
Introducing Grammar Based Extensions
for Grammatical Evolution

Miguel Nicolau and Ian Dempsey

Abstract— This paper presents a series of extensions to
standard Grammatical Evolution. These grammar-based exten-
sions facilitate the exchange of knowledge between genotype
and phenotype strings, thus establishing a better correlation
between the search and solution spaces, typically separated
in Grammatical Evolution. The results obtained illustrate the
practical advantages of these extensions, both in terms of
convenience and potential increase in performance.

I. I NTRODUCTION

The main principle behind Grammatical Evolution
(GE) [1] is simple but effective: using a standard genetic
algorithm [2], a population of binary strings is evolved,
and a mapping process is then applied, which, through the
use of a grammar, transforms those strings into functional
programs adapted to the problem domain. This complete
independence between the search algorithm and the mapping
process presents some advantages, such as the unconstrained
exploration of the search space, and even the possibility of
using different search engines with GE [3], [4].

In this paper, the division line between the search engine
and the mapping process is slightly blurred. The main idea is
to allow the mapping process to use extra information from
the underlying genetic algorithm, and even pass information
back to the genetic algorithm. This is achieved through the
introduction of special symbols in the grammars used by GE.

The first of these symbols allows the direct phenotypic use
of genotypic values; the use of this symbol in the grammar,
during the mapping process, inserts a gene value into the
phenotype program. This allows for the design of more
compact grammars, without any detrimental effects on the
performance of GE.

The second symbol introduced uses information from the
mapping process to setup a list of crossover locations in the
genotype string; this allows the use of domain-knowledge to
setup blocks of information to exchange between individuals,
and even the evolution of the boundaries of these blocks.

These special symbols are tested in a series of different
problems, ranging from constant discovery to a form of
symbolic regression, chosen specifically to test the validity
of these new approaches. The results obtained illustrate
the advantages introduced by their usage, both in terms of
simplicity and performance.

Miguel Nicolau is with the Biocomputing and Developmental Systems
Group, Department of Computer Science and Information Systems,Univer-
sity of Limerick, Ireland (email: Miguel.Nicolau@ul.ie).

Ian Dempsey is with the Natural Computing Research & Applications
Group, University College Dublin, Belfield, Dublin 4, Ireland (email:
ian.dempsey@gmail.com).

This paper is structured as follows. Section II starts by
presenting GE and its mapping process, while Sections III
and IV present the extensions used in this work. Section V
introduces the problem domains tackled, and Section VI
analyses the results obtained. Finally, Section VII concludes
this work and draws future work directions.

II. GRAMMATICAL EVOLUTION

Grammatical Evolution [5], [6], [1] is an automatic pro-
gramming system, similar to Genetic Programming (GP) [7],
in that it uses an evolutionary process to automatically gen-
erate computer programs. Unlike GP, GE uses a population
of linear genotypic binary strings, which are transformed
into functional phenotypic programs, through a genotype-
to-phenotype mapping process [8]. This transformation is
governed through the use of a BNF (Backus-Naur Form)
grammar, which specifies the language of the produced
solutions.

The use of a mapping process creates a distinction be-
tween the search and solution spaces; genotype strings are
evolved with no knowledge (or respect) of their phenotypic
equivalent, apart from a fitness measure. This has been shown
to create a “ripple effect” when standard genetic operators
are applied: as the function of a gene depends on the genes
that preceed it, a small genotypic change can lead to a
big phenotypic change. However, evidence suggests that this
effect can promote a useful exchange of derivation sub-
sequences during crossover events [9].

A. Mapping Process

An example of the mapping process employed by GE is
shown in Fig. 1. Starting with a binary string, an integer
string is evolved, typically by using 8 bits percodon; these
are then used to choose rules from a given BNF grammar,
to generate a phenotypic program.

Starting with a givenstart symbol, a production associated
with that symbol is chosen to replace it, by using the current
codon from the integer string. In the example, the codon6
is mapped to the number of available productions associated
with <E>, which are3, so6 mod 3 = 0, and<E> is replaced
with the sequence(<OP> <E> <E>) .

The next step consists in choosing a production for the
<OP>non-terminal symbol, which is now the leftmost sym-
bol on the phenotype string under construction. This is done
by using the next codon,7, and mapping it to the number of
productions associated with<OP>, giving 7 mod 4 = 3, so
<OP> is replaced with/ .



