
1

A Lightweight Software Write-blocker for Virtual
Machine Forensics

Patrick Tobin, Nhien-An Le-Khac, M-Tahar Kechadi,
University College Dublin,

Ireland

pat.tobin@ucdconnect.ie; {an.lekhac, tahar.kechadi}@ucd.ie

Abstract—The integrity of any original evidence is fundamental
to a forensic examination. Preserving the integrity of digital
evidence is vitally important as changing just one bit among
perhaps gigabits of data, will irrevocably alter that data and
cast doubt on any evidence extracted. In traditional digital
forensics write-blockers are used to preserve the integrity of
that evidence and prevent changes from occurring, but virtual
machine forensics presents more difficult challenges to address.
Access to the digital storage device will probably not be possible,
typically the only accessible storage will be a virtual hard disk
drive. This will have the same integrity issues as those of a real
device, but with the added complication that it is not possible to
use a hardware write-blocker to prevent changes to those data.
For this reason it is important to explore how to implement
write-blocking mechanisms on a virtual device. In this paper we
present an implementation of a software write-blocker and show
how we can use it to be compliant with the 2nd ACPO principle
on digital evidence.

Index Terms—Digital Forensics; Digital Evidence; Write
blocker; Virtual Machine

I. INTRODUCTION

During the acquisition and analysis of a hard drive there is
a possibility that the evidence device may be written to. A
write-blocker prevents this and is an essential element of a
digital investigators tool kit. They are a physical device that
interfaces between the device to be imaged and the workstation
making that image. They prevent a host operating system from
issuing commands or writing data to the storage device that
will alter its contents or data [1].

Proving data has not been altered is a very important step
in digital forensics. This can be achieved through taking an
md5 hash of the original evidence [2]. This hash is then used
to prove that subsequent copies of those data are bit for bit
images of that original evidence, by recalculating hashes of
those images and comparing them against the original hash.
If they differ then we can conclude that the evidence has been
changed. Causing even one bit to change, fundamentally alters
that evidence and will result in a completely different new hash
value for the device - the avalanche effect. If the hashes differ
then the forensic credibility of those copies is questionable
and by association the trustworthiness of evidence extracted
from those compromised device images is also weakened.

Preserving the original evidence is therefore vital in proving
it in Court, any alteration of those data will have profound
and overwhelming consequences for that evidence, and it will
be declared as inadmissible. A second hash, the SHA1 hash,
is usually used in conjunction with md5, to support the md5
hash of the image.

A write-blocker is used with physical storage devices,
however, virtual machines (VMs), and virtual hard disk drives
(vHDDs) present very different scenarios to investigators. By
definition a virtual environment is an instruction-by-instruction
representation of a computer on a different system [3], recre-
ated rather than having its own physical working environment
provisioned through hardware. Current technologies allow
many VMs to be installed and co-exist with each other, each
sharing the same hardware and each operating independently
of one another.

To all intents and purposes a VM is real to the user, there
should be nothing to suggest that what they are using is
anything other than a true desktop machine, with its own
operating system (OS), hardware, and network interfaces.
They should respond as real devices should and should have,
more or less, the same performance issues. This virtual
environment poses an enigma for investigators, a vHDD is
a virtual representation of a true HDD, yet it is not possible
to forensically retrieve data from it in the same manner as a
real HDD is forensically examined.

Memory management in a virtual machine monitor (VMM)
does not necessarily allocate memory as a contiguous block
[4], it is more likely to be fragmented, with the distribution
managed by the VMM, this has consequences when investigat-
ing a VM. To take possession of all possible devices that may
contain data and image those devices would be very difficult,
and identifying those data of interest to an investigation would
also be very difficult. Copying those data directly from the
vHDD is perhaps the most feasible and practical way of
capturing evidence, but there also exists a risk of writing data
to a vHDD.

