Genetic Operators and Sequencing in the GAUGE System
Miguel Nicolau and Conor Ryan

Abstract— This paper investigates the effects of the mapping performed, for the Sudoku problem, and the results obtained
process employed by the GAUGE system on standard genetic and their analysis highlight the validity of this approach.
operafors. It is shown that the application of that mapping Thig paper is structured as follows. Section II introduces

process transforms these operators into suitable sequencing . . .
searching tools. A practical application is analysed, and its the GAUGE system and its mapping process, while Sec-

results compared with a standard genetic algorithm, using the tion Il analyses the effect of standard genetic operators o
same operators. Results and analysis highlight the suitability of the GAUGE system. Section IV then presents the Sudoku

GAUGE and its operators, for this class of problems. problem, and Section V the experimental setup used. Finally
Section VI analyses the results obtained, and Section VII
highlights future work directions.
The GAUGE system (Genetic Algorithms using Grammat-
ical Evolution) [1] uses a position-independent represent Il. THE GAUGE SYSTEM
tion, which allows it to specify both the position and the The GAuGE system works as a mapping process applied
value of each phenotypic variable. It employs a genotype-t@o binary genotype strings, which are evolved using a stan-
phenotype mapping process which ensures all variables aterd genetic algorithm [6]. It interprets those strings as a
specified once and only once: in other words, no under- ngequence of position and value specifications, and construc
over-specification ever occurs in the system. a phenotype string, which is then evaluated.
This elegant mapping process has a cost. In order to
keep the association between the position and the valfle Background
of each variable, it has been shown [2] that representation Many systems have been developed using similar tech-
convergence must occur throughout the population. Whileiques to the ones employed in GAUGE. Bagley [7] used
not damaging on regular binary problems, this disassatiati fixed-length strings of position, value) specifications, and
can seriously impair the performance of the system on othan inversion operator to move those specifications around
problems, and to that end, a series of genetic operators hawethe chromosome strings; both Frantz [8] and Holland [9]
been developed, which respect those associations [3], [4].extended some of that work, and similar operators were later
Some problems, however, do not require a strict respect designed, with the same purpose [10], [11], [12].
that association. Job-shop scheduling problems, for el@mp The messy genetic algorithms [13], [14] also use a separate
require a fixed set of values to be optimally ordered; thencoding of the position and the value of each phenotypic
objective of the system is to search for the optimal represemariable. They deal with the problem of over-specification o
tation that solves the problem. In this class of problemsheaa “first come, first served” basis, while under-specificai®n
variable encodes the same type of choice (e.g. a resourcégalt with the use of an evolved template.
and the values of variables can (and must) be exchangedMore recently, Harik [15] introduced the Linkage Learning
between them, to find optimal sequences. Genetic Algorithm, in which a chromosome is expressed as a
An interesting problem domain is where the set of valuesircular list of genes, with the functionality of a gene kgin
to be ordered is not fixed a-priori, and neither is it an orinadependent on a chosen interpretation point, and the genes
sequence; the objective of the system in this case is not origtween that point and itself.
to find the correct sequence of variables, but also the dorrec Finally, the Grammatical Evolution system (GE) [16] uses
set of values for all variables. a standard genetic algorithm (or any other search algojithm
GAUGE has been applied to a version of the Mastermintb evolve binary strings, and employs a grammar-based
game [1], which exhibits these characteristics, and theltes mapping process to create phenotype strings. The design
obtained were encouraging. Recently, it was also applied td GAUGE was based on many of the biologically inspired
Sudoku puzzles [5], and again its success suggests that features present in GE, such as a genotype-to-phenotype
system is suitable for this class of problems. mapping process, functional dependency between genes, and
In this paper, the effect of standard genetic operators dhe use of degeneracy (i.e. a many-to-one correspondance
the GAUGE system is analysed; this analysis shows how thdietween genotype and phenotype).
combination is suitable for the mentioned class of problems)
A direct comparison with a standard genetic algorithm [6] i€ Mapping Process
Consider a problem composed of four phenotypic variables
Miguel Nicolau and Conor Ryan are with the Biocomputing anddbe (¢ = 4), ranging between the valuésand7; the objective of
opmental Systems group, Department of Computer Science anthiation the system is to find the set of values that solves the problem,

Systems, University of Limerick, Ireland (email: Miguel.Nlea@ul.ie, _ g
Conor.Ryan@ul.ie). and their optimal order.

I. INTRODUCTION

The underlying search algorithm maintains a population R =((0,5),(3,6),(7,7),(2,7))
of genotype strings. The length of each string depends on a
chosen position field sizevfs) and a value field sizev(f s).
As there are four variables, a value pfs = 2 has been
chosen, as that is the minimum number of bits required
encode four positions; for the value fields, a valuey ¢ = R =((0,5),(3,6),(2,4),(?,7))
4 has been chosen, to introduce degeneracy (the minimum
required isvfs = 3). The required length for each binary
string is thereforel = (pfs+vfs) x = (24+4) x 4 = 24.

