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1. Introduction 

In most developed countries, bridge condition is assessed based on visual inspections. 

Such inspections are, however, labour intensive and often an unreliable way of 

determining the true condition. Examples of the importance of effective bridge 

inspection include the collapse of the Interstate 34 Bridge in Minneapolis on 1
st
 

August 2007 [1] and the collapse of an Interstate 5 bridge over the Skagit River in 

Seattle on 27
th

 May 2012 [2]. In other cases, over-precautionary measures are taken 

and unnecessary repairs result. The shortcomings of visual inspections, combined 

with the increase in computational power and signal processing capacity have resulted 

in a move towards sensor based monitoring of bridge condition in recent years. A 

brief literature review is provided here into damage detection methods for bridges. 

More comprehensive literature reviews can be found in [[3]–[6]].  

The physically tangible relation between changes in stiffness or mass and changes in 

natural frequency has led many in the field of damage detection to use natural 

frequency as an indicator of damage [7]. Cerda et al. [8] carry out experimental work 

where damage is simulated as a change in bridge mass, and changes in frequency are 

tested as the damage indicator. Messina et al. [9] present a method based on linearized 

shifts in frequency due to damage and considers changes in stiffness only, capable of 

tackling multiple damage locations and intensities.  

A damage detection algorithm, where information on the location and severity of 

damage is inferred directly from changes in mode shapes, is presented by Kim & 

Stubbs [10]. In an effort to compare frequency and mode shape methods, Kim et al. 

[11] applied both a frequency based and a modal strain energy based method to 

identify damage location and severity in a simulated beam. The two methods are used 

for several damage scenarios and it is found that the modal strain energy method gives 

a more accurate prediction of location than the frequency based method. It may be 

difficult however to detect the difference in modal characteristics between healthy and 

slightly damaged structures to the required level of accuracy in the field. Shih et al. 

[12] recommend a combination of change in natural frequency, modal stain energy 

and modal flexibility in their damage detection methodology. 

Compared with mode shapes and natural frequencies, there has been less research on 

the use of damping as a damage indicator [13]. It is believed, however, that in some 

cases  damping is  more sensitive than natural frequencies [14]. Curadelli et al. [15] 

show that in certain cases,  little or no frequency  change is detected but that changes 

in damping are successfully used to detect cracks.  Modena et al. [16] show that some 
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cracks cause significant changes in damping but cause very little change in frequency 

and need higher mode shapes to be detected. Jeary et al. [17] extract non-linear 

damping data from short time histories of the response of thirty structures to random 

vibration and discuss the possibility of changes in damping being an indicator of 

bridge damage. Further, many researchers note that damping can be a useful damage 

sensitive feature and is highly indicative of the amount of damage that a structure has 

undergone during its lifetime [18]–[20].  

Wavelet transforms can be used to accentuate discontinuities in a signal such as the 

discontinuity of slope when an axle passes over a damaged section. They are based on 

the idea that any signal can be broken down into a series of local basis functions 

called wavelets. The transform may be applied and mapped to the space or time 

domain of the structure. Thus, they may be used to find an abrupt change in a mode 

shape [21]–[23], often indicative of damage, locate a sudden change in response from 

an acceleration time response [24] and [25], or analyse the displacement response at 

the mid-span of a bridge [26]. In each case, the energy of the abnormal signal 

indicates the size of the crack. 

A neural network is a numerical technique to relate outputs to inputs. It consists of an 

interconnected group of processing units known as neurons. It is most often an 

adaptive system that changes its structure during a training phase. The trained 

network is used to model complex relationships between inputs and outputs, and to 

find patterns in data. They have been applied successfully in many diverse 

applications including vibration-based damage identification. In general, neural 

networks are applicable to problems where a significant database of information is 

available, but where it is difficult to specify an explicit relationship. Hattori et al. [27] 

develop a bridge condition identification technique based on a Neural Network 

technique. The running vehicle-induced bridge vibration data is the input and the 

structural damage condition is the output. Lee et al. [28] present a neural network-

based damage detection method using differences in mode shapes between healthy 

and damaged structures as the basic feature for damage detection. 

