
Genetic Operators and Sequencing in the GAuGE System

Miguel Nicolau and Conor Ryan

Abstract— This paper investigates the effects of the mapping
process employed by the GAuGE system on standard genetic
operators. It is shown that the application of that mapping
process transforms these operators into suitable sequencing
searching tools. A practical application is analysed, and its
results compared with a standard genetic algorithm, using the
same operators. Results and analysis highlight the suitability of
GAuGE and its operators, for this class of problems.

I. I NTRODUCTION

The GAuGE system (Genetic Algorithms using Grammat-
ical Evolution) [1] uses a position-independent representa-
tion, which allows it to specify both the position and the
value of each phenotypic variable. It employs a genotype-to-
phenotype mapping process which ensures all variables are
specified once and only once: in other words, no under- nor
over-specification ever occurs in the system.

This elegant mapping process has a cost. In order to
keep the association between the position and the value
of each variable, it has been shown [2] that representation
convergence must occur throughout the population. While
not damaging on regular binary problems, this disassociation
can seriously impair the performance of the system on other
problems, and to that end, a series of genetic operators have
been developed, which respect those associations [3], [4].

Some problems, however, do not require a strict respect of
that association. Job-shop scheduling problems, for example,
require a fixed set of values to be optimally ordered; the
objective of the system is to search for the optimal represen-
tation that solves the problem. In this class of problems, each
variable encodes the same type of choice (e.g. a resource),
and the values of variables can (and must) be exchanged
between them, to find optimal sequences.

An interesting problem domain is where the set of values
to be ordered is not fixed a-priori, and neither is it an ordinal
sequence; the objective of the system in this case is not only
to find the correct sequence of variables, but also the correct
set of values for all variables.

GAuGE has been applied to a version of the Mastermind
game [1], which exhibits these characteristics, and the results
obtained were encouraging. Recently, it was also applied to
Sudoku puzzles [5], and again its success suggests that the
system is suitable for this class of problems.

In this paper, the effect of standard genetic operators on
the GAuGE system is analysed; this analysis shows how their
combination is suitable for the mentioned class of problems.
A direct comparison with a standard genetic algorithm [6] is

Miguel Nicolau and Conor Ryan are with the Biocomputing and Devel-
opmental Systems group, Department of Computer Science and Information
Systems, University of Limerick, Ireland (email: Miguel.Nicolau@ul.ie,
Conor.Ryan@ul.ie).

performed, for the Sudoku problem, and the results obtained
and their analysis highlight the validity of this approach.

This paper is structured as follows. Section II introduces
the GAuGE system and its mapping process, while Sec-
tion III analyses the effect of standard genetic operators on
the GAuGE system. Section IV then presents the Sudoku
problem, and Section V the experimental setup used. Finally,
Section VI analyses the results obtained, and Section VII
highlights future work directions.

II. THE GAUGE SYSTEM

The GAuGE system works as a mapping process applied
to binary genotype strings, which are evolved using a stan-
dard genetic algorithm [6]. It interprets those strings as a
sequence of position and value specifications, and constructs
a phenotype string, which is then evaluated.

A. Background

Many systems have been developed using similar tech-
niques to the ones employed in GAuGE. Bagley [7] used
fixed-length strings of(position, value) specifications, and
an inversion operator to move those specifications around
in the chromosome strings; both Frantz [8] and Holland [9]
extended some of that work, and similar operators were later
designed, with the same purpose [10], [11], [12].

The messy genetic algorithms [13], [14] also use a separate
encoding of the position and the value of each phenotypic
variable. They deal with the problem of over-specification on
a “first come, first served” basis, while under-specificationis
dealt with the use of an evolved template.

More recently, Harik [15] introduced the Linkage Learning
Genetic Algorithm, in which a chromosome is expressed as a
circular list of genes, with the functionality of a gene being
dependent on a chosen interpretation point, and the genes
between that point and itself.

Finally, the Grammatical Evolution system (GE) [16] uses
a standard genetic algorithm (or any other search algorithm)
to evolve binary strings, and employs a grammar-based
mapping process to create phenotype strings. The design
of GAuGE was based on many of the biologically inspired
features present in GE, such as a genotype-to-phenotype
mapping process, functional dependency between genes, and
the use of degeneracy (i.e. a many-to-one correspondance
between genotype and phenotype).

B. Mapping Process

Consider a problem composed of four phenotypic variables
(ℓ = 4), ranging between the values0 and7; the objective of
the system is to find the set of values that solves the problem,
and their optimal order.

The underlying search algorithm maintains a population
of genotype strings. The length of each string depends on a
chosen position field size (pfs) and a value field size (vfs).
As there are four variables, a value ofpfs = 2 has been
chosen, as that is the minimum number of bits required to
encode four positions; for the value fields, a value ofvfs =
4 has been chosen, to introduce degeneracy (the minimum
required isvfs = 3). The required length for each binary
string is thereforeL = (pfs + vfs)× ℓ = (2 + 4)× 4 = 24.