For example, take the following example genotype string: R = ((0,5),(3,6),(2,4), (1,2))

R, is calculated in the same way: the position specified
(1) is interpreted as the second position available on the
t1%henotype string, which is positiah

Finally, the fourth pair is handled in the same fashion,
giving the finalreal specifications string:

G =001001101101110100010010 The fourth and final mapping ste@() simply consists in

The mapping process will proceed to create a phenoty;'g?eterpretmg these specifications, creating a phenotyyegst

string P. It consists of four steps: y using the formula:

By Pr, =R, 1)

G2, x 2 p P p% p

])]] In other words, through a permutation defined By, the
The first step ¢,) creates an integer string, using the glements of R, are placed in their final positions. The

chosenpfs andv fs values: phenotype string, ready for evaluation, is:
X = ((le XZ)) = ((07 9),(2,13),(3,4), (1, 2)) P =(5,2,4,6)

The next step ®,) interprets X as a sequence opdsi-
tion,value) pairs, to create a string afesired specifications.
This string is created by mapping each position field ont§- Crossover
the number of positions left in the phenotype string. For the The GAUGE system uses a standard 1-point crossover
first position field, X, = 0, the desired position specified is operator. However, due to the mapping process employed,
calculated byD, = (Xy mod £) = (0 mod 4) = 0, as at this the phenotypic effect of this operator can be quite drastic.
stage no positions have been specified yet. The value figtdr example, take the following pair of individuals, alrgad
is calculated using the range of phenotypic values, givingxpressed as a sequence(pbsition, value) pairs:

D(iri (Xo mod range) = (S.).moid 8) = 1. . o G1 = (0,4),(3,B),(2,C), (3, D)
e second set of specifications is calculated in a similar G2=(3.F) (0.G).(3.0).(1.E)
way: the desired position specified is calculated By = T AT AT
(X1 mod (£—1)) = (2 mod 3) = 2, as only three positions Their corresponding phenotype strings are:
remain unspecified in the phenotype string, and the value Pl ABCD
field becomesD; = (X; mod range) = (13 mod 8) = 6. et
: .) . P2=G,E,C,F

After processing all four pairs, the string of desired spec-

ifications becomes: If these two parents are elected for crossover, and the ohose
~ crossover point is after the second codon, then the gerkrate
D = ((Di, D) = ((0,1),(2,6), (1,4), (0,2)) offspring will be:

At this stage, it can be seen that there are some conflicts
in the position specifications (positidhis specified twice, gi’ ; Eg’?;’ Eg’gg’ g’gg’ 8’53
and position3 is still unspecified). The third mapping step P AT AT
(®3) consists in removing these conflicts, creating a stringVith the corresponding phenotype strings being:
of regl spe_C|f|(;at|onsR. . N P3— ABEC

This string is created as follows. The first position spec- pa_ G’ C7D7F
ified, 0, is kept, as there are no conflicts at this stage, so T
Ry = 0 (i.e. the first position on the phenotype string). TheA close inspection of the generated offspring shows that
desired value specified, is mapped to the range of the firstthe third phenotypic variable, which both parents specified
phenotypic variable; as all variables share the same rangeds containing the valu€’, now contains the valueg and
this problem, it is not affected: D, respectively. In other words, even though both parents

~ specifiedC' as a potentially useful value for the third variable,
R=((Ri, &) = ((0,5),(%,7), (%,), (.) none of the offspring respected that.

The second pair undergoes a similar mapping. The position Crucially though, theordering of the second half of each
specified, 2, is interpreted as being the thirdvailable parent genotype string was maintained. The first parent-spec
position of the phenotype string; as the positiohas already ified that, at the phenotypic level, the valGeshould appear
been taken, the third available position 3s The value before the valueD, while the second parent specified tidat
specification remains the same, giving: should appear afteff. By inspecting the generated offspring,

IIl. GENETIC OPERATORS AND THEGAUGE SYSTEM

one can verify that this ordering has been maintained, evéRKGA) [17], in that only the mutated variables are moved,
though the relative positions of those values within thevith all other values keeping their relative ordering; ugli
phenotype string have changed. This is because the desithkd RKGA, however, GAUGE can handle problems where
positions for those variables are always the same; in thhe variable set is not an ordinal set.

le, for the fi : N
example, for the first parent C. Suitability of Operators

D3 =2mod2=0 Dy=3mod1=0 These operators suggest that an interesting problem do-
which translates td); = C appearing before), = D, in main for GAUGE would be where not only the contents but
the phenotype string. The same is true for the second pareftso the ordering of variables are to be discovered. Recent

results [5] showed the suitability of GAUGE to solve a

D3 =3 mod 2 =1 Dy=2mod 1=0 harder version of the Sudoku puzzle. This work introduces

which translates tds; = C appearing afteD, = E. a comparison with a standard genetic algorithm on this
Thesedesired positions are calculated in the same fashioroblem, and a deeper analysis of the effect of the genetic

when the two sections are exchanged. So although tealir Operators on the results obtained.

specifications change, in order to adapt to the new context in
X Lo X . L IV. SubDOKU

which they are being inserted, their relative ordering iptke) o)))
The end result of the crossover operator is similar to that 1€ Sudoku puzzle first originated in the United States in

of the order crossover [10], a two-point crossover where the? 79, under the namsumber Place, but it was in Japan that

section between cut-points is copied from one parent, aﬁtcgalned popularity. In November 2004, it was first publighe

the rest of the offspring is reconstructed with the contentd the British newspaper “The Times”, and since then its

of the second parent, in the order that they appear. Howerr‘?pUlarity in the western world increased immensely, to the

unlike the order operator, the GAUGE crossover is merelg@int where it is being dubbed as “the Rubik's cube of the

a single-point crossover at the genotypic level, thus baing21" century” [18]. , _
faster, non-specific operator. The standard puzzle is composed dfa3 grid of blocks,

_ each composed df x 3 cells, for a total of 81 cells (Fig. 1).

