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Abstract— This paper presents a series of extensions to  This paper is structured as follows. Section Il starts by
standard Grammatical Evolution. These grammar-based exten- presenting GE and its mapping process, while Sections IlI
sions facilitate the exchange of knowledge between genotype 5 |\ present the extensions used in this work. Section V
and phenotype strings, thus establishing a better correlation . trod th bl d ins tackled d Secti Vi
between the search and solution spaces, typically separated Introduces the problem . omalns ackie ' an ection
in Grammatical Evolution. The results obtained illustrate the ~ analyses the results obtained. Finally, Section VII codetu
practical advantages of these extensions, both in terms of this work and draws future work directions.
convenience and potential increase in performance.

Il. GRAMMATICAL EVOLUTION
. INTRODUCTION . ] . .
Grammatical Evolution [5], [6], [1] is an automatic pro-

The main principle behind Grammatical Evolutiongramming system, similar to Genetic Programming (GP) [7],
(GE) [1] is simple but effective: using a standard genetig, that it uses an evolutionary process to automatically- gen
algorithm [2], a population of binary strings is evolved,erate computer programs. Unlike GP, GE uses a population
and a mapping process is then applied, which, through thg |inear genotypic binary strings, which are transformed
use of a grammar, transforms those strings into functiongto functional phenotypic programs, through a genotype-
programs adapted to the problem domain. This completg_phenotype mapping process [8]. This transformation is
independence between the search algorithm and the mappﬁlﬂ/erned through the use of a BNF (Backus-Naur Form)
process presents some advantages, such as the uncomﬂstragpgmman which specifies the language of the produced
exploration of the search space, and even the possibility §fjutions.
using different search engines with GE 3], [4]. The use of a mapping process creates a distinction be-

In this paper, the division line between the search engingeen the search and solution spaces; genotype strings are
and the mapping process is slightly blurred. The main idea {§,olved with no knowledge (or respect) of their phenotypic
to allow the mapping process to use extra information fronaquivalent, apart from a fitness measure. This has been shown
the underlying genetic algorithm, and even pass informatiog create a “ripple effect” when standard genetic operators
back to the genetic algorithm. This is achieved through thge applied: as the function of a gene depends on the genes
introduction of special symbols in the grammars used by GEpat preceed it, a small genotypic change can lead to a

The first of these symbols allows the direct phenotypic usgig phenotypic change. However, evidence suggests that thi
of genotypic values; the use of this symbol in the grammagffect can promote a useful exchange of derivation sub-
during the mapping process, inserts a gene value into t'%@quences during crossover events [9].
phenotype program. This allows for the design of more
compact grammars, without any detrimental effects on th& Mapping Process

performance of GE. A le of th . loved by GE |
The second symbol introduced uses information from the N exampie of fhe mapping process employed by 'S

mapping process to setup a list of crossover locations in ti‘%ior:/vnisme\'/:olﬁ/.eé. tStai‘(r:grlllg l\;wtts?n blgak%:tr;r:)%,o rint h|2tseeger
genotype string; this allows the use of domain-knowledge to 9 » typically by 9 P i

! ; N, are then used to choose rules from a given BNF grammar,
setup blocks of information to exchange between indivisiual .
. ; to generate a phenotypic program.
and even the evolution of the boundaries of these blocks. . . _ . .
) . . . Starting with a giverstart symbol, a production associated
These special symbols are tested in a series of different ; . )
. . ith that symbol is chosen to replace it, by using the current
problems, ranging from constant discovery to a form o . .
codon from the integer string. In the example, the codon

symbolic regression, chosen specifically to test the uglidi . : ; .
o¥ these ngw approaches. Trl?e resultys obtained i;ﬁstra'tsemapped to_ the number of available productl_ons associated
the advantages introduced by their usage, both in terms Vé’fth <E>, which are3, 506 mod 3 = 0, and<E>is replaced

Lo with the sequencé<OP> <E> <E>).
simplicity and performance. N : .
The next step consists in choosing a production for the
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Binary string
00000110000001110000001000001001... |

A. Moativation

Ephemeral random constants are the standard approach

_ / to constant creation in GP, having values created randomly
Integer string within a pre-specified range at a run’s initialisation [7heEe
(6]7]2]9]9]4[5]2]0[5]2]2].. values are then fixed throughout a run, and new constants
can only be created through combinations of these values
/ and other items from the function and terminal set.