For example, take the following example genotype string:

G = 001001101101110100010010

The mapping process will proceed to create a phenotype
string P . It consists of four steps:

Φ : G
Φ1−−→ X

Φ2−−→ D
Φ3−−→ R

Φ4−−→ P

The first step (Φ1) creates an integer stringX, using the
chosenpfs andvfs values:

X =
(

(Xi, X̃i)
)

=
(

(0, 9), (2, 13), (3, 4), (1, 2)
)

The next step (Φ2) interpretsX as a sequence of (posi-
tion,value) pairs, to create a string ofdesired specifications.
This string is created by mapping each position field onto
the number of positions left in the phenotype string. For the
first position field,X0 = 0, the desired position specified is
calculated byD0 = (X0 mod ℓ) = (0 mod 4) = 0, as at this
stage no positions have been specified yet. The value field
is calculated using the range of phenotypic values, giving
D̃0 = (X̃0 mod range) = (9 mod 8) = 1.

The second set of specifications is calculated in a similar
way: the desired position specified is calculated byD1 =
(X1 mod (ℓ− 1)) = (2 mod 3) = 2, as only three positions
remain unspecified in the phenotype string, and the value
field becomesD̃1 = (X̃1 mod range) = (13 mod 8) = 6.

After processing all four pairs, the string of desired spec-
ifications becomes:

D =
(

(Di, D̃i)
)

=
(

(0, 1), (2, 6), (1, 4), (0, 2)
)

At this stage, it can be seen that there are some conflicts
in the position specifications (position0 is specified twice,
and position3 is still unspecified). The third mapping step
(Φ3) consists in removing these conflicts, creating a string
of real specificationsR.

This string is created as follows. The first position spec-
ified, 0, is kept, as there are no conflicts at this stage, so
R0 = 0 (i.e. the first position on the phenotype string). The
desired value specified,5, is mapped to the range of the first
phenotypic variable; as all variables share the same range in
this problem, it is not affected:

R =
(

(Ri, R̃i)
)

=
(

(0, 5), (?, ?), (?, ?), (?, ?)
)

The second pair undergoes a similar mapping. The position
specified, 2, is interpreted as being the thirdavailable
position of the phenotype string; as the position0 has already
been taken, the third available position is3. The value
specification remains the same, giving:

R =
(

(0, 5), (3, 6), (?, ?), (?, ?)
)

R2 is calculated in the same way: the position specified
(1) is interpreted as the second position available on the
phenotype string, which is position2:

R =
(

(0, 5), (3, 6), (2, 4), (?, ?)
)

Finally, the fourth pair is handled in the same fashion,
giving the finalreal specifications string:

R =
(

(0, 5), (3, 6), (2, 4), (1, 2)
)

The fourth and final mapping step (Φ4) simply consists in
interpreting these specifications, creating a phenotype string
by using the formula:

PRi
= R̃i (1)

In other words, through a permutation defined byRi, the
elements ofR̃i are placed in their final positions. The
phenotype string, ready for evaluation, is:

P = (5, 2, 4, 6)

III. GENETIC OPERATORS AND THEGAUGE SYSTEM

A. Crossover

The GAuGE system uses a standard 1-point crossover
operator. However, due to the mapping process employed,
the phenotypic effect of this operator can be quite drastic.
For example, take the following pair of individuals, already
expressed as a sequence of(position, value) pairs:

G1 = (0, A), (3, B), (2, C), (3,D)
G2 = (3, F), (0, G), (3, C), (1, E)

Their corresponding phenotype strings are:

P1 = A,B,C,D

P2 = G,E,C, F

If these two parents are elected for crossover, and the chosen
crossover point is after the second codon, then the generated
offspring will be:

G3 = (0, A), (3, B), (3, C), (1, E)
G4 = (3, F), (0, G), (2, C), (3,D)

With the corresponding phenotype strings being:

P3 = A,B,E,C

P4 = G,C,D, F

A close inspection of the generated offspring shows that
the third phenotypic variable, which both parents specified
as containing the valueC, now contains the valuesE and
D, respectively. In other words, even though both parents
specifiedC as a potentially useful value for the third variable,
none of the offspring respected that.

Crucially though, theordering of the second half of each
parent genotype string was maintained. The first parent spec-
ified that, at the phenotypic level, the valueC should appear
before the valueD, while the second parent specified thatC

should appear afterE. By inspecting the generated offspring,

one can verify that this ordering has been maintained, even
though the relative positions of those values within the
phenotype string have changed. This is because the desired
positions for those variables are always the same; in the
example, for the first parent:

D3 = 2 mod 2 = 0 D4 = 3 mod 1 = 0

which translates toD̃3 = C appearing beforẽD4 = D, in
the phenotype string. The same is true for the second parent:

D3 = 3 mod 2 = 1 D4 = 2 mod 1 = 0

which translates tõD3 = C appearing after̃D4 = E.
Thesedesired positions are calculated in the same fashion

when the two sections are exchanged. So although theirreal
specifications change, in order to adapt to the new context in
which they are being inserted, their relative ordering is kept.

The end result of the crossover operator is similar to that
of the order crossover [10], a two-point crossover where the
section between cut-points is copied from one parent, and
the rest of the offspring is reconstructed with the contents
of the second parent, in the order that they appear. However,
unlike the order operator, the GAuGE crossover is merely
a single-point crossover at the genotypic level, thus beinga
faster, non-specific operator.