B. Mutation The objective of the puzzle is to fill each cell with a number

The mutation operator used with GAUGE in this work is &rom 1 to 9, such that the following three conditions hold:
1-point, bit-wise mutatioh Similarly as with the crossover 1) Each row contains the numbetgo 9 only once;
operator, a mutation event occurring in one of the position 2) Each column contains the numbérso 9 only once;
specifications can have a drastic effect on the generated phe3) Each block contains the numbeirgo 9 only once.
notype. For example, take the following individual, alrgad
expressed as a sequence of specification pairs: col ums

1234567829
Gl = (O,A), (37B)7 (270)’ (3’D)

AT [T [T 5 3 6 7
. L | ocktbl ockibl ock
Its corresponding phenotype string is: 2 bl ock bl ock|bl oc 8|5 |24
1 2 3
P —ABCD 3 } } } } } } 98142 16| |3
e 2 2 ibl ock{bl ock{bl ock S b3S
If a mutation event occurs at the first position specification® 6 4 5 6 5U 171216 1ol |8
transforming the above individual into the following: 2 } } } } } } 2 50 9 378
bl ockibl ocktbl ock
G2 =(3,4),(3,B),(2,0),(3,D), 81" 8 9 1] |5]7 2
9L | || || 8 1 4] |7

the phenotypic effect would be drastic, as all variabled wil

receive different values: _ _ _
Fig. 1. Example Sudoku boards. The referencing system ussttbisn on

P,=B,C,D, A the left, and an example board in the right.

However, the relative phenotypic ordering of all the speci- A set of numbers are initially loaded with each puzzle
fications which were not modified by the mutation event i?called givens). A puzzle is calledwell-formed if only one
maintained. In other words, the valu still comes before goution exists, and it can be solved using logic (that is, no
the valueC', which in turn still comes befor®. The reason gessing is required to complete it). Fig. 1 shows an example
for this effect is the same as for the crossover operator; aglf a well-formed Sudoku puzzle, with0 givens.
variables with theidesired position specifications unchanged _ _
keep their relative ordering. A. Logical Operations
The end result of this operator is similar to that of the The problem of solving Sudoku puzzles pAx n? boards
point mutation of the Random Keys Genetic Algorithmof n x n blocks is known to be NP-complete [19]; this gives
T o . . an indication of why solving Sudoku puzzles can be difficult.
This is for historical reasons, as Grammatical Evolution usgsh an H d he fini - fth le i b ved
operator. Its use also comes from the fact that GAUGE can bkedpgs a owever, ue_ t_O t e) "_me size of the puzzle, it can be so \{e
simple mapping process on top of a bit-level genetic algorithm. by a deterministic finite automaton that knows the entire

game tree [18]. A different approach is to base each number- |_|5| [3| |6 7 5| |3] |6 7
placing action purely on logic; this can only be applied to 98|5| |24 98|5| |24
well-formed puzzles, but has the advantage of producing a 98142 16/ |3 91842 X|6] |3
list of logical actions, which can be reproduced by a human. 9| 11 3(2 6 9| 11 3(2 6
9 ' b y 3 1 3 1
There are many such logical operations; below are some [57 7261 (9] |8 5 [7(216/x|9] |8
of the most common (and simpler) techniques: 41 151 19! |38 41 151 91x|3/8
1) Last Remaining: This is a simple logic operation, that 11 15]7 2 1 [517 2
can be applied to any kind of region (row, column or block). |8 1 7 8 1 14| |7
It simply checks if that region has already eight numbers 1 2
placed, in which case it places the remaining one.
2) dice and Dice: This is a combination of two opera- 5 |3 |6 7 5 |3 |6 7
tions, sice and dice [20], and can be applied when trying 9/8|5| |2/4 9/8|5| |2/4
to place numbem in block b. Slice looks forn in each 98412 X6 |3 98412 X6 |3
row passing throughp; if it contains n, then the three 9 3 1 312 1 6 9 3 1 S 2 1 6
cells intersecting withh cannot contaim. Dice works with 5 71216 xl9| |8 5 71216 xl9] |8
columns m_stead. If, aﬁer applying slilce a_md dice, only one 7151 [9/X[3/8 4 5] (9 X318
cell is available, then it must contain. Fig. 2 shows an 11 [5171x 2 11 5171 2
example. 8 1| 4] |7 8 1] [4] 17
5] |3 6 7 5 |3] |6 7 3 4
815 214 8,5 214 Fig. 3. Applying Column Fill to pl numbérin columné6. B rchin
98(4]2 6 3 9.8142X/6 3 tf:?duéh aﬁprg\l/vg inOtPL:e Ieftlbooafdafco? trL:e nunl1b;? : set 61‘ ?:leslllesac(:;lnI t?e
9 1 3|2 6 9 1 3|2 6 marked as being unsuitable to receive that number (secondipdhen
3 1 3 1 looking through blocks2, 5 and 8 (the blocks that intersect colume)
5 71216 9 8 5 712|6 9 8 another unsuitable cell is discovered (third board); finadinly one cell is
4 5 9 38 4 5 9 38 available in columrs, so it must contaird (last board).
1 5|7 2 1] |5|7 2
8 1 4] |7 8 1 7
1 2 see ifn is the only number that can be placed in that cell;
Fig. 4 shows an example.
5| |3[X|6 7 5 |3]X]|6 7
8|5 214 9/8|5 24 5 3 6 7 5 3 6 7
9/8|4|2X[6] |3 9184 2/X|6] |3 o/gls| 1214 9/gls| 214
9 |1 3|2] |6 9] |1 3|2] |6 9/8l4i2] [6] [3 9/8lal2] [6] [3
3 1 3 1 9 1 3[2] [6 9 1 3[2] [6
5| 7]2/6] [9] |8 5| [7]2]6] |9] |8 3 ol 1 3 ol 1
4 5] 191 138 4 5] |91 1318 5| |7]2/6] |9] [8 54/7(2/6] |9] [8
1l 1517 2 11517 2 4] [5] [9] [3]8 4] [5] [9] [3]8
8 1 4 7 8 1 4 7 1 57 2 1 57 2
3 4 8 1| 4] |7 8 1| 14| |7
1 2
Fig. 2. Applying slice and dice to place nhumberin block 2. Starting
with the left board, slice finds & in the third row, so9 cannot be placed Fig. 4. Applying Raising Numbers to place numbgrin block 4. By

anywhere else in that row (relevant cells are marked witiK@mthe second
board). Dice finds @ in the fifth column, s® cannot be placed anywhere
else in that column (third board). This results in only oné being available
to place9 in block 2 (last board).