A number of variations on the ephemeral random constant

BNF grammar concept have been applied in tree-based GP systems, all of

<E> ::=(<OP> <E> <E>) (0) which have the common aim of making small changes to the
| x (%) initial constant values.
<Opl>y::: + éog Qonstant Perturbation [_10] allows GP to fine-tune floating
|- (1) point constants by rescaling them by a factor between 0.9
| * ) and 1.1. This has the effect of modifying a constant’s value
[/ (3) by up to 10% of its original value.
Numerical Terminals and Numerical Terminal Mutation
\Q are another approach [11]. The numerical terminal mutation
<E> operator selects a real valued numerical terminal in an
] 6%3=0 individual and adds a Gaussian distributed noise factah su
(<OP> <E> <E>) that small changes are made to the constant values.
] 7%4=3 The Numeric Mutation operator [12] replaces the numeric
9 (<E><B>) constants in an individual with new ones drawn at random
3 ] 2%3=2 from a uniform distribution with a pre-specified range. The
g (ly <E>) ] 0% 3=0 selection range for each constant is specified as the ole valu
o (y (<OP> <E> <E>)) 0 of that consta_nt plus or minus a temperature factor. .
= ] 9% 4=1 Linear Scaling [13], [14], [15] has been used to optimise
&  (y(-<E><E>)) values within a local neighbourhood. It uses linear regogss
= ] 4%3=1 on the values expressed, where a line is derived to fit the data
(y (- x <E>)) and new values explored in the neighbourhood.
] 5%3=2 A recent study [16] used two forms of constant mutation,
Iy (=xy)) Creep and Uniform mutation, where values are altered by a

small amount or mutated to a randomly different number.
Fig. 1. The GE mapping process. A binary string is convertad an  1he study found greater benefits from Ur)llform mutation,
integer string, using 8 bits per codon; these integers a@e tsed to choose on the problems analysed, where the ability to introduce
productions from a BNF grammar, which map a given start symbolant ey constants into a population as evolution progresses and
sequence of terminal symbols. . . . . .

maintain a highly diverse array of constants is generally

beneficial to the fitness of individuals.

. : . : With Ephemeral random constants as their base each of
The mapping process continues in this manner, alwa

replacing the leftmost non-terminal symbol by a productio)rl\ﬁ(lal‘j‘gs rgetshrzgﬁ a]:(r)r::clﬁr?ti t(c))nin?hr?)r\]/?al?i?nézg \(/)vrilt%”:)?erzgggr?
associated with it on the grammar, chosen by a codon; t g y P ' P

mapping terminates and is successful when a sequencet'gp [16], which also examme.d wholesale transformatlon'o'f
onstant values and found this feature to be more beneficial

terminal symbols is generated. If there are non-termin%} . .
. : an slight changes. GE can borrow from the experience
symbols left in the phenotype string once all codons are

used, then the string of codons is reused, in a process call%&jfz.nby eg;nrg::rg t)tgs(,aegStcecl)?]“sstz(;? ;];;?gzoltz?g’ ar?d d'm'-t
“wrapping” [1]; this is done until the phenotype string is ucing g ! ugh digi

valid, or a fixed number of wrapping events occur without aconcatenatlon, which addresses the issue of beginning an

successful mapping evolutionary run with a fixed range of constants, and also
' provides the feature of being able to create new values over

the course of a run [17], [18], [19].
IIl. INSERTINGGENOTYPECODON VALUES INTO

PHENOTYPESTRINGS B. Implementation

The first extension presented in this paper allows the This new approach consists in extracting codon values

extraction of genotype values, and their direct use in th%n.d mtegra}tm'g them directly into the generated phenot.ype
. strings. This is achieved through the use of the following
generated phenotype strings, as a means of constant creatio

This section presents the motivation for this extensiotgitie special symbol in the BNF grammar.
of its implementation, and some example grammars. <CGECodonVal ue[ - z;] [ +x,] >