B. Mutation

The mutation operator used with GAuGE in this work is a
1-point, bit-wise mutation1. Similarly as with the crossover
operator, a mutation event occurring in one of the position
specifications can have a drastic effect on the generated phe-
notype. For example, take the following individual, already
expressed as a sequence of specification pairs:

G1 = (0, A), (3, B), (2, C), (3,D)

Its corresponding phenotype string is:

P1 = A,B,C,D

If a mutation event occurs at the first position specification,
transforming the above individual into the following:

G2 = (3, A), (3, B), (2, C), (3,D),

the phenotypic effect would be drastic, as all variables will
receive different values:

P2 = B,C,D,A

However, the relative phenotypic ordering of all the speci-
fications which were not modified by the mutation event is
maintained. In other words, the valueB still comes before
the valueC, which in turn still comes beforeD. The reason
for this effect is the same as for the crossover operator; all
variables with theirdesired position specifications unchanged
keep their relative ordering.

The end result of this operator is similar to that of the
point mutation of the Random Keys Genetic Algorithm

1This is for historical reasons, as Grammatical Evolution usessuch an
operator. Its use also comes from the fact that GAuGE can be applied as a
simple mapping process on top of a bit-level genetic algorithm.

(RKGA) [17], in that only the mutated variables are moved,
with all other values keeping their relative ordering; unlike
the RKGA, however, GAuGE can handle problems where
the variable set is not an ordinal set.

C. Suitability of Operators

These operators suggest that an interesting problem do-
main for GAuGE would be where not only the contents but
also the ordering of variables are to be discovered. Recent
results [5] showed the suitability of GAuGE to solve a
harder version of the Sudoku puzzle. This work introduces
a comparison with a standard genetic algorithm on this
problem, and a deeper analysis of the effect of the genetic
operators on the results obtained.

IV. SUDOKU

The Sudoku puzzle first originated in the United States in
1979, under the nameNumber Place, but it was in Japan that
it gained popularity. In November 2004, it was first published
in the British newspaper “The Times”, and since then its
popularity in the western world increased immensely, to the
point where it is being dubbed as “the Rubik’s cube of the
21st century” [18].

The standard puzzle is composed of a3×3 grid of blocks,
each composed of3×3 cells, for a total of 81 cells (Fig. 1).
The objective of the puzzle is to fill each cell with a number
from 1 to 9, such that the following three conditions hold:

1) Each row contains the numbers1 to 9 only once;
2) Each column contains the numbers1 to 9 only once;
3) Each block contains the numbers1 to 9 only once.

1
2
3
4

7
8
9

5

3 4 5 6 7 8 9

6

1 2
columns

r
o
w
s

block
1

block
7

block
4

block
8

block
5

block
2

block
3

block
6

block
9

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3

Fig. 1. Example Sudoku boards. The referencing system used isshown on
the left, and an example board in the right.

A set of numbers are initially loaded with each puzzle
(called givens). A puzzle is calledwell-formed if only one
solution exists, and it can be solved using logic (that is, no
guessing is required to complete it). Fig. 1 shows an example
of a well-formed Sudoku puzzle, with40 givens.

A. Logical Operations

The problem of solving Sudoku puzzles onn2×n2 boards
of n×n blocks is known to be NP-complete [19]; this gives
an indication of why solving Sudoku puzzles can be difficult.
However, due to the finite size of the puzzle, it can be solved
by a deterministic finite automaton that knows the entire

game tree [18]. A different approach is to base each number-
placing action purely on logic; this can only be applied to
well-formed puzzles, but has the advantage of producing a
list of logical actions, which can be reproduced by a human.

There are many such logical operations; below are some
of the most common (and simpler) techniques:

1) Last Remaining: This is a simple logic operation, that
can be applied to any kind of region (row, column or block).
It simply checks if that region has already eight numbers
placed, in which case it places the remaining one.

2) Slice and Dice: This is a combination of two opera-
tions, slice and dice [20], and can be applied when trying
to place numbern in block b. Slice looks forn in each
row passing throughb; if it contains n, then the three
cells intersecting withb cannot containn. Dice works with
columns instead. If, after applying slice and dice, only one
cell is available, then it must containn. Fig. 2 shows an
example.

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3 5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3

X

1 2

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3

X

X 5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3

X

X
9

3 4

Fig. 2. Applying slice and dice to place number9 in block 2. Starting
with the left board, slice finds a9 in the third row, so9 cannot be placed
anywhere else in that row (relevant cells are marked with anX in the second
board). Dice finds a9 in the fifth column, so9 cannot be placed anywhere
else in that column (third board). This results in only one cell being available
to place9 in block 2 (last board).

3) Column Fill: This technique tries to place numbern

in column c. It looks for n in all rows and blocks passing
through c; if a row or block containn, then the cell(s)
corresponding to the intersection of that region and columnc

cannot containn. If after checking all rows and blocks there
is only one cell available in columnc, then that cell must
containn. Fig. 3 shows an example.

4) Row Fill: This technique tries to place the numbern

in row r, and works in the same way as Column Fill, but
going through all the columns instead.