This paper describes a novel approach that uses a Moving Force Identification (MFI) 

algorithm to indicate deterioration of the bridge’s condition. The application of MFI 

to health monitoring was proposed by OBrien et al. [29] wherein an instrumented 

vehicle is used for drive by inspections. This paper uses the mean force estimate for 

individual axles of a population of vehicles crossing a bridge to detect damage at 

relatively low levels. The vehicle parameters used to generate the forces measured 

come from Weigh-in-Motion (WIM) data from a fleet of 2-axle vehicles and so the 

damage is detected using ambient traffic as in [30]. The underlying reasons for the 

method's effectiveness are first explained using static equations. Various MFI 

techniques are then introduced with the specific MFI theory used in this text 

explained in detail in Section 3. Section 5 discusses the shortcomings of using strain 

signals and the need to use deflection data to detect damage [31]. 
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2. Static concept - how damage affects calculated force 

Beam deflections, d, resulting from two moving point loads (60 kN and 80 kN), are 

found using the principle of virtual work. The two point forces, 4 m apart, are 

simulated at 2 m intervals crossing a 24 m simply supported beam (Fig. 1). The 

Modulus of Elasticity of the beam is taken as 𝐸 = 35 × 109 N m
-2

 and the second 

moment of area is taken as  𝐼 =  0.5 m
4
.  

 

 

 

 

 

 

  

 

 

 

A displacement history of the beam is calculated at the three sensor locations shown 

in Fig. 1 (quarter span, mid span and three quarter span). This is repeated for a beam 

containing damage where damage is modelled as a reduction in bending stiffness 

(levels used are 5%, 15% and 30%) and the affected portion of the beam begins at 

mid span and ends 4 m to the right. The history of total deflection for the sensor at 

mid span, for these levels of damage is illustrated in Fig. 2. As expected, deflection 

increases as the beam becomes increasingly damaged. 

Figure 1: Two point forces traversing a simply supported beam 
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Figure 2: Deflections at mid span due to two point loads for varying levels of damage 

 

An optimisation approach is considered for damage detection where an objective 

function is formulated, equal to the sum of the squares of the differences between 

measured and theoretical deflections at the three sensor locations. The theoretical 

deflections are always taken as the healthy deflections and the measured deflections 

may be healthy or damaged. The objective function for the 𝑖𝑡ℎ scan is: 

𝑂𝑖 =  (𝑑1𝑖
𝑀𝑒 − 𝑑1𝑖

𝑇ℎ)
2

+ (𝑑2𝑖
𝑀𝑒 − 𝑑2𝑖

𝑇ℎ)
2

+ (𝑑3𝑖
𝑀𝑒 − 𝑑3𝑖

𝑇ℎ)
2
 

where 𝑑𝑠𝑖
𝑇ℎ is the theoretical deflection at sensor 𝑠 for scan 𝑖 and 𝑑𝑠𝑖

𝑀𝑒 is the 

corresponding measured value. The forces that minimise this objective function are 

found by taking partial derivatives with respect to 𝑊1 and 𝑊2. This is similar to the 

traditional approach to Bridge Weigh-in-Motion (BWIM) first proposed by Moses 

[32] and further described by OBrien [33], [34]: 

𝜕𝑂𝑖

𝜕W𝑗
= 2(𝑑1𝑖

𝑀𝑒 − 𝑑1𝑖
𝑇ℎ) (

𝜕(−𝑑1𝑖
𝑇ℎ)

𝜕W𝑗
) + 2(𝑑2𝑖

𝑀𝑒 − 𝑑2𝑖
𝑇ℎ) (

𝜕(−𝑑2𝑖
𝑇ℎ)

𝜕W𝑗
)

+ 2(𝑑3𝑖
𝑀𝑒 − 𝑑3𝑖

𝑇ℎ) (
𝜕(−𝑑3𝑖

𝑇ℎ)

𝜕W𝑗
)        𝑓𝑜𝑟  𝑗 = 1,2 

Setting both derivatives to zero gives two equations in two unknowns for each scan, 𝑖, 

allowing the two forces to be calculated. For the case of a healthy bridge, the 

measured deflections are the same as the theoretical ones, so the calculated forces are 

the same as the applied forces and are constant for all 𝑖. If a bridge is damaged the 

measured deflections increase. If the forces are then calculated assuming a healthy 
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bridge, this results in errors in the calculated values. The calculated forces for varying 

levels of damage are given in Fig. 3. 