During the mapping process, if this symbol is encountered. Motivation

it is replaced with the numerical value of the current codon, ) i ) ) )
and this codon is consumed. The, -and +z,, are optional Thg evoll_mon qf possuz_)le crossover points in genetic
specifications of a lower and upper limit for this value: if2l90Mthms is an idea which has been tackled by many

present, the codon value is mapped to the range specifi@cﬁ,e\’ious stl_J_dies. Rosenberg [20] proposed the evolution of
using themod operator; if omitted, the exact value of thethe probability of crossover between genes; Schaffer and
codon is usek Morishima [21] proposed the Punctuated Crossover, where

This creates the possibility of inserting genotypic value ach individual carried an extra crossover mark string, of

directly into phenotype strings, and should not affect th € same length of the individual, marking the possple
performance of GE, as its behaviour will be the same gcations where crossover could occur. Many further studie

if an exhaustive enumeration of the sequential constanss V\}ésed similar techniques, with considerable success [23], [
done in a grammar rule. A considerable amount of research has also been done in

GP to allow the choice of crossover points between trees,

C. Examples but many of those studies require the periodic calculation o
A typical usage of this symbol is when a decimal value i§n€asures of performance.
required: One notable exception is the work of Angeline [11],
who proposed two self-adaptive crossover operators, rme
<expr> ::= <var>=<val ue> Selective Self-Adaptive Crossover (SSAC) and Self-Adepti
<var> = x |y | z Multi-Crossover (SAMC). SSAC works by associating with
<val ue> ::= <GECodonVval ue> each individual an equally shaped parameter tree, with-func
If a specific range is required for each of these variable§Ons and terminals replaced with probabilities of crossov
then range Specifications can be used’ such as: at those pOintS; once a pOint in each individual is Chosen,
crossover is applied to both the individual tree and its
<expr > = x=<xval ue> parameter tree, and random noise is added to the parameter
| y=<yval ue> tree. SAMC works in a similar way, but allows for multiple
| z=<zval ue> crossover points between the two individuals.
<xval ue> ::= <CGECodonVal ue- 0+100> Edmonds [24] pushed this idea forward, and augmented
<yval ue> :: = <GECodonVal ue- 101+200> standard GP with the co-evolution of genetic operators,
<zval ue> ::= <CGECodonVal ue- 201+300>

which are represented as trees with their own set of funstion

The use of this symbol can also replace the need of efnd terminals, and which evolve throughout the run.
haustive enumeration of constants in grammars. For example

this grammar: B. Implementation
<eéxpr=> .:.= <expr> <op> <expr=> As before, a special symbol is used in the BNF grammar:
| <val ue>
<op> e Y A <GEXQOMNar ker >
<value> ::= 0| 1| 2| 3| 4 i ) )
| 5] 6] 7] 8] 9 Whenever this symbol is encountered, it marks where a
crossover operation can take place at the genotypic level.
can be replaced by the following one: This requires that an extra structure is kept with each
<expr> ::= <expr> <op> <expr> geno_type strirjg, conta?ning a sequence of possible cressov
| <GECodonVal ue- 0+9> locations (which we will refer to aXOSites).
<op> =4 - || = When a genotype string is mapped into a phenotype

program, thexOSites structure is reset. Then, everytime the
which is fUnCtiona”y equivalent. The use of this Symbo%ymbo|<GEXGvar ker > is encountered, it is removed from
clearly creates a more elegant and easier to read and Wil phenotype program, and the location of the currentlg use
grammar. codon is inserted intXOStes. Depending on the individual
and the grammar, this will mean that each genotype string
will have 0 or more possible crossover locations associated

The second extension presented in this paper permits fjgh it, contained in thexOSites structure.

specification of crossover locations through the grammar, once two genotype strings are picked for a crossover
which in turn allows the grouping of context-sensitive dat@yent, rather than picking a random location for the crossov
together and their exchange as blocks, as well as the eVOBbint in eacR, an element of their correspondiSites is
tion of crossover boundaries. The motivations, implementgnosen instead. KOSites is empty on either of them, then
tion details and examples of this feature follow. the corresponding individual will not exchange informatio