3) Column Fill: This technique tries to place number
in columnc. It looks for n in all rows and blocks passing
through ¢; if a row or block containn, then the cell(s)

analysing the left board, there are four empty cells in bldckand the
numbers2, 4, 6 and8 are missing. Through Slice and Dice operations, the
set of possible numbers for each of the empty cells can be dddtive
leftmost cell can receive the numb€{g, 6}, the centre top cell can receive
{47
last cell can only receive the numbér it is placed there (right board).

6,8}, the rightmost ong 2, 4, 6}, and the bottom centrf}. Since this

Sometimes different operations can be used to place the

corresponding to the intersection of that region and coléamnsame number in the same cell; other times only a specific
cannot contaim. If after checking all rows and blocks there one will do. Note also that often an operation can only be
is only one cell available in column, then that cell must applied if a previous one has placed a specific number; in

containn. Fig. 3 shows an example.

other words, there are marggical sequences when using

4) Row Fill: This technique tries to place the number these logical operations.

in row r, and works in the same way as Column Fill, but

going through all the columns instead. B.
5) Raising Numbers: This technique tries to place the

numbern in block b, by checking each empty cell it to

Blind Sudoku
In order to make this problem interesting and challenging

for evolutionary algorithms, the original Sudoku puzzleswa

changed into a problem term@&lind Sudoku. The difference V. EXPERIMENTS
with the original puzzle lies on the way in which solutionsa practical Considerations
are evaluated:

. . . . The experimental setup used in here is identical to that
1) A sequence of instructions is applied to the puzzle;

2) A fitness score is retumed to the whole sequence: of the previous application of GAUGE to the Blind Sudoku

o . = problem [5], that is, sequences of 81 instructions are edlv
3) gom‘?ggfz;[izcli was not solved, it is reset to its OrlglnaErom the set{SliceDice, RowfFill, ColFill, RaisingNumbe}s

])] o If an instruction is successful, the LastRemaining ingtac
This cycle continues until a solution is found, or a StoRg tried on the corresponding region (as it is a fast instruc-

condition (such as a maximum number of evaluations) i§on) and if successful the remaining number is automégica
reached. In other words, the puzzle is never available

the algorithm, neither is a measure of goodness for eachasg, the logic instructions are mapped onto the original
individual logic instruction, effectively making the prigm oarg For example, if the algorithm tries to execute the
much harder. , L instruction SiceDice(2,8) (place numbeR in block 2 using
This way of solving Sudoku puzzles is similar to thegjicepice) on the board from Fig. 1, that instruction is §an
Santa Fe Ant Trail problem [21], in which a sequence Ofytaq togiceDice(2,9), as8 already exists in block. This is
instructions is given to. an ant in a toroidal gnq world, a”donly applied to the original board: if a subsequent instarct
the number of food objects caught by the ant is returned s 5150 SiceDice(2,8), then it is considered unsuccessful, as
the fitness measure. number9 has already been successfully placed in black
C. Objective Function The test set for these experiments consisted of puzzles
taken from Carol Vorderman’s How to do Sudoku [20] (pp.
(8-187). These were taken from the “Difficult” section, and
e first twenty puzzles were picked (#111 to #130).

As the number of cells in & x 9 Sudoku board is always
81, that is used as the size of a sequence of instructio
this makes the system applicable to any Sudoku puzzle,
it is independent of the number of givens. The fitness of B, Encoding and Parameters
sequence of instructions is simply the sum of the fitness of

L . ; . . . A standard genetic algorithm (SGA) [6] was used in a
all its instructions; the fitness of each single instructisn g g () [6]

direct comparison with GAUGE, so as to ascertain the advan-
f = k x (82 —1) if successful @ tage of the mapping process employed, and its effect on the
! coverage— 9 if unsuccessful’ genetic operators. Table | shows the parameters used on both

where k is a constant, andoverage is a measure of how systems, which are identical to those previously reporid [

many cells were ruled out when unsuccessfully trying t@part from the number of generations, which was rais.ed to
place a number in a region (thé marks§. If the puzzle is 3200 (so that more SGA runs are successful for comparison).

completed before using up all the instructions, all renraini The Minimal Generation Gap mpdel (MGG) [22] was used as
instructions are considered neutral, and their fitnegs is 0. & replacement strategy, as previous tests, both publist&jd [
The fitness function heavily rewards successful instrud®] @nd not, suggest that it is appropriate for the GAuGE

tions, and punishes unsuccessful ones. A linear decreasi¥ptem- It was also used with the SGA, as it increased its
reward is applied to each successful instruction: theeritli Performance when compared with a generational approach.
is executed, the bigger the reward. This temporal saliescy i TABLE |

regulated by thé: parameter; the higher its value, the higher
the reward (following the recent application of GAUGE to