In this paper we address the issue of write-blocking a VM.
In the first section we will examine current VM technology,
in the second section we will look at digital forensics and
compare that against current VM forensics, and in the third



2

section we will introduce our approach, we will evaluate it
and show how we can comply with the Association of Chief
Police Officers (ACPO) guidelines [5] and NIJ Report [6] and
finally we will conclude and outline future research in Section
6.

II. VIRTUAL MACHINES

VMs and cloud computing are fundamentally and inextrica-
bly coupled. They provide the platform from which services
such as SaaS1, IaaS, and PaaS are furnished. VMs allow
efficient use of hardware and share these resources among
their users. VMs are used by many companies to standardise
the services they provide to their customers, and to make the
best use of hardware and software resources.

The ubiquitous nature of VMs also brings with it challenges
for Law Enforcement and cyber-crime investigators. The
volatility of VMs is the most pressing issue to overcome,
the ease with which a VM can be created and configured is
matched by the simplicity of deleting one. Other challenges
include VM standarisation and VM remote access.

Deleting a VM results in the loss of all data that VM
contains. To overcome that problem Tobin and Kechadi [7]
proposed using kernel code injection and virtual machine
introspection (VMI) as a means of capturing data before they
were deleted. The approach they propose is a very feasible
one, however it carries with it some problems to be overcome.
To extract data from a VM with injected code, any data
that the code identifies as evidence, or has the qualities of
evidence, must be collected by VMI, or somehow be flagged
for extraction. This will invariably mean that a file or folder
will be created to hold those data, or some method of flagging
VMI will be used to identify which data are for extraction.
The implication for this is that data will have to be written to
the vHDD, possibly over writing evidence or deleted files [8].
Writing data to an evidence drive must be avoided to preserve
that drive in its original form and allow for the recovery of
any deleted data, and by preserving the drive in its original
state will ensure that the md5 hash of the data will not change
thereby proving the evidence is unaltered.

What Tobin and Kechadi essentially proposed is the live
forensic examination of a computer system, this area is still
developing with many proposed approaches already. Triaging
a live system is one approach, where data are assessed for
their evidence value [9, 10], outside the laboratory, prior to
the recovery of a HDD and its forensic examination. The
process of triage avoids data being written to the HDD through
the use of external storage, typically a USB memory device,
to contain the executable triage code and the resulting data
recovered. This approach is a reasonable one to take with a
VM, but only if that VM is still running. In cases where it
is not possible to capture a live VM then this approach will
obviously fail.

1Software as a Service, Infrastructure as a Service, Platform as a Service

Triaging will also fail where direct access to the VM is
not possible. For example if the VM is in the cloud, or is
running on a computer, physical access to the VM will not
be possible, therefore alternative methods must be explored,
this is what Tobin and Kechadi have proposed - the remote
real-time examination of a live VM [7].

III. DIGITAL FORENSICS

Digital forensics was first introduced by Parker in his 1976
book - Crime by Computer [11]. Computing has developed
in many ways since then, particularly with the widespread
introduction of virtualisation and cloud computing. Digital
forensics has itself developed through what Parker described as
pre-history, infancy, childhood and adolescence. He advocated
that we are now in the adolescent phase.

The re-emergence of virtual computing in recent years has
facilitated the development of a new type of crimes. The
ability to create a VM instance in a foreign country has
allowed a crime scene to be effectively put beyond the
jurisdiction of most investigators. The tools and techniques
that have been developed for a traditional computer crime
scene are largely ineffective on VMs, particularly those that
are in the cloud, or on distributed networks. This has arisen
primarily because of the shared resources used, the
distribution of, and access to those resources.

A very important element of any forensic analysis is that
the methodologies used are sound and repeatable [17]. By
following the same procedures, and by using the same tools
and the same evidence, the same results should be obtained
as those obtained in the forensic laboratory, failure to adhere
to this assumption will weaken the evidence.