5) Raising Numbers: This technique tries to place the
numbern in block b, by checking each empty cell inb to

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3
9

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3
9

X

X
X

1 2

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3
9

X

X
X
X

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3
9

X

X
X
X

9

3 4

Fig. 3. Applying Column Fill to place number9 in column6. By searching
through all rows in the left board for the number9, a set of cells can be
marked as being unsuitable to receive that number (second board); then
looking through blocks2, 5 and 8 (the blocks that intersect column6)
another unsuitable cell is discovered (third board); finally, only one cell is
available in column6, so it must contain9 (last board).

see if n is the only number that can be placed in that cell;
Fig. 4 shows an example.

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3
9

9

5

9 8

5
5

5

9
9

8

8
8

8
3

3 2

2
24

4

4

6

6

6

6

7
7

7

1
1

1
1

4

7

3
2

2

5
3

9

3
9

9
4

1 2

Fig. 4. Applying Raising Numbers to place number4 in block 4. By
analysing the left board, there are four empty cells in block4, and the
numbers2, 4, 6 and8 are missing. Through Slice and Dice operations, the
set of possible numbers for each of the empty cells can be deduced: the
leftmost cell can receive the numbers{2, 6}, the centre top cell can receive
{4, 6, 8}, the rightmost one{2, 4, 6}, and the bottom centre{4}. Since this
last cell can only receive the number4, it is placed there (right board).

Sometimes different operations can be used to place the
same number in the same cell; other times only a specific
one will do. Note also that often an operation can only be
applied if a previous one has placed a specific number; in
other words, there are manylogical sequences when using
these logical operations.

B. Blind Sudoku

In order to make this problem interesting and challenging
for evolutionary algorithms, the original Sudoku puzzle was

changed into a problem termedBlind Sudoku. The difference
with the original puzzle lies on the way in which solutions
are evaluated:

1) A sequence of instructions is applied to the puzzle;
2) A fitness score is returned to the whole sequence;
3) If the puzzle was not solved, it is reset to its original

configuration.
This cycle continues until a solution is found, or a stop
condition (such as a maximum number of evaluations) is
reached. In other words, the puzzle is never available to
the algorithm, neither is a measure of goodness for each
individual logic instruction, effectively making the problem
much harder.

This way of solving Sudoku puzzles is similar to the
Santa Fe Ant Trail problem [21], in which a sequence of
instructions is given to an ant in a toroidal grid world, and
the number of food objects caught by the ant is returned as
the fitness measure.

C. Objective Function

As the number of cells in a9× 9 Sudoku board is always
81, that is used as the size of a sequence of instructions;
this makes the system applicable to any Sudoku puzzle, as
it is independent of the number of givens. The fitness of a
sequence of instructions is simply the sum of the fitness of
all its instructions; the fitness of each single instructionis

fi =

{

k × (82 − i) if successful
coverage − 9 if unsuccessful

, (2)

where k is a constant, andcoverage is a measure of how
many cells were ruled out when unsuccessfully trying to
place a number in a region (theX marks)2. If the puzzle is
completed before using up all the instructions, all remaining
instructions are considered neutral, and their fitness isfi = 0.

The fitness function heavily rewards successful instruc-
tions, and punishes unsuccessful ones. A linear decreasing
reward is applied to each successful instruction: the earlier it
is executed, the bigger the reward. This temporal saliency is
regulated by thek parameter; the higher its value, the higher
the reward (following the recent application of GAuGE to
Sudoku [5], a value ofk = 81 was used).

This problem has interesting characteristics, and can be
compared to a class of scheduling problems. There is a clear
temporal dependency between each phenotypic variable, as
certain instructions can only be successful if a set of instruc-
tions is executed before them. The negative score applied to
unsuccessful instructions can be seen as an effort factor.

The GAuGE system seems adequate to solving this kind
of problem. It allows for successful instructions, which have
already been discovered, to change their phenotypic location
(by mutating their position specification at the genotypic
level), allowing them to be moved to the start of the phe-
notype string, thus possibly maximising their contribution to
the fitness of the set of instructions.

2Note that the Raising Numbers technique does not mark any cellsas
unsuitable, and thus if it is unsuccessful its fitness is always −9; this is
judged to be fair, as it is a slightly more expensive techniquethen all others.

V. EXPERIMENTS

A. Practical Considerations

The experimental setup used in here is identical to that
of the previous application of GAuGE to the Blind Sudoku
problem [5], that is, sequences of 81 instructions are evolved,
from the set{SliceDice, RowFill, ColFill, RaisingNumbers}.
If an instruction is successful, the LastRemaining instruction
is tried on the corresponding region (as it is a fast instruc-
tion), and if successful the remaining number is automatically
placed.

Also, the logic instructions are mapped onto the original
board. For example, if the algorithm tries to execute the
instructionSliceDice(2,8) (place number8 in block 2 using
SliceDice) on the board from Fig. 1, that instruction is trans-
lated toSliceDice(2,9), as8 already exists in block2. This is
only applied to the original board: if a subsequent instruction
is alsoSliceDice(2,8), then it is considered unsuccessful, as
number9 has already been successfully placed in block2.

The test set for these experiments consisted of puzzles
taken from Carol Vorderman’s How to do Sudoku [20] (pp.
178–187). These were taken from the “Difficult” section, and
the first twenty puzzles were picked (#111 to #130).