EXPERIMENTAL SETUP

Replacement strategy: MGG

Sudoku [5], a value of: = 81 was used). Crossover operator: 1-point
This problem has interesting characteristics, and can be Problem length 4): 81
compared to a class of scheduling problems. There is a clear Population size). 100
. . Max. number of generations: 3200
tempprgl depe_ndency between each phenptyp|c var_|able, as (GAUGE only) Position field sizep(fs): 8 bits
certain instructions can only be successful if a set of urtstr Value field size ¢fs): 12 bits
; ; ; ; Crossover probability: 0.5
tions is execu.ted bef(.)re them. The negative score applied to (GAUGE only) Position field mutation probability: 0.0015
unsuccessful instructions can be seen as an effort factor. value field mutation probability: 0.001

The GAUGE system seems adequate to solving this kind
of problem. It allows for successful instructions, whichvéa
already been discovered, to change their phenotypic lmeati N GAUGE, the parameterfs = 8 was used, to encode
(by mutating their position specification at the genotypi®l instructions and to allow for a degree of degeneracy and
level), allowing them to be moved to the start of the phesoften the biases of theod operator [24], [5].
notype string, thus possibly maximising their contributim In what concerns the s parameter, on both systems, each
the fitness of the set of instructions. variable encodes three choices:

°Note that the Raising Numbers technique does not mark any aslls 1) which instruction to use (out of instructions);

unsuitable, and thus if it is unsuccessful its fitness is phwa9; this is 2) which region to apply it to (out of regions, be it
judged to be fair, as it is a slightly more expensive techniipes all others. blocks, rows or columns);

3) which number to attempt to place (out @ihumbers).

To encode an instructior? bits are sufficient. To encode 1 R
a region and a number, the minimum number of bitstis GAICE Gz
(2* = 16); as with thepfs parameter, degeneracy is used, o0 7
and 5 bits are used for each of these encodingspge =
2+5+5 = 12. This means that the length of genotype string, g, |
for each system, is:

Lsca =vfs x (=12 x 81 = 972 bits

Loawce = (pfs+vfs) x £ = (84 12) x 81 = 1620 bits

Average Generations Required to Solve each Puzzle

— T T T T T T T T T T T T T T T T

T
!

600

Generations

VI. ANALYSIS
A. Results 200 -

Table Il shows the results obtained. For each puzzle, 30
independent runs were performed; each run was stopped
after all missing numbers were placed on the board, or the

3

AVAVAVAV.Vu VAV V]

S

.}
XX

XX
XX

X
Vi

XX

XX

<

AVAVAVAAVATAVAAA|

V. vaviv
ODOTO

 VaVAVAVAVAVAVAVAV AV AVAVAV AV VA AV AV AV

ROCHAA
XXX XXX KA
RXX XXX XXX XR XA

XXXXX
EOEOEOL|
XEXXX
(OERTSH]

K

£

Il
]
Il
Il
Il
Il
o]
2 fol
E Xy Ky Ky K K

£ Yy
R R A

ey B, e, He, B, e, e, o, B, K, K, %
2, %050, %0 %, %0 %0 %0 R0 % %0 %0,
"J*@\’e@*@*’s*’)@\’%?%%‘f?
uzzles

maximum number of generations was reached. Fig. 5. Average number of generations required to solve eacile, for
both the SGA and GAUGE. Absence of results indicates a pudaége less
TABLE II than 30 runs were successful.

EXPERIMENTAL RESULTS FOR EACH SYSTEM THE AVERAGE NUMBERS
PLACED PER PUZZLE IS SHOWNALONG WITH THE NUMBER OF
SUCCESSFUL RUNYOUT OF 30), AND THE AVERAGE NUMBER OF
GENERATIONS REQUIRED FOR A RUN TO SUCCEE(ONLY DISPLAYED
WHEN ALL RUNS WERE SUCCESSFU).

B. Example Puzze

In this subsection, the results obtained with both systems
for puzzle #111 are analysed (results for practically afleot
puzzles are comparable to these). Fig. 6 shows the average
Puzzle SGA GAuGE . .
Avg. [Runs | Gen. | Avg. | Runs [Gen. amount of numbers placed per generation, Fig 7 shows the
#111 | 53.0 | 30 | 384 | 53.0| 30 | 238 average best fithess per generation, and finally Fig. 8 shows

#112 | 5101 30 | 335 51.0 | 30 | 181 the cumulative frequency of success for both systems.
#113 | 53.0 | 30 | 300 | 530 | 30 | 166
#114 | 53.0 | 30 | 430 | 53.0 | 30 | 210
#115 | 51.0 | 30 | 157 | 51.0 | 30 | 123
#116 21.0 0 N/A 21.0 0 N/A Mean Numbers Placed per Generation

#117 | 130 0 | N/A | 130| 0 | NA : :
#118 | 540 | 30 | 1021| 540 | 30 | 301 —1J*JX{*JJJ[}[}[1LHHTIIIIIIII

!

#119 | 51.0 30 264 | 51.0 30 188
#120 | 51.0 30 186 | 51.0 30 135
#121 | 51.0 30 183 | 51.0 30 146
#122 | 51.0 30 324 | 51.0 30 157
#123 | 52.7 30 659 | 51.8 23 N/A
#124 | 55.4 30 564 | 56.0 30 247
#125 | 55.0 30 201 | 55.0 30 146
#126 | 54.8 29 N/A | 55.0 30 277
#127 | 53.0 30 431 | 53.0 30 222
#128 | 53.0 30 297 | 53.0 30 189 B
#129 | 51.0 30 421 | 51.0 30 220