IV. VIRTUAL MACHINE FORENSICS

Recently cloud computing [23, 24, 25] forensics, mobile
cloud forensics [26] and VM forensics have attracted many
forensic research scientists. Some VM forensics challenges
are similar to those of traditional digital forensics. Once data
have been captured the same analysis techniques are used, but
data capture is the most pressing challenge. Unlike standard
computer systems where tools and techniques exist to capture
data from a standard hard drive, similarly effective tools and
methods have to be developed for a vHDD where access to it
is restricted. Just like in traditional digital forensics capturing
the host log and data movements, are equally as important
in VM forensics. These too, should not be overlooked when
preserving data on a VM.

In digital forensics, securing data on a hard drive involves
capturing the suspect computer, and seizing and removing the
hard drive, however seizing a vHDD is less straightforward.
If the VM is operating in the cloud through a service provider,
accessing the hard drive is much more difficult, if possible at



3

all. Apart from obtaining Court orders to authorise this, it is
likely to take time and may expose other users data, causing
privacy concerns. Combined with this, there are very few tools
to assist in investigating vHDDs, apart from LibVMI [12].

Virtual Machine Introspection (VMI), as described by
Garfinkel and Rosenblum in their 2003 paper [18], is a
very important development in the inspection of VMs. This
describes a framework whereby examination of virtual systems
can be carried out from within the VMM. VMI allows aspects
of a VMs current status to be viewed from the VMM, without
interference with or the knowledge of, the VM and without
impacting the performance of the virtual system. It offers
the ability to view a VM’s memory pages, processes, register
values, and network settings, and provides a structure within
which data can be removed from a VM. The LibVMI tool
implements this proposal in a forensic manner and when
used with The Volatility tool [13], it can be used to recover
data from live systems. Volatility provides a set of terminal
commands that can be used to recover and parse data from
a variety of format types, including ELF files, VirtualBox
snapshots, core dumps, QEMU VM memory dumps, Windows
Hibernation files and Crash Dumps, plus more. A very wide
range of operating systems (OS) which include Windows XP
to Windows 10, Linux Kernels, from 2.6.11 to 4.2.3 and Mac
OSes from Leopard (10.5) to El Capitan (10.11) are also
supported.

Despite this, VMI is limited by the semantic gap that exists
between those data on a vHDD and the natural language
representation of those data. The issues that the semantic
gap presents are dependent on several variants which must be
accounted for prior to parsing the raw data captured. These
involve factors which alone are difficult to overcome, but when
combined, amplify that difficulty. Windows operating systems
represent data differently to Linux which in turn differ to
Unix and Mac OSes, additionally some processors use little
endian data structures while others use big endian. Further
complications can be introduced with each update or new
release of the various operating systems, which can introduce
changes to data structures, thus altering the semantics of
an operating system and further complicate conversion to a
natural language representation. Without having knowledge
of the operating system, version and release and any changes
to data structures, available to, or known by, investigators,
the process of giving meaning to these raw data is made
considerably more difficult.

In their paper Bahram et al. [19] assert this expectation
and express that the fundamental assumptions of VMI are that
the VM being examined uses data in a prescribed manner
by following data structure templates and that the target VM
adheres to certain semantic rules and behaviours. Both of
these principles can be replicated to interpret data, but by
compromising these assumptions, through the modification
of the kernels use of any data structure, VMI tools are
defeated. These modifications can be made very simply,
through changing the syntax and semantics of data structures.

This type of obfuscation of data may be unexpected, and is
likely to be a very considerable obstacle for investigators.

It is very likely that parsing those compromised data will
be computationally complex and expensive to resolve. To
overcome these problems one solution, offered by Tobin and
Kechadi’s approach, is to inject forensically sound code into
a VM to recover data. Their approach can by-pass the
obfuscation methods described by Braham et al., by using the
VM operating system semantics.

A. Virtual Machine Forensic Tools

VMI, and the tools built upon it, are currently the primary
method used to recover data from a VM. The VMI process
alone will not interpret raw data into its natural language
counterpart, tools are required to do this. Two such tools are
Virtuoso [20] and VMST [21] which can be used to bridge the
semantic gap. Both of these tools rely on the semantics of the
operating system being known. Both these tools generate code
that will replicate the behaviour of those in-guest programs,
using them to bridge the semantic gap. but can be defeated by
using the obfuscation methods presented by Bahram et al.