IV. GRAMMAR-DEFINED CROSSOVERMARKERS

1As GE typically uses 8 bit codons, that value will therefore ib the
range0..255. 2GE typically uses a 1-point crossover operator



C. Examples is the same as that identified in [17], [18], [19] as providing
A typical usage of this symbol is when the problem ighe best performance and adaptability in the evolution and

composed of subproblems or blocks, knowpriori: generation of constants in GE, and is provided below.
<pr og> = vil=<expr>; <GEXOwvar ker > <exp>:: = <exp> <op> <exp>

v2=<expr >; <GEXOvar ker > | <real >

v3=<expr >; <GEXOMar ker > <op>:i=+ | - | x|/

vad=<expr >; <real > :=<int> <int><int>
<expr> .= <expr> <op> <expr> <int> := <int><digit><digit>

| <GECodonVal ue- 0+9> <digit>::=0]|1]|2|3]|4]|56|7]8 9

<op> S N Y A

This grammar uses digit concatenation for the creation of
If, by domain knowledge, it is known that the variables in théts real numbers. Thedi gi t > non-terminal defines the
example grammar contribute independently to the fitness digits 0 to 9, while the<i nt > non-terminal allows integers
the program, then the use efGEXOVar ker > can actively to be formed by concatenating digits together. These insege
promote the exchange of variables as a whole. can contain 1 tan digits where the size is limited only by
Another interesting possibility is to let GE evolve the lo-the length of the individual.
cation of these markers, as shown in the following grammar: The second grammar is similar, but makes use of the new
<GECodonVal ue> extension:

<prog> ::= vil=<expr>; <XC>

v2=<expr >; <XO> <exp>::= <exp> <op> <exp>

v3=<expr >; <XO> | <real >

v4=<expr >; <op>:=+ | - | x|/
<expr > = <expr> <op=> <expr> <real >:: =<i nt>. <i nt>| <i nt >

|  <GECodonVal ue- 0+9> <i nt>::= <i nt ><GECodonVal ue- 0+9>

<op> =+ | - /] = | <GECodonVal ue- 0+9>
<XC> ;1= <GEXOwar ker > |

] ] ) Here the non-terminatdi gi t > of the benchmark gram-
In this example, predefined locations for the crossover mark, 5 is rendered obsolete. The use<@ECodonVal ue> al-

ers are specified, but their usage is left to evolution, as thgys ys to take the literal value of the codon being consumed
symbol <XG> can be replaced by eithetGEXOMarker >, a5 the constant value in the phenotype. By specifying the

or nothing at all. ___range—0+79, this results in the calculation of the modulus of
The use of this approach opens up many possibilitiege codon value by, prior to inserting it on the phenotype
For example, the use of a two-point or even multi-poinkying |n effect this allows the new grammar to produce

crossover operator would be an interesting approach. Thige same phenotypic expressions as the benchmark grammar
approach could also be used to minimise the negative effe¢isie using one less non-terminal.

of the ripple effect [9], and it could also facilitate the
implementation of many context-aware crossover operatoys
for GE [25], without the need of analysing the derivatio
tree of each individual.

1) Satic Constant Creation: The aim of this problem

to evolve a single floating point constant. For these
nexperiments, a high precision floating point number was
chosen,20021.11501. Fitness in these experiments is the
V. PROBLEM DOMAINS absolute difference between the target and evolved values,

In this study we illustrate the use of the new grammali€ 90al being to minimise this difference.
extensions for GE. Initially we examineGECodonVal ue> 2) Moving Peaks Benchmark: This problem uses a dy-
with a view to comparing it against the standard method fdpamic function, the Moving Peaks Benchmark [26], [27],
generating and evolving constants using grammars in GE8]. The implementation of this problem involves several
For this, two problems are examined: the evolution of peaks situated in a 5 dimensional landscape, where with the
static high precision floating point number, and a dynamifassage of every 100 generations, the height and location
benchmark problem where the targets to be evolved afd the peaks is altered randomly. Fitness in this case is the
changed every 100 generations. Moving Peaks function value returned for each individual,
The behaviour of the GEXOVar ker > extension is exam- Which is to be minimised:
ined using three different grammars, one as a control withou . . . .
the new feature, one with theGEXOVar ker >, and a third @ t) = maX(B(x)’iE}??in (@, hi(t), wi(t), pi(t)))
one with the <GEXOWVar ker > as optional. A symbolic

regression problem is examined in these experiments, ~ Where B(Z) is a time-invariant “basis” landscape, and P is
the function defining a peak shape, where each ofrthe