 

 (a): Calculated force, W1  

 

 

 

(b): Calculated force, W2 

Figure 3: Calculated forces for varying levels of damage 
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Fig. 3 shows that the algorithm correctly predicts the forces in the case of a healthy 

beam but is sensitive to damage. The determinant of the system of equations is near 

zero, confirming that the system of equations is not well-conditioned. This has the 

effect of amplifying the sensitivity of the results to local losses of stiffness. 

 

3. Dynamic concept – MFI theory for damage detection 

In MFI, a forcing function is sought for the dynamic equations such that the 

difference between what is measured and what is calculated is at a minimum. General 

reviews of MFI theory can be found in [35] and [36]. The MFI method used in this 

paper is referred to as the Optimal State Estimation Approach [37], where the 

minimisation is treated as a multi-dimensional control process using dynamic 

programming. The method was first proposed by Law and Fang [37] and 

subsequently improved upon by González et al. [34]. The second order matrix 

differential equation for structural dynamics is: 

[𝑀𝑔] {
𝑑2𝑢

𝑑𝑡2 } + [𝐶𝑔] {
𝑑𝑢

𝑑𝑡
} + [𝐾𝑔]{𝑢} = 𝐹(𝑡) 

where {𝑢} is the vector of displacements, 𝑀𝑔, 𝐶𝑔 and 𝐾𝑔 are the mass, damping and 

stiffness matrices respectively and 𝐹(𝑡) is the vector of forcing functions. Eq. 3 is 

reduced from a second order equation to two first order equations by defining the state 

variables of velocity {𝑣} and acceleration {𝑎} : 

 

{𝑣} =  {
𝑑𝑢

𝑑𝑡
} 

 

 

where [𝐿] is the location matrix which distributes the forcing function {𝑔(𝑡)} to the 

relevant degrees of freedom. Eq. 4 and Eq. 5 are combined in matrix form to give: 

𝑑

𝑑𝑡
{
𝑢
𝑣

} = [
0 𝐼

−[𝑀𝑔]
−1

[𝐾𝑔] −[𝑀𝑔]
−1

[𝐶𝑔]
] {

𝑢
𝑣

} + [
0

[𝑀𝑔]
−1

[𝐿]
] {𝑔(𝑡)} 

which is then rewritten using the state vector {𝑋} which contains the state variables 

{𝑢} and {v}: 

𝑑{𝑋}

𝑑𝑡
=  [𝐴]{𝑋} + 𝑓(𝑡) 

Eq. 7 is converted into a discrete time integration scheme using Laplace Transforms, 

the Exponential matrix and Padé approximations [38] and becomes: 

 

 

(4) 

 

(5) 

 

 

 

(6) 
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{𝑎} =  {
𝑑𝑣

𝑑𝑡
} =  −[𝑀𝑔]

−1
[𝐶𝑔]{𝑣} − [𝑀𝑔]

−1
[𝐾𝑔]{𝑢} + [𝑀𝑔]

−1
[𝐿]{𝑔(𝑡)} 

 

(3) 
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{𝑋}𝑗+1 = [𝑀]{𝑋}𝑗 + [𝑃]{𝑔}𝑗 

where 

[P] = [𝑀 − 𝐼][𝐴]−1 [
0

[𝑀𝑔]
−1

[𝐿]
]    

and 

          𝑀 = e[𝐀]h   

where h is the time step between consecutive points j and  j+1. The measurements, 𝑑𝑗, 

are taken at discrete points on the bridge and so a matrix, 𝑄, must be used to relate the 

measurements to the relevant state variables. The optimisation is then to find {𝑔}𝑗 that 

minimises the error given by, 

𝐸(𝑋𝑗, 𝑔𝑗) = ∑ ((𝑄𝑋𝑗−𝑑𝑗), 𝑊(𝑄𝑋𝑗 − 𝑑𝑗))