V. WRITE-BLOCKING A VM

A. Platform

We used a Sabayon Linux (Gentoo) platform, Kernel 4.4.0,
with an AMD eight core processor and 16 GiB RAM and
installed KVM/QEMU v1.3.2 on it. We then created a similar
Sabayon Linux VM as the host system, allocating it with 30
GiB SSD, 1024 MiB RAM, 2 vCPUs and defaulted to the
remaining settings and used this as our test platform. We wrote
our code in C and used gcc version 4.9.3 (Gentoo Hardened
4.9.3 p1.1, pie-0.6.2) to compile the code. The test data we
used was the /home directory contents from our host system
which we copied into the guest system, this contained 95,473
files in 7729 sub-folders, and was 7.8 GiB in size.

We disabled network access to ensure that we had a platform
that would remain relatively unchanged as we carried out our
experiments. We did this to ensure that little modification
took place to any files, data and settings that would normally
be dependent on a web connection. This helped maintain a
comparatively unchanged environment for our experiments.

Before we describe our proposal further we must first
describe certain prerequisites we have assumed. We have
complete access to the VM under investigation, we have root
privileges and the VM was used only for lawful purposes.
We also certify that all data are lawful, were created by us for
exclusive use in our experiments, that all data accessed were
owned by us, that we have unrestricted access to and use of
those data, that no breach of copyright was committed and
that we did not exceed the licence or conditions of use, of any
third-party software used.



4

B. Software Write-blocking

Software write blocking can be enabled on Linux systems,
but with limits as to its effectiveness. One option that allows
a file system (FS) to be mounted read-only (RO) is the Linux
command mount when used with the switch ro. This mounts
an FS RO, but if the FS is ext3 and ext4, both will replay the
journal if the FS is ’dirty’ [22]. This behaviour may allow
write access to the FS, but is dependent on a number of factors
- the FS type and state, and the kernel behaviour, however this
information may not be readily available. Another option that
can be used with the ro switch is the switch noload, but this
will block any writes to the device, irrespective of their source,
and if not unmounted cleanly can lead to further problems.
The noload switch is compatible with ext4 and backwardly
compatible with ext3 and ext2 [22], but will not work on a
partition that is already mounted and working.

The Linux command blockdev [15] is a Linux system call to
set and check block device attributes. Using this command’s
setro switch the block device can be set to read only, however
setting this attribute affects access to the block device system-
wide, with the possibility of flagging that a fatal error has
occurred [16]. Both of these commands will block any writes
to a FS, irrespective of the source.

This effectively means that a VM that is network connected
is blocked from reading from the network, we do not
want this behaviour to happen. The mount and blockdev
behaviours described are unwanted in the context of what
we are aiming to do. Mounting an FS as RO will not
prevent system updates to the system, it will only prevent
user updates to it, or using blockdev to make it RO to
prevent writes by injected software will affect system access
to the devices, whereas we want the system to operate
normally, but prevent writes to the vHDD caused by the
investigator. The Linux commands and switches we have
just described, render them inconsistent with our software on
virtual devices in the context of use as a forensic write-blocker.

C. Our proposal

We have developed a simple, but effective, search engine to
search a vHDD. We have built this search function to recover
all files on a vHDD that are text or ASCII text files only, and
have used the Linux command ’file’ to identify these files.
We then calculated an md5 hash for each of these files and
saved that signature to a file for extraction from the VM using
LibVMI [12], this would normally cause a file to be written
to the vHDD.

Writing to the vHDD would cause the md5 hash of that
drive to be changed., however as we are accessing a live VM
we expect that some data on the vHDD will not remain static.
Logs will change and files will update, this is unavoidable with
a live system, but one big danger in altering the vHDD lies
in accidentally overwriting data that may have been deleted.
These updates may arise through an action of the investigator,

either deliberate, accidental or non-intentional. We want to
avoid any data writes to the vHDD arising from any action of
the investigator.