#130 | 49.7 22 N/A | 53.0 30 454 E

Numbers Placed

10

Figure 5 shows an histogram of the performance of both o e
systems for each puzzle used. As previously reported [5], Generations
puzzles_ #116 and #117 were unsolvable with the mstructloglg 6. Mean numbers placed per generation, for puzzle #1at qba
set available, hence the lack of results for these. Acrdss @iaximum of 53). Error bars indicate standard deviation for3allruns.
other puzzles, GAUGE consistently outperformed the SGA;
it found solutions faster (particularly with difficult pules, These graphs show how GAUGE converges much faster
such as #118 and #124), and had more successful runs. to a solution than the SGA, and typically with less vari-
An exception to this was puzzle #123, in which theance across runs. This is quite explicit when observing
SGA outperformed GAUGE. Analysis of the results obtaineétig. 7, where there is a significant difference between the
showed however that is was due to the fitness function useérformance of both systems, with only a minimal amount
(Eq. 2); the average best fitness obtained with the SGA was$ overlapping of standard deviation error bars. It is also
254057, whereas with GAUGE it wag65809, but in this interesting to observe how GAUGE achieves a much higher
particular puzzle instance, a higher fithess did not conedp fitness than the SGA, and how this fithness keeps increasing
to a higher amount of numbers placed. at a substantial rate, even after generation 360 (by which al

1000010000000000000100000010000000000100000010000000010000000000000000000010
1000010011000010001000010001110001000111001001000001000000000000000000000000
1001010011000011000100010000110001000111001001000000000000000000010000000010

Mean Best Fitness per Generation 1100011011000111000100010000010101001011000001000000000000010000010000000011
1100011011000111000101110000010101001010000000000001001000000000010000000010
1113313 1101011011001101001101100000010001001010000000000001001000000000011001000000
250000 + L1l YKk % % X X X x X xxx b 1101011011001111000101100000010001001010001010000000000000000000011001000000
- 1k x X X krryed 1101111011001101001001100000100001001000001010000000000000000000001001000000
1101111011001111000001100100100001001000001010000000000000000010001000000000
1101111011001111000001100100000001011000001010000000001000000001000000000000

} } } { 1101111011001111000001100100000001011000001110000000001000100100000001000000
{ { { } } } } { { { { 1 1101111011001111000001100100000001011000001110000000001000100000001001000000

T T T T T T T

200000
1101111011001111000001100100000001011000001110000DE0001000111010000000000000
1101111011001111000001100100000001011000001110090900001000110011000000010000
1101111011001111000001100100000001011000001110000900001000111011000000010000
1101111011001111000001100100000001011000001110000900001000111011000000010100
1101111011001111000001100100000001011000001110000900001010011011000000110000
1101111011001111000011000100000001011000001110090900101010001011000000110000
1101111011001111000011100000000001011000001110000900101010001011000000110100
1101111011001111000011100000000001011000001110000900101010101011000000110100
1 1101111011001111000011100000000001011000001110000900101010101011000000110100
11011110110011110000111000000000010110000011100909A0101010101011000000110100
11011110110111100000111000000000010110000011100000A0101010101011000000110100
X 11011110110111100000111000000000010110000011100009A0100010101011000000110100
50000 11011110110111100000111000000000010110000011100009A0100010101011000000110100
SGA r—+— 11011110110111100000111000000000010110000011100009A0100010101011000000110100
11011110110111100000111000000000010110000011100909A0100010101011000000110100
11011110110111100000111000000000010110000011100009A0100010101011100000110100
11011110110111100000111000000000010110000011100009A0100010101011110000110000
11011110110111110000101000000000010110000011100009A0100010101011110000110100
0 100 200 300 400 500 600 700 800 11011110110111110000111000100000000110000011100009A0100010101011110000110100

Generations 11011110110111110010111000000000010100000011100009A0100010101011110000110100
1101111011011111001011100000000001011000000110009DA0100010101011110000110100

. .) 11011110110111110010111000000000010111000001000090A0100010101011110000110100
Fig. 7. Mean best fitness per generation, for puzzle #11lorHrars 1101111011011111001011100000000001011100001100000000100010101011110000110100
indicate standard deviation for all 30 runs. 1101111011011111001011000100000001011100001100100900100010101011110000010100
1101111011011111001011100000000001011100001100100900100010101011111000000000

1101111011011111001011100000000001011100001100100900100010101011111000010000

1101111011011111001011100000000001011100001100100900100010101011111000010000

1101111011011111001011100000000001011100001100101000100010101011111000010000

150000

Fitness

100000

0 ! ! ! ! ! ! !

Cumulative Frequency of Success
30 T T I T T f Fig. 9. Best individual found with the SGA, every 20 genemas (from
sample run). Strings represent sequences of instructiofsingicates an
unsuccessful instruction, andlaa successful one. Successful instructions
keep the original phenotypic locations where they were fiosind, until
mutation creates a similar instruction closer to the starthefindividual.

25

20

GAUGE solves this problem in a totally different manner,
thanks to its genetic operators. Whenever a successful in-
struction is discovered, it can be moved towards the start of
the sequence, by means of mutating its position specifitatio
at the genotypic level; this will not affect most of the

Successful Runs
-
)
T

10

GAUGE —— other successful instructions, as they will keep theirtieta
.) [)) ‘ ‘ ‘ ordering between themselves and the moved instruction.
0 100 200 300 400 500 600 700 80 Furthermore, moving an instruction leftwards will open up

Generations

the possibility of moving instructions which depend on it fo
Fig. 8. Cumulative frequency of success per generation, fiazle #111. success to be moved leftwards as well, thus increasing the
fitness of the individual.
Crossover, on the other hand, plays a role in exchanging
runs have successfully placed all 53 numbers). discovered sequences: as the relative ordering of the ex-

But how do the genetic operators contribute to GAUGE’shanged parts is maintained, so is the dependency of certain
performance? An analysis of a sample run for puzzle #1libstructions on previous ones for success. While the SGA
sheds some light into the matter. Figs. 9 and 10 show thlexchanges the absolute location of those sequences, GAUGE
best phenotype string evolved with the SGA and GAuGEXxchanges their relative location, thus enabling the ngixin
respectively, everf0 generations: these strings are expresseaf logical sequences of instructions originating from both
as a sequence of logical instructions, witld &ndicating an parents, creating potentially fitter offspring.
unsuccessful instruction, andlaa successful one.