𝑁

𝑗=1

+ (𝑔𝑗, 𝐵𝑔𝑗) 

subject to Eq. 8 and where (𝑥, 𝑦) denotes the vector product and 𝑊 is the identity 

matrix. This inverse problem is highly ill-conditioned and so a regularisation 

parameter is introduced that solves a nearby problem and improves the conditioning 

of the system. 𝐵 is a diagonal matrix of the regularisation parameter and the number 

of terms of 𝐵 is dependent on the number of axles. The optimal regularisation 

parameter is chosen using the L-curve method [39]. The L-curve is a plot of the 

smoothing norm of the regularised solution versus the residual norm of the error on a 

log-log scale and the optimal parameter is chosen from the corner of the L shape. This 

paper utilizes first order regularisation [[34]] in which the derivative of the force is 

regularised and the force vector is then included in the state vector.  

The minimisation problem is solved using dynamic programming [40] and Bellman's 

principle of optimality [41]. Eq. 11 is known as a policy function and the optimal 

policy is that which minimises the overall error of the process. The optimal forcing 

function is found through a backward and forward loop. In this paper the forcing 

function found using MFI theory is shown to be highly sensitive to bridge damage.   

 

4. Vehicle – bridge interaction modelling 

A bridge example is used to illustrate the damage detection approach. The simply 

supported bridge is modelled using 24 1 m beam long finite elements, each with two 

nodes and two degrees of freedom per node. The depth of the beam is 1.2 m and the 

second moment of area and cross sectional area are 1.152 m
4
 and 10 m

2
 respectively. 

The Young’s Modulus is 35 × 10
9
 N m

-2
 and the density is 2400 kg m

-3
. The bridge 

damping ratio is taken as 3%. Damage is modelled as recommended by Sinha et al. 

[42] and used in [24], [43]–[45] where a crack causes a loss in stiffness over a region 
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of three times the beam depth, varying linearly from a maximum at the centre. Fig. 4 

illustrates a crack at element fourteen of the beam, 2 m right of mid-span. A damage 

parameter, δ, is defined as the ratio of crack depth to overall beam depth; thus δ = 

0.25 implies that the crack depth is 25% of the beam depth. 

 

Figure 4: Damage location and extent 

The road profile used is generated according to ISO Class 'A' [46], i.e. 'very good'. 

Adjacent road profiles are correlated and this creates a three dimensional ‘carpet’ 

profile [47]. Fig. 5 shows a 50 m section of road profile with all possible wheel paths 

highlighted. This profile is passed through a moving average filter of length 0.24 m in 

order to take into account the tyre contact patch. The transverse positions of the 

vehicles are generated using Monte Carlo simulation assuming a truncated normal 

distribution with a mean path 2 m from the edge.  

 

Figure 5: Road profile section with highlight of possible paths 

 

The fleet of vehicles consists of 2-axle 'Half-Car' models which take into account 

axle-hop, pitch and bounce degrees of freedom. The properties for the static axle 

weights, the vehicle speed and the distance between axles is taken from a WIM site at 

Arnhem in the Netherlands. A database of 128,604 2-axle trucks with axle spacings 

between 4 m and 6 m, was extracted from the general traffic data. The properties 

illustrated in Fig. 6 are taken from this database.  
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  Figure 6: Histograms of vehicle properties (a) Axle spacing (b) Axle weights           

(c) Vehicle speed 

Mean and standard deviation values for unsprung mass, suspension stiffness, 

suspension damping and tyre stiffness parameters are taken from [48], [49], and are 

shown in Table 1.  

Table 1: Dynamic properties of vehicle fleet 

 

5. MFI and damage detection using strains 

In general BWIM applications [33], [50], [51],bridge strains are used to infer axle 

weights. A population of 1000 vehicles is simulated crossing the 24 m long beam.  