6 % 3 = 0

7 % 4 = 3

2 % 3 = 2

9 % 3 = 0

9 % 4 = 1

4 % 3 = 1

5 % 3 = 2

M
ap

p
in

g
 p

ro
ce

ss

<E>

(<OP> <E> <E>)

(/ <E> <E>)

(/ y <E>)

(/ y (<OP> <E> <E>))

(/ y (− <E> <E>))

(/ y (− x <E>))

(/ y (− x y))

BNF grammar

(2)
(1)
(0)<E>  ::= (<OP> <E> <E>)

       | x
       | y
<OP> ::= +
       | −
       | *
       | / (3)

(2)
(1)
(0)

04 5 52 2 ...2

Integer string
6 7 2 9 9

Binary string
00000110000001110000001000001001...

Fig. 1. The GE mapping process. A binary string is converted into an
integer string, using 8 bits per codon; these integers are then used to choose
productions from a BNF grammar, which map a given start symbol into a
sequence of terminal symbols.

The mapping process continues in this manner, always
replacing the leftmost non-terminal symbol by a production
associated with it on the grammar, chosen by a codon; the
mapping terminates and is successful when a sequence of
terminal symbols is generated. If there are non-terminal
symbols left in the phenotype string once all codons are
used, then the string of codons is reused, in a process called
“wrapping” [1]; this is done until the phenotype string is
valid, or a fixed number of wrapping events occur without a
successful mapping.

III. I NSERTINGGENOTYPECODON VALUES INTO

PHENOTYPESTRINGS

The first extension presented in this paper allows the
extraction of genotype values, and their direct use in the
generated phenotype strings, as a means of constant creation.
This section presents the motivation for this extension, details
of its implementation, and some example grammars.

A. Motivation

Ephemeral random constants are the standard approach
to constant creation in GP, having values created randomly
within a pre-specified range at a run’s initialisation [7]. These
values are then fixed throughout a run, and new constants
can only be created through combinations of these values
and other items from the function and terminal set.

A number of variations on the ephemeral random constant
concept have been applied in tree-based GP systems, all of
which have the common aim of making small changes to the
initial constant values.

Constant Perturbation [10] allows GP to fine-tune floating
point constants by rescaling them by a factor between 0.9
and 1.1. This has the effect of modifying a constant’s value
by up to 10% of its original value.

Numerical Terminals and Numerical Terminal Mutation
are another approach [11]. The numerical terminal mutation
operator selects a real valued numerical terminal in an
individual and adds a Gaussian distributed noise factor, such
that small changes are made to the constant values.

The Numeric Mutation operator [12] replaces the numeric
constants in an individual with new ones drawn at random
from a uniform distribution with a pre-specified range. The
selection range for each constant is specified as the old value
of that constant plus or minus a temperature factor.

Linear Scaling [13], [14], [15] has been used to optimise
values within a local neighbourhood. It uses linear regression
on the values expressed, where a line is derived to fit the data
and new values explored in the neighbourhood.

A recent study [16] used two forms of constant mutation,
Creep and Uniform mutation, where values are altered by a
small amount or mutated to a randomly different number.
The study found greater benefits from uniform mutation,
on the problems analysed, where the ability to introduce
new constants into a population as evolution progresses and
maintain a highly diverse array of constants is generally
beneficial to the fitness of individuals.

With Ephemeral random constants as their base each of
these methods focused on changing the original random
values by small amounts to improve fitness, with one excep-
tion [16], which also examined wholesale transformation of
constant values and found this feature to be more beneficial
than slight changes. GE can borrow from the experience
of GP by extending the established methodology, and in-
troducing grammar based constant creation through digit
concatenation, which addresses the issue of beginning an
evolutionary run with a fixed range of constants, and also
provides the feature of being able to create new values over
the course of a run [17], [18], [19].

B. Implementation

This new approach consists in extracting codon values
and integrating them directly into the generated phenotype
strings. This is achieved through the use of the following
special symbol in the BNF grammar:

<GECodonValue[-xl][+xu]>



During the mapping process, if this symbol is encountered,
it is replaced with the numerical value of the current codon,
and this codon is consumed. The -xl and +xu are optional
specifications of a lower and upper limit for this value: if
present, the codon value is mapped to the range specified,
using themod operator; if omitted, the exact value of the
codon is used1.