B. Encoding and Parameters

A standard genetic algorithm (SGA) [6] was used in a
direct comparison with GAuGE, so as to ascertain the advan-
tage of the mapping process employed, and its effect on the
genetic operators. Table I shows the parameters used on both
systems, which are identical to those previously reported [5],
apart from the number of generations, which was raised to
3200 (so that more SGA runs are successful for comparison).
The Minimal Generation Gap model (MGG) [22] was used as
a replacement strategy, as previous tests, both published [23],
[5] and not, suggest that it is appropriate for the GAuGE
system. It was also used with the SGA, as it increased its
performance when compared with a generational approach.

TABLE I

EXPERIMENTAL SETUP

Replacement strategy: MGG
Crossover operator: 1-point
Problem length (ℓ): 81

Population size (N): 100

Max. number of generations: 3200

(GAuGE only) Position field size (pfs): 8 bits
Value field size (vfs): 12 bits
Crossover probability: 0.5

(GAuGE only) Position field mutation probability: 0.0015
Value field mutation probability: 0.001

In GAuGE, the parameterpfs = 8 was used, to encode
81 instructions and to allow for a degree of degeneracy and
soften the biases of themod operator [24], [5].

In what concerns thevfs parameter, on both systems, each
variable encodes three choices:

1) which instruction to use (out of4 instructions);
2) which region to apply it to (out of9 regions, be it

blocks, rows or columns);

3) which number to attempt to place (out of9 numbers).

To encode an instruction,2 bits are sufficient. To encode
a region and a number, the minimum number of bits is4
(24 = 16); as with thepfs parameter, degeneracy is used,
and 5 bits are used for each of these encodings, sovfs =
2+5+5 = 12. This means that the length of genotype string,
for each system, is:
LSGA = vfs × ℓ = 12 × 81 = 972 bits
LGAuGE = (pfs + vfs) × ℓ = (8 + 12) × 81 = 1620 bits

VI. A NALYSIS

A. Results

Table II shows the results obtained. For each puzzle, 30
independent runs were performed; each run was stopped
after all missing numbers were placed on the board, or the
maximum number of generations was reached.

TABLE II

EXPERIMENTAL RESULTS. FOR EACH SYSTEM, THE AVERAGE NUMBERS

PLACED PER PUZZLE IS SHOWN, ALONG WITH THE NUMBER OF

SUCCESSFUL RUNS(OUT OF 30), AND THE AVERAGE NUMBER OF

GENERATIONS REQUIRED FOR A RUN TO SUCCEED(ONLY DISPLAYED

WHEN ALL RUNS WERE SUCCESSFUL)

Puzzle SGA GAuGE
Avg. Runs Gen. Avg. Runs Gen.

#111 53.0 30 384 53.0 30 238
#112 51.0 30 335 51.0 30 181
#113 53.0 30 300 53.0 30 166
#114 53.0 30 430 53.0 30 210
#115 51.0 30 157 51.0 30 123
#116 21.0 0 N/A 21.0 0 N/A
#117 13.0 0 N/A 13.0 0 N/A
#118 54.0 30 1021 54.0 30 301
#119 51.0 30 264 51.0 30 188
#120 51.0 30 186 51.0 30 135
#121 51.0 30 183 51.0 30 146
#122 51.0 30 324 51.0 30 157
#123 52.7 30 659 51.8 23 N/A
#124 55.4 30 564 56.0 30 247
#125 55.0 30 201 55.0 30 146
#126 54.8 29 N/A 55.0 30 277
#127 53.0 30 431 53.0 30 222
#128 53.0 30 297 53.0 30 189
#129 51.0 30 421 51.0 30 220
#130 49.7 22 N/A 53.0 30 454

Figure 5 shows an histogram of the performance of both
systems for each puzzle used. As previously reported [5],
puzzles #116 and #117 were unsolvable with the instruction
set available, hence the lack of results for these. Across all
other puzzles, GAuGE consistently outperformed the SGA;
it found solutions faster (particularly with difficult puzzles,
such as #118 and #124), and had more successful runs.

An exception to this was puzzle #123, in which the
SGA outperformed GAuGE. Analysis of the results obtained
showed however that is was due to the fitness function used
(Eq. 2); the average best fitness obtained with the SGA was
254057, whereas with GAuGE it was265809, but in this
particular puzzle instance, a higher fitness did not correspond
to a higher amount of numbers placed.

 0

 200

 400

 600

 800

 1000

 1200

#111
#112

#113
#114

#115
#116

#117
#118

#119
#120

#121
#122

#123
#124

#125
#126

#127
#128

#129
#130

G
en

er
at

io
ns

Puzzles

Average Generations Required to Solve each Puzzle

sGA
GAuGE

Fig. 5. Average number of generations required to solve each puzzle, for
both the SGA and GAuGE. Absence of results indicates a puzzlewhere less
than 30 runs were successful.

B. Example Puzzle

In this subsection, the results obtained with both systems
for puzzle #111 are analysed (results for practically all other
puzzles are comparable to these). Fig. 6 shows the average
amount of numbers placed per generation, Fig 7 shows the
average best fitness per generation, and finally Fig. 8 shows
the cumulative frequency of success for both systems.