A. <GECodonVal ue> peaks has its own time-varying parameters he{@ht width
Two grammars are used for experiments examining th@v), and locationg). The objective of the system is to evolve
behaviour of<GECodonVal ue>. The benchmark grammar the contents of the 5-dimensionglivector.



B. <GEXQOVar ker > adding an extra coefficient for the purposes of these experi-

The experiments examining the behaviour ofnents, in order to create a more complex environment.
<GEXOMar ker > used three different grammars. Again a Considering this, the purpose of these experiments is to
benchmark grammar was used without #@EXOVar ker >  €Vvolve 6 coefficients for the equation

coefficients, the fithess score is calculated from the ratio o
<exp><GECodonVal ue- 0+9> difference between the target data points and the function
| <GECodonVal ue- 0+9> values generated using the evolved coefficients. This istio

In this grammar the variables through f are being calculated for each target data point as follows:

extension as follows: f(z) = az® + bz 4+ cx + d + ecos(x) + fsin(z) (1)

<s>11=a = <exp>; b = <exp> The target coefficients are generated randomly at the be-
¢ = <exp> d = <exp>; ginning of each run. Rather than trying to match the target
e = <exp>; f = <exp>;

<exp>::

assigned integer values as a result of the concatenation of 4 if 4, < f(x)
the digits generated by the non-termiraxp>. As already ratio(i) = { i f
described, these integers can contain multiple digits, and 4 oOtherwise

under such circumstances crossover can occur in the mid%ﬁere d; is the target data point and(z) the function
1

of these integers, yielding potentiglly destructive elﬁec value with the generated coefficients. The fitness is simply
The second grammar was designed to address this profl 5yerage of all ratios, across all data points (in our

lem, splitting each variable assignment into an atomic Ungxperiments,IOO were used, in the rang&.99):
as far as crossover is concerned, through the use of the '
i ratio(i)

<GEXQwar ker > symbol:

fitness = -
<s>::= a = <exp>; <GEXOWvar ker > . )
b = <exp>, <GEXOVAr ker > Although not a standard GP symbolic regression problem,
c = <exp>z <GEXOMar ker > this problem is suitable to analyse the effect of specifying
d = <exp>z <GEXOVAT ker > crossover locations, as it is composed of clear, separable
e = <exp>z <GEXOVAr ker > blocks, which interact between them.
f = <exp>; VI. RESULTS ANDANALYSIS
<exp>::= <exp><CGECodonVal ue- 0+9> )
| <GECodonVal ue- 0+9> For every problem instance, 30 runs were conducted

using population sizes of 500, adopting one-point crossove
Due to the presence efGEXOVar ker >, crossover cannot at a probability of 0.9, and mutation at 0.1, along with
occur in the middle of an integer, only at the points specifiegbulette-wheel selection and a generational rank replacem
in the grammar. This does not affect the mutation operatostrategy, where the worst performing 25% of the population
which may still be applied across the individual. is replaced each generation.
The final grammar tested presents a variation on the
second, by making the use efSEXOMar ker > optional: A. <GECodonVval ue>

The goal of these experiments was to examine if the ben-

<s>ii= a = <exp>; <XOo> o : . S
b = <exp>: <XO> efits in grammar design and implementation introduced by
_ ' the new extension had a detrimental effect on performance.
C = <exp>; <XC> ) ) :
d = <exp>; <XO> 1) Satic Constant: Each run for this problem was con-
_ ' ducted over 50 generations. Fig. 2 displays the average
e = <exp>; <XC> . ;
f = <exp>: best f|tnes§ for both grammars over 30 runs. By thg fi-
<exp>: ;= <exp><GECodonVal ue- 0+9> nal generation on average the benchmark grammar without

