this can result 
from omitting a closing brace at the end of an if 
statement which is followed by an else. In this 
hypothetical case it is fairly easy to predict that this 
student will most likely have higher than expected 
frequencies of both of these CEMs, thus relating them. 
However, would it be possible to analyze the behavior 
of a large group of students in a way that may reveal 
hidden (or at least not obvious) relations between two or 
more errors? In other words is it possible to say that 
finding a high frequency of error x is an indication of a 
high frequency of error y, or conversely a low frequency 
of error z? The ultimate goal of establishing these error 
categories is to help students overcome these errors 
quickly, or avoid them altogether. 

3.2   Methodology 

In this study we analyze the compilation behavior of 
over 100 students who undertook a CS1 course learning 
Java as part of a BSc in Information Technology as 
described in [5]. Students used a custom editor that had 
the capability of enhancing CEMs, although this feature 
was disabled for this group. Student data was logged 
during normal activity (working on assignments, labs, 
etc. as well as any other programming, such as 
individual practice, following along in lecture, etc.) and 
no skeleton code or other structures were provided. The 
data was filtered to remove students with very low levels 
of activity, as there was not necessarily a one-to-one 
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mapping between anonymous compiler IDs and actual 
students, as described in [5]. Data was logged for six 
weeks, resulting in 39,127 errors, across 76 unique 
CEMs. This group was typical in that the most frequent 
errors accounted for the vast majority of errors: the 15 
most frequent errors accounted for 85.3% of all errors, 
with the 15th accounting for only 1.7% of all errors in 
isolation. Figure 1 shows the number of errors per CEM 
for the 15 most frequent CEMs.  

Figure 1. Frequency of top 15 CEMs 

3.3   Principal Component Analysis 

Principal Component Analysis (PCA) is a non-
parametric method of reducing a complex data set to 
reveal hidden, simplified dynamics within it [24]. PCA 
takes as input a set of variables (in this case CEMs) 
which may be correlated and converts them into a set of 
linearly uncorrelated principal components (PCs), less 
than or equal to the number of original variables. PCA 
is useful for retaining data that accounts for a high 
degree of variance, and removing data which does not. 
We used the ggbiplot1 function for the R 
statistical/graphical programming language to perform 
PCA.  

4   Results 

Figure 2 shows a plot displaying PCs 1 and 2, where 
each point represents a student. It shows a 68% 
confidence ellipse, arrows representing the correlation 
of CEMs with the PCs, and a circle representing the 
theoretical maximum extent of the arrows. The angle 

1 github.com/vqv/ggbiplot 

between any two arrows represents the correlation 
between those CEMs (90% is linearly uncorrelated). 
Thus, for example we could say that the correlation 
between CEMs 20 and 12 for PCs 1 and 2 is minimal.  

Figure 2. PC2 vs PC1 (<10% of outliers are beyond axis 
limits) 

Two relative groupings of CEMs are seen (1, 3, 5, 20, 
24, 57, 92) and (7, 12, 32, 39, 51, 53, 74, 79). Table 1 
shows that all 15 CEMs are positively correlated with 
PC1, but for PC2, the first group is positively correlated 
while the second is negatively correlated. 

Table 1. Pearson Correlation Coefficients of the first 4 
principal components with the top 15 CEMs. 

CEM PC1 PC2 PC3 PC4 
1 0.69 0.20 0.03 -0.26 
3 0.88 0.14 -0.05 -0.16 
5 0.68 0.37 0.13 -0.23 
7 0.87 -0.13 -0.03 -0.26 
12 0.40 -0.53 0.15 -0.57 
20 0.63 0.60 0 -0.05 
24 0.82 0.17 0.09 0.03 
32 0.70 -0.30 0.41 0.38 
39 0.68 -0.42 0.42 0.06 
51 0.91 -0.13 -0.08 -0.01 
53 0.74 -0.29 -0.51 0.11 
57 0.67 0.48 0.01 0.07 
74 0.63 -0.23 -0.68 0.09 
79 0.76 -0.34 0.08 0.27 
92 0.70 0.29 0.06 0.36 

Figure 3 shows PCs 2 and 3 and reveals three groups 
(12, 32, 39, 79), (1, 3, 5, 20, 24, 57, 92) and (7, 51, 53, 
74). Similarly, Figure 4 also shows three groups (51, 53, 
74), (24, 32, 39, 57, 79, 92) and (1, 3, 5, 7, 12, 20). 
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CEMs 1, 3, 5, 20 appear in common groups in all three 
figures, as do CEMs 32, 39, 79 and CEMs 51, 53, 74. 
CEMs 1 ‘(’ expected and 3 ‘)’ expected are the only 
‘bracketing’ errors in the top 15 and based on that 
observation it is not surprising to find them in the same 
group. This could be taken as evidence that students who 
often generate CEM 1 also often generate CEM 3. 
CEMs 32 class, interface, or enum expected, 39 ‘else’ 
without ‘if’ and 79 reached end of file while parsing all 
can result from forgetting a beginning or ending brace 
‘{’ or ‘}’ in different contexts, and again it is not entirely 
unsurprising to see them grouped together (as discussed 
in Section 3.1). Finally, CEMs 51 illegal start of 
expression and 53 illegal start of type, both occur when 
a construct is expected but not found, while CEM 74 not 
a statement typically occurs when an otherwise 
syntactically correct statement occurs where it is not 
expected. In other words, these three CEMs all occur 
when a construct is expected but not found or when a 
construct is found where it is not expected. Students 
found struggling with this group of errors could 
struggling with a significant programming 
misconception involving these errors. We find these 
groupings (or categories), originating from principal 
component analysis, worthy of further investigation as a 
potential avenue towards helping students struggling 
with particular groups of errors. 

Figure 3. PC3 vs PC2 (<10% of outliers are beyond axis 
limits) 

5    Conclusion 

This paper presented an investigation into relating 
compiler error messages using principal component 
analysis. We found that PCA identified several groups 

of related errors that upon inspection provide grounds 
for further research. Many of the errors that we find to 
be related share common features – for instance, the 
only two bracketing errors were found in the same 
groups for all PCs investigated. These results are taken 
as the beginning of a larger investigation into relating 
compiler error messages (and the errors that generate 
them). Future work will involve establishing if these 
groups of errors can be validated and if so, developing 
specific interventions to help students who are found to 
make frequent errors in a specific group or groups. 

Figure 4. PC4 vs PC3 (<10% of outliers are beyond axis 
limits) 
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