This creates the possibility of inserting genotypic values
directly into phenotype strings, and should not affect the
performance of GE, as its behaviour will be the same as
if an exhaustive enumeration of the sequential constants was
done in a grammar rule.

C. Examples

A typical usage of this symbol is when a decimal value is
required:

<expr> ::= <var>=<value>
<var> ::= x | y | z
<value> ::= <GECodonValue>

If a specific range is required for each of these variables,
then range specifications can be used, such as:

<expr> ::= x=<xvalue>
| y=<yvalue>
| z=<zvalue>

<xvalue> ::= <GECodonValue-0+100>
<yvalue> ::= <GECodonValue-101+200>
<zvalue> ::= <GECodonValue-201+300>

The use of this symbol can also replace the need of ex-
haustive enumeration of constants in grammars. For example,
this grammar:

<expr> ::= <expr> <op> <expr>
| <value>

<op> ::= + | - | / | *
<value> ::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

can be replaced by the following one:

<expr> ::= <expr> <op> <expr>
| <GECodonValue-0+9>

<op> ::= + | - | / | *

which is functionally equivalent. The use of this symbol
clearly creates a more elegant and easier to read and write
grammar.

IV. GRAMMAR -DEFINED CROSSOVERMARKERS

The second extension presented in this paper permits the
specification of crossover locations through the grammar,
which in turn allows the grouping of context-sensitive data
together and their exchange as blocks, as well as the evolu-
tion of crossover boundaries. The motivations, implementa-
tion details and examples of this feature follow.

1As GE typically uses 8 bit codons, that value will therefore be in the
range0..255.

A. Motivation

The evolution of possible crossover points in genetic
algorithms is an idea which has been tackled by many
previous studies. Rosenberg [20] proposed the evolution of
the probability of crossover between genes; Schaffer and
Morishima [21] proposed the Punctuated Crossover, where
each individual carried an extra crossover mark string, of
the same length of the individual, marking the possible
locations where crossover could occur. Many further studies
used similar techniques, with considerable success [22], [23].

A considerable amount of research has also been done in
GP to allow the choice of crossover points between trees,
but many of those studies require the periodic calculation of
measures of performance.

One notable exception is the work of Angeline [11],
who proposed two self-adaptive crossover operators, termed
Selective Self-Adaptive Crossover (SSAC) and Self-Adaptive
Multi-Crossover (SAMC). SSAC works by associating with
each individual an equally shaped parameter tree, with func-
tions and terminals replaced with probabilities of crossover
at those points; once a point in each individual is chosen,
crossover is applied to both the individual tree and its
parameter tree, and random noise is added to the parameter
tree. SAMC works in a similar way, but allows for multiple
crossover points between the two individuals.

Edmonds [24] pushed this idea forward, and augmented
standard GP with the co-evolution of genetic operators,
which are represented as trees with their own set of functions
and terminals, and which evolve throughout the run.

B. Implementation

As before, a special symbol is used in the BNF grammar:

<GEXOMarker>

Whenever this symbol is encountered, it marks where a
crossover operation can take place at the genotypic level.
This requires that an extra structure is kept with each
genotype string, containing a sequence of possible crossover
locations (which we will refer to asXOSites).

When a genotype string is mapped into a phenotype
program, theXOSites structure is reset. Then, everytime the
symbol<GEXOMarker> is encountered, it is removed from
the phenotype program, and the location of the currently used
codon is inserted intoXOSites. Depending on the individual
and the grammar, this will mean that each genotype string
will have 0 or more possible crossover locations associated
with it, contained in theXOSites structure.

Once two genotype strings are picked for a crossover
event, rather than picking a random location for the crossover
point in each2, an element of their correspondingXOSites is
chosen instead. IfXOSites is empty on either of them, then
the corresponding individual will not exchange information.

2GE typically uses a 1-point crossover operator



C. Examples

A typical usage of this symbol is when the problem is
composed of subproblems or blocks, knowna priori:

<prog> ::= v1=<expr>;<GEXOMarker>
v2=<expr>;<GEXOMarker>
v3=<expr>;<GEXOMarker>
v4=<expr>;

<expr> ::= <expr> <op> <expr>
| <GECodonValue-0+9>

<op> ::= + | - | / | *

If, by domain knowledge, it is known that the variables in the
example grammar contribute independently to the fitness of
the program, then the use of<GEXOMarker> can actively
promote the exchange of variables as a whole.