<CGECodonVal ue> produced an average error from target
of 211.166 while the grammar with the new feature included
produced an average error of 171.005 by the final generation.
This grammar allows for the possibility of one or moreHowever, close examination of these results across the 30
variables to be treated as atomic units under crossover. Thens, using a t-test and a bootstrap t-test, showed notitatis
non-terminal symbokXO> enables this process by beingsignificance in the difference.
replaced with either<GEXOMar ker > or a void, giving 2) Moving Peaks Benchmark: This experiment was con-
evolution the power to protect beneficial groups of vars fronslucted over 500 generations with the peaks being moved
being destroyed in crossover. every 100 generations leading to four different target @alu

1) Symbolic Regression: These three grammars are exam-over the course of a run. Fig. 3 displays the average error of
ined against a symbolic regression problem [29], in which aach grammar. In this case again a t-test and a bootstrap t-te
set of coefficients is evolved and plugged into an equatiogielded no statistical significance in the difference betwe
We departed slightly from Wu and Garibay's approach byhe results, while using either grammar.

| <GECodonVal ue- 0+9>
<XO>: : =<GEXOwar ker >|
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Fig. 2. Plot of the mean best fithess for the Static Constartti@no, usinga Fig. 3. Plot of the mean best fitness for the Moving Peaks pnoplsing a
standard concatenation grammar and one includinge@ECodonValue> standard concatenation grammar and one includinge@ECodonValue>

extension (lower values are better). extension (lower values are better).
TABLE |
B. <CGEXQwar ker > MEAN AND STANDARD DEVIATION ON THE SYMBOLIC REGRESSION

. L PROBLEM. THE FIRST COLUMN DISPLAYS THE RESULTS OF THE DIGIT
The <GEXOMar ker > pOtentla”y prOduceS a Slgnlflcant CONCATENATION GRAMMAR, THE SECOND THOSE OF THE COMPULSORY

dlﬁerence_ in the functlor_1 of the crossover Operf_ator' With INCLUSION OF CROSSOVER MARKERSAND THE FINAL ONE THOSE OF
this in mind these_ experiments were conducted in order t0 | . oo i0NAL INCLUSION OF THE CROSSOVER MARKERS
explore the behaviour of the new feature.

. ) ) Cat XOMarker XOMaybe
1) Symbolic Regression: Each run for this problem was Best Mean  0.98831 0.99229 0.99264
conducted over 100 generations. Table | displays the agerag Best Std  0.110992  0.0090787  0.0064935
Pop Mean 0.93218 0.95837 0.96474

fitness by the final generation of both the best performing
individual and the population mean along with the standard
deviation, for the benchmark grammar, and the two grammars
using crossover markers.

In this table it can be seen that the inclusion ofrom the population, although this is more a reflection of the
the <GEXQvar ker> symbol lead to an improvement complexity of the problem, as by the final generation each
in performance over the control grammar. When thg@rammar in general produced a solution which very closely
<GEXOMar ker > was made optional within the grammarestimated the target coefficients.

a further improvement in results was again seen. After It is also interesting to notice how the inclusion of
examining the results using a t-test and bootstrap t-testGEXOVar ker > has minimised the standard deviation
a statistically significant improvement in performance wasacross all runs; this suggests that the (potentially) gisra
seen in the mean fitness for populations as a whole for thedfects of crossover are minimised when using this feature.
grammars which includegGEXOVar ker >. This statistical Allowing the locations okGEXOVar ker > to evolve sees a
significance was not carried through to the best performefarther decrease in standard deviation.