White Gaussian noise with a signal to noise ratio of 50 is added to the strains to allow 

for measurement error. More severe signal to noise ratios would, of course, affect the 

accuracy of the MFI. The inferred forces are calculated using strain signals from 

measurement points on the bridge at 6 m, 12 m and 18 m (the quarter, mid, and three 
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quarter spans respectively). The mean force for the 1000 vehicles is found and this 

produces a force pattern which can be compared to further batches of vehicles 

crossing the same profile, due to statistical spatial repeatability (SSR) [52] which 

averages out the effect of individual vehicle dynamics.  The resulting inferred forces 

are seen in Fig. 7 for four different conditions: (1) a healthy beam, (2) crack at mid-

span, (3) crack 1 m right of mid-span and (4) crack 2 m right of mid-span. In all three 

cases containing cracks, a level of damage of δ = 0.3 is assumed. 

 

Figure 7: Axle forces inferred using strains (12 = mid-span; 13 & 14 = 1m and 2m 

right of mid-span respectively) 

The crack at mid-span is directly at a sensor location so the effect is significant. 

However, once the distance between the sensor and the damage location becomes 

greater than the triangular extent of stiffness loss (2m right of mid-span), the damage 

can no longer be detected. As the beam is statically determinant, the stress distribution 

is independent of all element stiffness and the stress is only affected by a loss of 

stiffness at the sensor location. Yao et al [53] make note of this need for strain sensors 

to be in direct contact with affected areas in their review of crack detection 

techniques. It can be noted that predicted forces for the healthy case and those where 

the crack is 2 m right of mid-span are not quite identical. This is due to the differing 

transverse positions at which the vehicles travel across the carpet profile. It is 

concluded that strains in a determinant structure are of limited value in terms of 

damage detection.  

 

6. MFI and damage detection using deflections 

To overcome this issue, deflection is assumed to be measured at the three 

measurement points instead of strain. Camera technologies are improving rapidly and 

it is reasonable to assume that deflections can soon be measured accurately using a 

camera at a high scanning frequency. Wu and Casciati [54] provide an overview for 

non-contact sensor detection of displacements and RaghuPrasad et al. [55] discuss 

using static deflection measurements as a means of damage detection. Recent use of 
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deflections measurements in moving load prediction can be seen in [56], [57]. 

Deflections are calculated here using the Newmark-β integration scheme [58] and the 

vehicle-bridge dynamic interaction is then solved iteratively as described by Green 

and Cebon [59]. As with the strain signals, Gaussian white noise with a signal to noise 

ratio of 50 is added to the calculated deflections to allow for measurement error. A 

population of 1000 2-axle vehicles generated using the properties of Figure 6 and 

Table 1 were simulated crossing the 24 m span simply supported beam. This process 

is first completed on a healthy bridge. For each vehicle, MFI is used to infer the axle 

force from the measured deflection. Cracks are then introduced to the bridge models 

using damage levels of δ = 0.05, δ = 0.15 and δ = 0.30. All damage is taken to occur 2 

m right of mid-span (i.e. at the 14
th

 element). For each level of damage the procedure 

is carried out for two samples of 1000 vehicles to show the degree of repeatability. 

The inferred axle force patterns for the front and rear axles are shown in Fig. 8 for the 

healthy case, and for the three different levels of damage. Each curve represents the 

mean of 1000 inferred force histories.  

 

Figure 8: Mean of 1000 inferred axle force histories using deflection measurements 

from a bridge with vary degrees of damage (a) Axle 1 (b) Axle 2 
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Fig. 8 confirms that the mean inferred force pattern is highly sensitive to damage in 

the bridge. It is important to note that this damage indication requires no knowledge 

of the two-axle vehicle fleet. The change is related to the damage level with the 

deviation from the healthy bridge condition increasing with increased damage, 

although not proportionately. The results of the inferred forces of the first axle appear 

intuitive. Damage leads to an increase in deflection and the MFI, not knowing about 

the damage, over-predicts the force. The ability of the inferred force to indicate 

damage on the bridge is at its worst, in terms of detecting damage, when the axle is 

alone on the bridge before the arrival of the second axle (4-6 m later). The results of 

the inferred forces of the second axle show a somewhat similar trend to the first axle. 

Damage leads to an increase in deflection and the MFI, again, over-predicts the force. 