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800

N
um

be
rs

 P
la

ce
d

Generations

Mean Numbers Placed per Generation

sGA
GAuGE

Fig. 6. Mean numbers placed per generation, for puzzle #111 (out of a
maximum of 53). Error bars indicate standard deviation for all30 runs.

These graphs show how GAuGE converges much faster
to a solution than the SGA, and typically with less vari-
ance across runs. This is quite explicit when observing
Fig. 7, where there is a significant difference between the
performance of both systems, with only a minimal amount
of overlapping of standard deviation error bars. It is also
interesting to observe how GAuGE achieves a much higher
fitness than the SGA, and how this fitness keeps increasing
at a substantial rate, even after generation 360 (by which all

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600 700 800

F
itn

es
s

Generations

Mean Best Fitness per Generation

sGA
GAuGE

Fig. 7. Mean best fitness per generation, for puzzle #111. Error bars
indicate standard deviation for all 30 runs.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800

S
uc

ce
ss

fu
l R

un
s

Generations

Cumulative Frequency of Success

sGA
GAuGE

Fig. 8. Cumulative frequency of success per generation, for puzzle #111.

runs have successfully placed all 53 numbers).
But how do the genetic operators contribute to GAuGE’s

performance? An analysis of a sample run for puzzle #111
sheds some light into the matter. Figs. 9 and 10 show the
best phenotype string evolved with the SGA and GAuGE
respectively, every20 generations: these strings are expressed
as a sequence of logical instructions, with a0 indicating an
unsuccessful instruction, and a1 a successful one.

These figures show a fundamental difference in the way
both systems solve this problem. Whenever the SGA discov-
ers new instructions, they are exchanged between individuals
while keeping their global phenotypic location. As a result,
the left side of the best phenotype string tends to converge
quickly, often including a few unsuccessful instructions.The
only mechanism available to the SGA to move successful in-
structions towards the left-side of these sequences (leading to
better fitness, as per Eq. 2) is to rediscover those instructions
at a new location, closer to the start of the sequence.

100001000000000000010000001000000000010000001000000000100010000000000000000000010
100001001100001000100001000111000100011100100100000000001000000000000000000000000
100101001100001100010001000011000100011100100100000000000000000000000010000000010
110001101100011100010001000001010100101100000100000000000000000010000010000000011
110001101100011100010111000001010100101000000000000000011001000000000010000000010
110101101100110100110110000001000100101000000000000000011001000000000011001000000
110101101100111100010110000001000100101000101000000000100000000000000011001000000
110111101100110100100110000010000100100000101000000100100000000000000001001000000
110111101100111100000110010010000100100000101000000110100000000000010001000000000
110111101100111100000110010000000101100000101000000110100001000000001000000000000
110111101100111100000110010000000101100000111000000110100001000100100000001000000
110111101100111100000110010000000101100000111000000110110001000100000001001000000
110111101100111100000110010000000101100000111000000110110001000111010000000000000
110111101100111100000110010000000101100000111000000110110001000110011000000010000
110111101100111100000110010000000101100000111000000110110001000111011000000010000
110111101100111100000110010000000101100000111000000110110001000111011000000010100
110111101100111100000110010000000101100000111000000110110001010011011000000110000
110111101100111100001100010000000101100000111000000110110101010001011000000110000
110111101100111100001110000000000101100000111000000110110101010001011000000110100
110111101100111100001110000000000101100000111000000110110101010101011000000110100
110111101100111100001110000000000101100000111000000110110101010101011000000110100
110111101100111100001110000000000101100000111000001110100101010101011000000110100
110111101101111000001110000000000101100000111000001110100101010101011000000110100
110111101101111000001110000000000101100000111000001111100100010101011000000110100
110111101101111000001110000000000101100000111000001111100100010101011000000110100
110111101101111000001110000000000101100000111000001111100100010101011000000110100
110111101101111000001110000000000101100000111000001111100100010101011000000110100
110111101101111000001110000000000101100000111000001111100100010101011100000110100
110111101101111000001110000000000101100000111000001111100100010101011110000110000
110111101101111100001010000000000101100000111000001111100100010101011110000110100
110111101101111100001110001000000001100000111000001111100100010101011110000110100
110111101101111100101110000000000101000000111000001111100100010101011110000110100
110111101101111100101110000000000101100000011000001111100100010101011110000110100
110111101101111100101110000000000101110000010000001111100100010101011110000110100
110111101101111100101110000000000101110000110000000111100100010101011110000110100
110111101101111100101100010000000101110000110010000111100100010101011110000010100
110111101101111100101110000000000101110000110010000111100100010101011111000000000
110111101101111100101110000000000101110000110010000111100100010101011111000010000
110111101101111100101110000000000101110000110010000111100100010101011111000010000
110111101101111100101110000000000101110000110010100111000100010101011111000010000

Fig. 9. Best individual found with the SGA, every 20 generations (from
sample run). Strings represent sequences of instructions: a0 indicates an
unsuccessful instruction, and a1 a successful one. Successful instructions
keep the original phenotypic locations where they were firstfound, until
mutation creates a similar instruction closer to the start of the individual.