These figures show a fundamental difference in the way
both systems solve this problem. Whenever the SGA discov- There is no perfect algorithm, and this is certainly the
ers new instructions, they are exchanged between indildduaase with GAUGE; the effect of its mapping process on
while keeping their global phenotypic location. As a resultgenotypic strings can be quite drastic, seriously affectin
the left side of the best phenotype string tends to converges performance on certain problems, and leading to the
quickly, often including a few unsuccessful instructiombe design of specific genetic operators [3]. This is certaihlg t
only mechanism available to the SGA to move successful itase for problems with “position-sensitive data”, in which
structions towards the left-side of these sequences flgadi the functionality of a value is completely dependent on
better fitness, as per Eq. 2) is to rediscover those instmgti its phenotypic location, and different phenotypic varésbl
at a new location, closer to the start of the sequence. encode different types of data.

VIl. CONCLUSIONS

0000011000001000000000000001000100000000000100000000000000010000000000000000
1000111000001100000111000000000001000000110010000000000000000000000000000000
1101110000011100011000000001101100000001000100000000000000000000000000000000
1110110101010110000110010010110000001010000010000000000000000000000000000000
1100111000111100111100010011101000001000000000000000000010000000000000000001
1101101001111111110001101001000001000000000011000020000100001000000000000001
1101111011011111001111100000001000000000001100001001000010000000000010010000
1100111011111111110011000011100100100001010000000001100000000000001000001000
1101111101111111010101010011000110000010100001000000000000000000010000010000
1101111101101111110011000011100101000001010001000000100000000000010010010000
1101111101111111010101010011000110000001110001000000100000101100000000000000
1101111111111111010001010110001100000011100011001001000001001100000000000000
1111111011111111011011010010011000100001010011001001000101010000000000000000
1111111011111111011111010011000010000001000111102000100000011000000000000000
1111111011111111011111010010001100011000000011000021100001000000000000000000
1111111011111111011111011010001000011000000011000001100100000100000000000000
11111110111111110111111110010001000010010000100200001001000000000000000000000
1111111011111111011111110010010100001010001110001001000000000000000000000000
1111111011111111011111110010011000101100001100010001000000000000000000000000
1111111011111111110111110110010000101000011110000101000000000000000000000000
1111111011111111011111110110010000101000110110000000000000000000000000000000
1111111111111110011111110110010000101100010110000000000000000000000000000000
1111111111111111110111110010010000101100010110000000000000000000000000000000
1111111111111111111111010100100100011101001011000000000000000000000000000000
1111111111111111111111011001100110010011000110010000000000000000000000000000
1111111111111111111111011001101010111010001000010000000000000000000000000000
1111111111111111111111011011100011110010010001000000000000000000000000000000
1111111111111111111111011011111100101000010001000000000000000000000000000000
1111111111111111111111011011111100101000011100000000000000000000000000000000
1111111111111111111111011011111100101000111000000000000000000000000000000000
1111111111111111111111011011111110100000111000000000000000000000000000000000
1111111111111111111111110111011110100000111000000000000000000000000000000000
1111111111111111111111110111111101000000111000000000000000000000000000000000
1111111111111111111111111110111101000000111000000000000000000000000000000000
11111111111211111111111111111011101000000111000000000000000000000000000000000
1111111111111111111111111111111001000000111000000000000000000000000000000000
1111111111111111111111111111101101001000110000000000000000000000000000000000
1111111111111111111111111111111100101000010100000000000000000000000000000000

[4] Nicolau, M. and Ryan, C.: Crossover, Population Dynangosl Con-

vergence in the GAUGE System. In: Deb et al. (Eds.): Genetit an

Evolutionary Computation - GECCO 2004. Lecture Notes in Cot@pu
Science, Vol. 3102. Springer. (2004) pp. 1414-1425

[5] Nicolau, M., and Ryan, C.: Solving Sudoku with the GAuG#s&m.
In: Collet et al. (Eds.): Genetic Programming. Proceedingsthef

9th European Conference, EuroGP 2006. Lecture Notes in Camnpu

Science, Vol. 3905. Springer-Verlag. (2006) pp. 213-224

[6] Goldberg, D. E.: Genetic Algorithms in Search, Optimirati and
Machine Learning. Addison Wesley. (1989)

[7] Bagley, J. D.: The Behaviour of Adaptive Systems which EogpGe-
netic and Correlation Algorithms. PhD Thesis, UniversityMithigan.
(1967)

[8] Frantz, D. R.: Non-linearities in Genetic Adaptive SgarPhD Thesis,
University of Michigan. (1972)

[9] Holland, J. H.: Adaptation in Natural and Artificial Sgshs (Second
Edition). University of Michigan Press. (1992)

[10] Davies, L.: Applying Adaptive Algorithms to Epistatic dinains.
In Joshi, A. K. (Ed.): Proceedings of the Ninth Internatiodaint
Conference on Atrtificial Intelligence. Morgan Kaufmann Rsinérs.
(1985) pp. 162-164

[11] Goldberg, D. E., and Lingle, J. R.: Alleles, Loci, ancetfiravelling
Salesman Problem. In Grefenstette, J. J. (Ed.): Proceedfrthe &irst
International Conference on Genetic Algorithms. Lawrengtodtim
Associates. (1985) pp. 154-159

1111111111111111111111111111111100100100110000000000000000000000000000000000
1111111111111111111111111111111000111010000000000000000000000000000000000000

[12] Oliver, I. M., Smith, D. J., and Holland, J. R. C.: A Study o
Permutation Crossover Operators on the Travelling Salesmatien.