Similar to the first axle, the ability of the inferred force to indicate damage on the 

bridge is at its best when both axles are on the bridge, and at its worst when the first 

axle leaves the bridge (4-6 m earlier).  

The results show good repeatability with the force history estimation for each pair of 

runs staying reasonably close to each other. The repeatability would clearly improve 

for large samples of similar vehicles. 

7. Influence of damage location and extent 

To investigate how the location of the decreased stiffness affected damage 

identification, a study was carried out in which 100 batches of 100 vehicles crossed 

the 24 m bridge with δ randomly varying between 0.01 and 0.30 for each batch. The 

location of the damage also varied randomly from 3-21 m. The indicator used to 

quantify the difference from a healthy bridge scenario was the root mean square of the 

differences between the mean inferred force of each batch and the inferred force from 

1000 vehicles crossing a healthy bridge. The values calculated for Axle 1 can be seen 

in Fig 9.  

 

 

Figure 9: Damage Extent vs RMS of the differences for 100 batches of 100 trucks 
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Also plotted on this figure is RMS of the differences between the 1000 vehicle 

healthy bridge inferred force and 20 batches of 100 vehicles where δ = 0. This is to 

illustrate the variability present in the data points. The dotted red line is the mean 

value of all twenty root mean squares.  

Using the same data and some interpolation to estimate the values for other damage 

location/extent pairings a contour plot was created and is seen in Fig 10. 

Figure 10: Contour plot of RMS of the various damage scenarios and 

interpolated values 

To investigate the robustness of using mean inferred force as a damage indicator, a 

similar process was carried out with a signal to noise ratio of 10. Each batch of 100 

vehicles was simulated crossing a different class A road profile. The 'healthy' force 

was taken as the mean of three δ = 0 batches. The results of this are shown in Figure 

11. 

Figs. 9, 10 and 11 show a general trend of increasing deviation away from the healthy 

bridge inferred force as the damage extent increases. As highlighted by the twenty 

batches of 100 vehicles crossing the healthy bridge, there can be a significant 

difference between batches with the same damage location and extent. If the number 

of vehicles per batch were increased, errors would be expected to cancel making the 

RMS data points more repeatable and the trends present in this study even more 

evident. However, at this point in time, the method can only be claimed to be an 

indicator of damage and cannot guarantee reliable results in all cases. In particular, a 

change in road surface profile may have a similar effect to bridge damage. 

The crossing events simulated here are not representative of actual bridge traffic as all 

events are of a single vehicle of the same type with varying properties.  This approach 

of discarding all but one vehicle type is deliberate as it minimises the variability 

arising from axle weights and spacings. For long-distance freight routes where 5-axle 

articulated vehicles are most common, it may be best to use this type as it will be 
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possible to average results for greater numbers of vehicles and the heavier vehicles 

will excite the bridge better. 

It should also be noted that if the batch of vehicles is taken over multiple days, the 

influence of daily temperature variations are removed but seasonal temperature effects 

will remain and will need to be corrected for. 

 

 

Figure 11: RMS of the differences vs damage extent for 100 batches of 100 trucks, 

SNR of 10 

8. Conclusions 

This paper uses an optimisation approach to find the force histories that minimise the 

sum of the squares of the differences between measured and theoretical deflections. 

This calculation of force histories is found to be highly sensitive to bridge damage. 

The mean inferred axle force histories for fleets of vehicles, are therefore used as 

damage indicators. Using the mean of a large fleet removes most of the influence of 

individual vehicle dynamic properties.  

Signals from strain transducers, as commonly used in bridge monitoring, were 

investigated initially as the input signal. However results indicate that the approach is 

ineffective unless the sensor is close to the damage location. As an alternative to the 

use of strain signals, this paper investigates the use of deflection signals. Results 

indicate that damage can be detected in the inferred axle force histories. The axle 

force histories deviate more from those of the healthy bridge as damage increases. It 

is clear that both axles give a good indication of damage and the best results are when 

both axles are on the bridge. 

The location of the damage plays an important role in using RMS as an indicator for 

damage. The results show when the damage is located near the centre of the bridge, 

the damage indicator is much less sensitive than when damage is off-centre.  
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