With this in mind we create a RAM drive in the VM’s
memory space. This allows any data being saved to be saved
to the RAM drive, thus preventing any writes to the vHDD.
This effectively blocks our application from writing to the
vHDD, implementing a software write-blocker. We expect that
log files will record execution of our data, and therefore some
data will be written to the vHDD, but since we can explain
this change we can satisfy Principle 2 of the ACPO principles.
Furthermore a RAM drive is a protected region of RAM,
processes cannot use this RAM, access to it is made only
through specifically addressing this memory space, effectively
write-blocking it too.

We need to show that nothing is written by us to the
vHDD, and for the purposes of verifying this and the proper
operation of our tool, we took the following course of action.
We executed a search of the data we copied to the VM,
and enumerated the number of files in that space, a total
of 49,219 files, saving the data to /tmp, thus isolating it
from the test space. This is shown in Image 1 as the first
command executed. We then renamed the text file produced
to save it for further examination. We executed our file
list program, again saving the results to /tmp, this is also
shown in Image 1 as the third command executed. This
shows that the number of files is unchanged from the first run
of our tool, confirming that the vHDD has not been written to.

, Image 1.
We executed our forensic tool on those same data. This

tool uses Linux command mount [22][22]to create and mount
a tmpfs RAM drive in the /mnt directory using terminal com-
mands executed with the C function system(). We have set this
drive to 8 MiB, and to prevent any messages being displayed to
terminal we redirected any output from the terminal command
to /dev/null. We chose 8 GiB as an arbitrary value, and
then hard-code this into the tool prior to compilation and
injection. We hard-coded it for the simple reason that there
is therefore no ambiguity and no possibility of uncatalogued
interaction with the tool or system, the tool is then completely
independent and autonomous.

Next we use the Linux dd command with /dev/zero to zero
the drive. Creating the RAM drive will wipe the RAM drive,



5

but to be able to guarantee that the RAM drive is certifiably
empty and free from any data residue, we zero the drive.
The tool then searches the data space using the criteria we
have code into it, building strings to be used by the C library
function system() to calculate the md5 and outputting results
to a file in the /mnt/rdisk drive, called md5.txt, a sample of this
output is shown in Image 2. All the files found and shown,
have the description ’text’ in their file-type strings returned
by the command file. Finally we search the data space again
and compare the results of the first data space search with the
results of the second search with the Linux command diff.

Image 2.

Comparison of these two files shows that there has been no
files written to the virtual disk, and that our tool is effectively
write-blocking the vHDD. This is shown in Image 3, where
there is no result from the diff command showing that the file
system is unchanged and has not had any files added after we
run our tool, compared with it before we run our tool,. This
confirms that we have maintained the integrity of the vHDD,
confirming that our write-blocker is working correctly. We
retest the vHDD by re-running our tool multiple times, each
returning the same number of files found as the first run -
49,219.

Image 3.

In order to measure the vCPU usage and memory usage we
ran the Linux utility ps using the -o switch with the program’s
process id, formatting the output with the %cpu and %mem
arguments at 5 second intervals. This showed that vCPU
use by our program was consistently within the range 1.7%
to 2.0% of the CPU processing time, and memory use was
approx. 0.1% throughout the program run. The ps process
expresses CPU usage as the percentage of time spent running
during the entire lifetime of a process, it does not approximate
the amount of CPU used, in terms of processing carried out.
These levels of hardware use in the VM we created show
the low impact our program would have on a system being
investigated. If we scale to much larger systems the proportion

of vCPU and memory that would commit to our tool should
be proportionately less, and therefore should be less likely to
flag as suspicious.

We progressively expanded our directory tree by creating
sub-sets of our test data. Table 1 illustrates the number of
files found, system execution times, real execution time, CPU
and memory consumed. All times are approximated over 10
runs of the tool.