GAuGE solves this problem in a totally different manner,
thanks to its genetic operators. Whenever a successful in-
struction is discovered, it can be moved towards the start of
the sequence, by means of mutating its position specification
at the genotypic level; this will not affect most of the
other successful instructions, as they will keep their relative
ordering between themselves and the moved instruction.
Furthermore, moving an instruction leftwards will open up
the possibility of moving instructions which depend on it for
success to be moved leftwards as well, thus increasing the
fitness of the individual.

Crossover, on the other hand, plays a role in exchanging
discovered sequences: as the relative ordering of the ex-
changed parts is maintained, so is the dependency of certain
instructions on previous ones for success. While the SGA
exchanges the absolute location of those sequences, GAuGE
exchanges their relative location, thus enabling the mixing
of logical sequences of instructions originating from both
parents, creating potentially fitter offspring.

VII. CONCLUSIONS

There is no perfect algorithm, and this is certainly the
case with GAuGE; the effect of its mapping process on
genotypic strings can be quite drastic, seriously affecting
its performance on certain problems, and leading to the
design of specific genetic operators [3]. This is certainly the
case for problems with “position-sensitive data”, in which
the functionality of a value is completely dependent on
its phenotypic location, and different phenotypic variables
encode different types of data.

000001100000100000000000000100010000000000010001000000110000000010000000000000000
100011100000110000011100000000000100000011001000000001010000000000000000000000000
110111000001110001100000000110110000000100010000001010000000000000000000000000000
111011010101011000011001001011000000101000001000000000000000000000000000000000000
110011100011110011110001001110100000100000000001010000000000010000000000000000001
110110100111111111000110100100000100000000001100001000000000100001000000000000001
110111101101111100111110000000100000000000110000100001011000010000000000010010000
110011101111111111001100001110010010000101000010010000001100000000000001000001000
110111110111111101010101001100011000001010000100110000010000000000000010000010000
110111110110111111001100001110010100000101000110110010000100000000000010010010000
110111110111111101010101001100011000000111000110110010010100000101100000000000000
110111111111111101000101011000110000001110001111100001001000001001100000000000000
111111101111111101101101001001100010000101001100100101001000101010000000000000000
111111101111111101111101001100001000000100011111100100000100000011000000000000000
111111101111111101111101001000110001100000001111101000001100001000000000000000000
111111101111111101111101101000100001100000001111101000001100100000100000000000000
111111101111111101111111100100010000100100001011101000101001000000000000000000000
111111101111111101111111001001010000101000111000110001011000000000000000000000000
111111101111111101111111001001100010110000110001100010101000000000000000000000000
111111101111111111011111011001000010100001111001010000101000000000000000000000000
111111101111111101111111011001000010100011011001100100000000000000000000000000000
111111111111111001111111011001000010110001011001100100000000000000000000000000000
111111111111111111011111001001000010110001011001100100000000000000000000000000000
111111111111111111111101010010010001110100101100100000100000000000000000000000000
111111111111111111111101100110011001001100011001000010000000000000000000000000000
111111111111111111111101100110101011101000100001000010000000000000000000000000000
111111111111111111111101101110001111001001000100000100000000000000000000000000000
111111111111111111111101101111110010100001000100000100000000000000000000000000000
111111111111111111111101101111110010100001110000000000000000000000000000000000000
111111111111111111111101101111110010100011100000000000000000000000000000000000000
111111111111111111111101101111111010000011100000000000000000000000000000000000000
111111111111111111111111011101111010000011100000000000000000000000000000000000000
111111111111111111111111011111110100000011100000000000000000000000000000000000000
111111111111111111111111111011110100000011100000000000000000000000000000000000000
111111111111111111111111111101110100000011100000000000000000000000000000000000000
111111111111111111111111111111100100000011100000000000000000000000000000000000000
111111111111111111111111111110110100100011000000000000000000000000000000000000000
111111111111111111111111111111110010100001010000000000000000000000000000000000000
111111111111111111111111111111110010010011000000000000000000000000000000000000000
11111111111111111111111111111110001110100

Fig. 10. Best individual found, every 20 generations (from sample run).
Strings represent sequences of instructions: a0 indicates an unsuccessful
instruction, and a1 a successful one. As evolution progresses, successful
instructions are moved towards the start, due to GAuGE’s disassociation
between position and value specifications, and to fitness pressure.

For certain classes of problems, however, those effects
might not be detrimental, and in certain cases they are indeed
a welcome feature. GAuGE has been shown to perform just
as well as the SGA on simple binary maximisation problems
such as Onemax [1] and Binint [2], and in a problem where
the order of the discovered data is paramount, GAuGE was
shown to outperform [1] both a SGA and the original messy
genetic algorithm [13].

The interesting characteristic of GAuGE’s search operators
is that they do not have to be specifically encoded; they derive
from standard genetic algorithm operators, which, by the
nature of the mapping process, are transformed into relative
ordering operators.

The problem in this paper is an example of the class of
problems for which GAuGE is well suited: problems where
not only the contents of variables have to be found (and the
alphabet is too extensive for a local exhaustive search), but
also the ordering of those contents. Many scheduling prob-
lems share these characteristics, so it would be interesting to
test the suitability of GAuGE to such problems.