Pop Std 0.0171193  0.0150013 0.0093356




2) Further Experimentation: To investigate the implica- Avg No XOMarkers per Individual
tions of allowing the<GEXQOMar ker > to be optional within 2.2 T T T T T T T
the grammar, a final experiment was conducted. Using the I
third grammar, 30 runs were conducted on the same symbolic
regression problem, but this time for 500 generations. oL ]

On average by the final generation each run yielded a best
performing individual with an average fitness of 0.99798 and
mean fithess over the population of 0.984748. Fig. 4 displays
the average number &fGEXQOVar ker >s per individual per
generation across the 30 runs. By the final generation the
system had reached an average of just 0.831667 crossover I
markers for each individual, suggesting that because the 16
results at this stage closely estimated the target, GE ptegn
to evolve out the destructive capacity of crossover. Furthe
analysis on the positioning of theGEXOVar ker >s reveals
that the system over the course of evolution expressed
preference for placing theeGEXOVar ker >s towards the
end of the individuals. The significance of this is two-fold:
firstly, because for the first two coefficients ties raised
to the power of 3 and 2 respectively, GE is seen to protect
the individual from the potentially large changes in fitness
by allowing crossover to disrupt this pair; secondly, besgau
GE’s mapping is left to right dependent, crossover points
closer to the left have are more likely to inflict damage to a
good performing individual, so over the course of evolution
the crossover markers are seen to migrate to the right.

Table Il displays the total humber cfGEXOVar ker >s
that were present in each of the possible positions for tse be 0.6 ! ! ! ! ! ! ! ! !
performing individuals. From this we can see that GE had 0 50 100 150 20?3 250t. 300 350 400 450 500
the least preference for conducting crossover after thé firs eneration
variable. The number of occurrences takes a step up after the o

. . . Fig. 4. Plot of the average number of crossover markers pevithdil over
second variable with a value of 7845, which correlates to th?OO generations, using a grammar which optionally includesdhmarkers.
position after wherex has been raised to powers in Eq. 1. The
next three locations steadily rise after to the highestevaitu
the final position which produces the least destructive ithpa
for the equation under investigation and GE in general.

Avg ——

2
X
a

while the <GEXOMVar ker > symbol allows the crossover
operator to function based on information gathered during

TABLE II the mapping process.
TOTAL NUMBER OF CROSSOVER MARKERS AFTER EACH VARIABLE OVER The experimental results obtained with the
30 RUNS FOR THE BEST PERFORMING INDIVIDUALS <CGECodonVal ue> extension show that its implementation
After a b c d e does not affect the performance of GE. Its use however
Total 5969 7845 7540 7787 9250 presents non-negligible advantages in grammar design,

simplifying the definition of ranges of constants.
The results obtained with theGEXOVar ker > extension
VIl. CONCLUSIONS are more substantial, in that they improve the quality of the

By using a mapping process, Grammatical Evolution cresolutions generated, in the experiment analysed. A deeper
ates a distinct separation between its search and solutignalysis of these results reveals that the crossover points
spaces, allowing the evolution of genotypic strings ingepe each individual carries tend to evolve, in an effort to peote
dently of their phenotypic equivalents; this is in contrastnformation already discovered.
with Genetic Programming, in which trees representing the Future work will involve a deeper analysis of these ex-
phenotype structures are evolved. tensions; more experimentation is needed, across a witler se

Up to now, the only relationship between genotype andf problems, and a better understanding of the correlation
phenotype strings was a shared fithess measure. In this studlgtween search and solution spaces is required. The use of
this genotype/phenotype separation is somewhat blurred, «GECodonVal ue>, for example, allows the introduction of
that more information is shared between the search atacalised mutation rules for the manipulation of the contta
solution spaces: theGECodonVal ue> symbol allows phe- generated; the effect of carrying these manipulated cotssta
notype strings to directly manipulate raw genotypic datéhack to the genotype string should be analysed. Also, with



the evolution of the location okGEXOVar ker > symbols, [22] Levenik, J. R.: Metabits: Generic Endogenous Cross@antrol. In

more forms Of crossover can be examlned to explore the Eshelman, L.J. (Ed) PrOCeedingS of the Sixth InternatiGoaference
’ on Genetic Algorithms. Morgan Kaufmann Publishers. (1995)8&-

potential for discovery and evolution of derivation seqeesn o5
within GE. [23] Smith, J., and Fogarty, T. C.: Recombination Strategy piaiiion via
Evolution of Gene Linkage. In: &k, T. et al. (Eds.): Proceedings
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