Files/GiB sys time used total exe time CPU time Memory

49,659/5.6 152.4 secs 773.4 secs 1.6 - 1.9% 0.1%

98,259/10.7 290 secs 796.5secs 1.9% 0.1%

146,583/14.8 410.3 secs 1163.7 secs 1.8 - 2.0% 0.1%

Table 1.

An interesting outcome of these tests is that the time taken
for both the system execution times and real times are within
very tight ranges, averaging 0.00815 ± 0.00002 secs and
0.0028 ± .000015 secs respectively. Using this it is possible
to approximate the expected execution time of the software,
given the data set used, and it should be possible to schedule
execution during slack time. These estimates are specific
to the set of tests we ran on our data set, and using our
computer system, the outcomes will vary with different data
sets and different hardware, virtual or otherwise. Memory use
measured refers only to that used by the process, it does not
include the RAM disk created as a write-blocker.

VI. CONCLUSION

The ACPO guidelines [5] recognise that when investigat-
ing live operating systems, alterations and changes occur to
stored data without a users knowledge and interaction. These
principles require that the impact of any tool used be known
and explanation be given of any artefacts left by the tool.
They also require those persons who analyse data to be able to
explain their actions and the relevance of their actions, but do
not exclude data that has been altered due to the investigation
process being admissible, subject to satisfactory explanation.
This may be relevant to our process, as there is a possibility
that some log data may be written to the system.journal log
file, thus causing a change that will require explanation.

We have designed our write-blocker to be used in conjunc-
tion with code we have written to forensically search a VM,
and have designed and implemented it to prevent that code
from writing to the vHDD. It is an instance specific write-
blocker, working only within the code instance that invokes
it, but it is an simple and effective way of solving the issue
of write-blocking a VM. It will allow a vHDD operate as
normal without impairing its interaction with the system and
network. It offers a solution that is effective, auditable, simple
and easy, this could be very important in demonstrating its
forensic effectiveness.

We are currently carrying out a deep analysis of a vHDD
to determine what, if any, log changes are made by OS



6

processes activated by this tool. We have not designed this
as a standalone tool but as one to be embedded into forensic
software and invoked with that forensic tool. We expect this
research to fully support our hypothesis that our tool prevents
writing to a VM when used in conjunction with our other
tools.

The minimal impact our tool had on the suspect VM is
illustrated by the Linux ps process in Table 1, this low
level of vCPU usage is less likely to flag a user of unusual
activity. Our tool does not prevent writes to log files, by
preventing system.journal being written to could have the
unwanted consequence where a question may be asked as to
what else it blocks from that file. From a forensic standpoint
it is important that we show the small footprint that our tool
has on the suspect system, preventing writes to log files would
be counter-intuitive.

The execution times are unnecessarily long and we are
working towards reducing these by optimising our code. We
are also examining a number of ways of extracting our data
from the VM, one method being explored is by opening an
ssh tunnel and exporting data collected through it. We also
look at the feasibility of extending our approach to memory
forensics of mobile devices [27].

REFERENCES

[1] Woods, K. and Lee, C.A., 2012, January. Acquisition and
Processing of Disk Images to further archival goals. In
Archiving Conference (Vol. 2012, No. 1, pp. 147-152).
Society for Imaging Science and Technology

[2] Payne, B.D., De Carbone, M.D.P. and Lee, W., 2007,
December. Secure and flexible monitoring of virtual ma-
chines. In Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual (pp. 385-
397). IEEE

[3] Carrier, B. and Spafford, E.H., 2003. Getting physical
with the digital investigation process. International Jour-
nal of digital evidence, 2(2), pp.1-20

[4] Goldberg, R.P., 1974. Survey of virtual machine research.
Computer, 7(6), pp.34-45

[5] http://www.digital-detective.net/digital-forensics-
documents/ACPO_Good_Practice_Guide_for_
Digital_Evidence_v5.pdf