REFERENCES

[1] Ryan, C., Nicolau, M., and O’Neill, M.: Genetic Algorithms using
Grammatical Evolution. In: Foster et al. (Eds.): Proceedingsof EuroGP-
2002. Lecture Notes in Computer Science, Vol. 2278. Springer-Verlag.
(2002) 278-287

[2] Nicolau, M. and Ryan, C.: How Functional Dependency Adapts to
Salience Hierarchy in the GAuGE System. In: Ryan et al. (Eds.):
Proceedings of EuroGP-2003. Lecture Notes in Computer Science,
Vol. 2610. Springer-Verlag. (2003) 153-163

[3] Nicolau, M. and Ryan, C.: Efficient Crossover in the GAuGEsystem.
In: Keijzer et al. (Eds.): Proceedings of EuroGP-2004. Lecture Notes
in Computer Science, Vol. 3003. Springer-Verlag. (2004) pp.125–137

[4] Nicolau, M. and Ryan, C.: Crossover, Population Dynamicsand Con-
vergence in the GAuGE System. In: Deb et al. (Eds.): Genetic and
Evolutionary Computation - GECCO 2004. Lecture Notes in Computer
Science, Vol. 3102. Springer. (2004) pp. 1414–1425

[5] Nicolau, M., and Ryan, C.: Solving Sudoku with the GAuGE System.
In: Collet et al. (Eds.): Genetic Programming. Proceedings ofthe
9th European Conference, EuroGP 2006. Lecture Notes in Computer
Science, Vol. 3905. Springer-Verlag. (2006) pp. 213-224

[6] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley. (1989)

[7] Bagley, J. D.: The Behaviour of Adaptive Systems which Employ Ge-
netic and Correlation Algorithms. PhD Thesis, University ofMichigan.
(1967)

[8] Frantz, D. R.: Non-linearities in Genetic Adaptive Search. PhD Thesis,
University of Michigan. (1972)

[9] Holland, J. H.: Adaptation in Natural and Artificial Systems (Second
Edition). University of Michigan Press. (1992)

[10] Davies, L.: Applying Adaptive Algorithms to Epistatic Domains.
In Joshi, A. K. (Ed.): Proceedings of the Ninth International Joint
Conference on Artificial Intelligence. Morgan Kaufmann Publishers.
(1985) pp. 162–164

[11] Goldberg, D. E., and Lingle, J. R.: Alleles, Loci, and the Travelling
Salesman Problem. In Grefenstette, J. J. (Ed.): Proceedings of the First
International Conference on Genetic Algorithms. Lawrence Erlbaum
Associates. (1985) pp. 154–159

[12] Oliver, I. M., Smith, D. J., and Holland, J. R. C.: A Study of
Permutation Crossover Operators on the Travelling Salesman Problem.
In Grefenstette, J. J. (Ed.): Proceedings of the Second International
Conference on Genetic Algorithms. Lawrence Erlbaum Associates.
(1987) pp. 224–230

[13] Goldberg, D. E., Korb, B., and Deb, K.: Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, Vol. 3, number
5. (1989) pp. 493–530

[14] Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G.: Rapid,
Accurate Optimization of Difficult Problems Using Fast Messy Genetic
Algorithms. In Forrest, S. (Ed.): Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan Kaufmann Publishers.
(1993) pp. 56–64

[15] Harik, G.: Learning Gene Linkage to Efficiently Solve Problems of
Bounded Difficulty Using Genetic Algorithms. Doctoral Dissertation,
University of Illinois (1997)

[16] O’Neill, M. and Ryan, C.: Grammatical Evolution - Evolving programs
in an arbitrary language. Kluwer Academic Publishers. (2003)

[17] Bean, J.: Genetic Algorithms and Random Keys for Sequencing and
Optimization. ORSA Journal on Computing, Vol.6, No. 2. (1994)
pp. 154–160

[18] Wikipedia: Sudoku. http://en.wikipedia.org/wiki/Sudoku
[19] Yato, T., and Seta, T.: Complexity and Completeness of Finding

Another Solution and its Application to Puzzles. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
Vol. 86, No. 5. (2003) pp. 1052–1060

[20] Vorderman, C.: Carol Vorderman’s How To Do Sudoku. Ebury Press.
(2005)

[21] Koza, J. R.: Genetic Programming: On the Programming of Computers
by Means of Natural Evolution. MIT Press. (1992)

[22] Satoh, H., Yamamura, M., and Kobayashi, S.: Minimal Generation
Gap Model for GAs Considering Both Exploration and Exploitation.
In: Proceedings of the 4th International Conference on Fuzzy Systems,
Neural Networks and Soft Computing (Vol. 2). World Scientific, Sin-
gapore. (1996) pp. 494–497

[23] Ohnishi, K. Sastry, K., Chen, Y.-P., and Goldberg, D.: Inducing
Sequentiality Using Grammatical Genetic Codes. In: Deb et al.(Eds.):
Genetic and Evolutionary Computation - GECCO 2004. Lecture Notes
in Computer Science, Vol. 3102. Springer. (2004) pp. 1426–1437

[24] Nicolau, M., Auger, A., and Ryan, C.: Functional Dependency and
Degeneracy: Detailed Analysis of the GAuGE System. In: Liardet et
al. (Eds.): Proceedings of́Evolution Artificielle 2003. Lecture Notes in
Computer Science, Vol. 2936. Springer-Verlag. (2003) pp. 15–26