. o) In Grefenstette, J. J. (Ed.): Proceedings of the Secondnitienal
Fig. 10. Best individual found, every 20 generations (froamgle run). Conference on Genetic Algorithms. Lawrence Erlbaum Assesia
Strings represent sequences of instruction$) iadicates an unsuccessful (1987) pp. 224-230

instruction, and al a successful one. As evolution progresses, successf[Ji3] Goldberg, D. E., Korb, B., and Deb, K.: Messy geneticoalipms:
instructions are moved towards the start, due to GAUGE'ssdisziation Motivation, analysis, and first results. Complex Systems, ¥ahumber
between position and value specifications, and to fithessspre. 5. (1989) pp. 493-530

[14] Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G.:pRka
Accurate Optimization of Difficult Problems Using Fast Messgn@tic
For certain classes of problems, however, those effects Algorithms. In Forrest, S. (Ed.): Proceedings of the Fifttemational

. Conference on Genetic Algorithms. Morgan Kaufmann Publsher
might not be detrimental, and in certain cases they are thdee (1993) pp. 56-64 9 9

a welcome feature. GAUGE has been shown to perform jugis] Harik, G.: Learning Gene Linkage to Efficiently SolveoBlems of
as well as the SGA on simple binary maximisation problems Bounded Difficulty Using Genetic Algorithms. Doctoral Distion,

.. . University of lllinois (1997)
such as Onemax [1] and Binint [2], and in a problem Wherﬁ6] O'Neill, M. and Ryan, C.: Grammatical Evolution - Evolgjprograms

the order of the discovered data is paramount, GAUGE was in an arbitrary language. Kluwer Academic Publishers. (3003

shown to outperform [1] both a SGA and the original messgﬂ] Bean, J.: Genetic Algorithms and Random Keys for Sequgnand
. - Optimization. ORSA Journal on Computing, Vab, No. 2. (1994)

genetic algorithm [13]. pp. 154-160

The interesting characteristic of GAUGE's search opesato[18] Wikipedia: Sudoku. http://en.wikipedia.org/wikif8oku

is that they do not have to be specifically encoded; they deriy1] Yato, T., and Seta, T.. Complexity and Completeness ofdifg

f tandard fi | ith t hich. by th Another Solution and its Application to Puzzles. IEICE Tsactions on
rom standard geneuic algorithm operators, which, by € g nqamentals of Electronics, Communications and ComputenSese

nature of the mapping process, are transformed into relativ vol. 86, No. 5. (2003) pp. 1052-1060
ordering operators. [20] Vorderman, C.: Carol Vorderman’s How To Do Sudoku. Eburgs3.

The problem in this paper is an example of the class %1] (2005)

)] A Koza, J. R.: Genetic Programming: On the Programming of Caengu
problems for which GAUGE is well suited: problems where by Means of Natural Evolution. MIT Press. (1992)

not only the contents of variables have to be found (and tH&2] Satoh, H., Yamamura, M., and Kobayashi, S.: Minimal Getiema

Ibhabet is t t ive f | | h ti H) b Gap Model for GAs Considering Both Exploration and Exploda.
alpnabet Is 100 extensive Tor a local exhaustive searc)' u n: Proceedings of the4 International Conference on Fuzzy Systems,

also the ordering of those contents. Many scheduling prob- Neural Networks and Soft Computing (Vol. 2). World Scientif&in-
lems share these characteristics, so it would be integestin gapore. (1996) pp. 494-497

. e [23] Ohnishi, K. Sastry, K., Chen, Y.-P.,, and Goldberg, Dnducing
test the SU|tab”|ty of GAUGE to such problems. Sequentiality Using Grammatical Genetic Codes. In: Deb etEals.):

Genetic and Evolutionary Computation - GECCO 2004. Lectunéehl
in Computer Science, Vol. 3102. Springer. (2004) pp. 1428414
[24] Nicolau, M., Auger, A., and Ryan, C.: Functional Dependy and
Degeneracy: Detailed Analysis of the GAUGE System. In: lgaret
al. (Eds.): Proceedings dvolution Artificielle 2003. Lecture Notes in
Computer Science, Vol. 2936. Springer-Verlag. (2003) pp-286

REFERENCES

[1] Ryan, C., Nicolau, M., and O’Neill, M.: Genetic Algoriths using
Grammatical Evolution. In: Foster et al. (Eds.): ProceedofgsuroGP-
2002. Lecture Notes in Computer Science, Vol. 2278. Sprivgelag.
(2002) 278-287

[2] Nicolau, M. and Ryan, C.: How Functional Dependency Adaf
Salience Hierarchy in the GAUGE System. In: Ryan et al. (Eds.)
Proceedings of EuroGP-2003. Lecture Notes in Computer Sejen
Vol. 2610. Springer-Verlag. (2003) 153-163

[3] Nicolau, M. and Ryan, C.: Efficient Crossover in the GAuG¥stem.
In: Keijzer et al. (Eds.): Proceedings of EuroGP-2004. usxtNotes
in Computer Science, Vol. 3003. Springer-Verlag. (2004) 1#5-137