[6] https://www.ncjrs.gov/pdffiles1/nij/199408.pdf
[7] Tobin, P. and Kechadi, T., 2014, March. Virtual ma-

chine forensics by means of introspection and kernel
code injection. In Proceedings of the 9th International
Conference on Cyber Warfare & Security: ICCWS 2014
(p. 294)

[8] Adelstein, F., 2006. Live forensics: diagnosing your
system without killing it first. Communications of the
ACM, 49(2), pp.63-66

[9] Roussev, V., Quates, C. and Martell, R., 2013. Real-time
digital forensics and triage. Digital Investigation, 10(2)

[10] Mislan, R.P., Casey, E. and Kessler, G.C., 2010. The
growing need for on-scene triage of mobile devices.
Digital Investigation, 6(3), pp.112-124

[11] Parker, D. B., & Parker, D. B. (1976). Crime by computer
(pp. xii-xii). New York: Scribner

[12] http://libvmi.com/ - accessed 26.2.2016
[13] http://www.volatilityfoundation.org/#!about/cmf3
[14] http://man7.org/linux/man-pages/man8/mount.8.html -

accessed, 26.2.2016
[15] http://man7.org/linux/man-pages/man8/blockdev.8.html -

accessed, 26.2.2016
[16] https://github.com/msuhanov/Linux-write-

blocker/blob/master/README.md,
accessed 26.2.2016

[17] Barrett, D. and Kipper, G., 2010. Virtualization and
forensics: A digital forensic investigator’s guide to virtual
environments. Syngress

[18] Garfinkel, T. and Rosenblum, M., 2003, February. A
Virtual Machine Introspection Based Architecture for
Intrusion Detection. In NDSS (Vol. 3, pp. 191-206)

[19] Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J.,
Srinivasan, D., Rhee, J. and Xu, D., 2010, October.
Dksm: Subverting virtual machine introspection for fun
and profit. In Reliable Distributed Systems, 2010 29th
IEEE Symposium on (pp. 82-91). IEEE

[20] Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J. and
Lee, W., 2011, May. Virtuoso: Narrowing the semantic
gap in virtual machine introspection. In Security and
Privacy (SP), 2011 IEEE Symposium on (pp. 297-312).
IEEE

[21] Fu, Y. and Lin, Z., 2012, May. Space traveling across
vm: Automatically bridging the semantic gap in virtual
machine introspection via online kernel data redirection.
In Security and Privacy (SP), 2012 IEEE Symposium on
(pp. 586-600). IEEE

[22] http://linux.die.net/man/8/mount accessed - 4.3.2016
[23] Ruan, Keyun; Carthy, Joe; Kechadi, Tahar; Survey on

cloud forensics and critical criteria for cloud forensic
capability: A preliminary analysis Proceedings of the
Conference on Digital Forensics, Security and Law,
Vol.55, 2011, Association of Digital Forensics, Security
and Law

[24] Ruan, K; Carthy, J; Kechadi, Tahar; Cloud Forensics-:
Key terms for Service Level Agreements. Advances in
Digital Forensics VIII, Springer

[25] Plunkett, James; Le-Khac, Nhien-An; Kechadi, Tahar;
Digital Forensic Investigations in the Cloud: A Proposed
Approach for Irish Law Enforcement 11th Annual IFIP
WG 11.9 International Conference on Digital Forensics,
(IFIP119 2015)

[26] Kechadi, Tahar; Faheem, Muhammad; Le-Khac, Nhien-
An; The State of the Art Forensic Techniques in Mobile
Cloud Environment: A Survey, Challenges and Current
Trends, International Journal of Digital Crime and Foren-
sics Vol.7 No.2, Jan-19 2015, IGI Global

[27] Witteman, Rob; Meijer, Arjen; Nhien-An Le-Khac;
Kechadi, M-Tahar; Toward a new tool to extract the
Evidence from a Memory Card of Mobile phones 2016
4th IEEE International Symposium on Digital Forensic
and Security (ISDFS) p.143-147, April 2016