Another interesting possibility is to let GE evolve the lo-
cation of these markers, as shown in the following grammar:

<prog> ::= v1=<expr>;<XO>
v2=<expr>;<XO>
v3=<expr>;<XO>
v4=<expr>;

<expr> ::= <expr> <op> <expr>
| <GECodonValue-0+9>

<op> ::= + | - | / | *
<XO> ::= <GEXOMarker> |

In this example, predefined locations for the crossover mark-
ers are specified, but their usage is left to evolution, as the
symbol <XO> can be replaced by either<GEXOMarker>,
or nothing at all.

The use of this approach opens up many possibilities.
For example, the use of a two-point or even multi-point
crossover operator would be an interesting approach. This
approach could also be used to minimise the negative effects
of the ripple effect [9], and it could also facilitate the
implementation of many context-aware crossover operators
for GE [25], without the need of analysing the derivation
tree of each individual.

V. PROBLEM DOMAINS

In this study we illustrate the use of the new grammar
extensions for GE. Initially we examine<GECodonValue>
with a view to comparing it against the standard method for
generating and evolving constants using grammars in GE.
For this, two problems are examined: the evolution of a
static high precision floating point number, and a dynamic
benchmark problem where the targets to be evolved are
changed every 100 generations.

The behaviour of the<GEXOMarker> extension is exam-
ined using three different grammars, one as a control without
the new feature, one with the<GEXOMarker>, and a third
one with the <GEXOMarker> as optional. A symbolic
regression problem is examined in these experiments.

A. <GECodonValue>

Two grammars are used for experiments examining the
behaviour of<GECodonValue>. The benchmark grammar

is the same as that identified in [17], [18], [19] as providing
the best performance and adaptability in the evolution and
generation of constants in GE, and is provided below.

<exp>::= <exp> <op> <exp>
| <real>

<op>::= + | - | * | /
<real>::=<int>.<int>|<int>
<int>::= <int><digit>|<digit>
<digit>::=0|1|2|3|4|5|6|7|8|9

This grammar uses digit concatenation for the creation of
its real numbers. The<digit> non-terminal defines the
digits 0 to 9, while the<int> non-terminal allows integers
to be formed by concatenating digits together. These integers
can contain 1 ton digits where the size is limited only by
the length of the individual.

The second grammar is similar, but makes use of the new
<GECodonValue> extension:

<exp>::= <exp> <op> <exp>
| <real>

<op>::= + | - | * | /
<real>::=<int>.<int>|<int>
<int>::= <int><GECodonValue-0+9>

|<GECodonValue-0+9>

Here the non-terminal<digit> of the benchmark gram-
mar is rendered obsolete. The use of<GECodonValue> al-
lows us to take the literal value of the codon being consumed
as the constant value in the phenotype. By specifying the
range−0+9, this results in the calculation of the modulus of
the codon value by10, prior to inserting it on the phenotype
string. In effect this allows the new grammar to produce
the same phenotypic expressions as the benchmark grammar
while using one less non-terminal.

1) Static Constant Creation: The aim of this problem
is to evolve a single floating point constant. For these
experiments, a high precision floating point number was
chosen,20021.11501. Fitness in these experiments is the
absolute difference between the target and evolved values,
the goal being to minimise this difference.

2) Moving Peaks Benchmark: This problem uses a dy-
namic function, the Moving Peaks Benchmark [26], [27],
[28]. The implementation of this problem involves several
peaks situated in a 5 dimensional landscape, where with the
passage of every 100 generations, the height and location
of the peaks is altered randomly. Fitness in this case is the
Moving Peaks function value returned for each individual,
which is to be minimised:

F (~x, t) = max(B(~x), max
i=1...m

P (~x, hi(t), wi(t), ~pi(t)))

whereB(~x) is a time-invariant “basis” landscape, and P is
the function defining a peak shape, where each of them

peaks has its own time-varying parameters height(h), width
(w), and location (~p). The objective of the system is to evolve
the contents of the 5-dimensional~p vector.



B. <GEXOMarker>

The experiments examining the behaviour of
<GEXOMarker> used three different grammars. Again a
benchmark grammar was used without the<GEXOMarker>
extension as follows:

<s>::= a = <exp>; b = <exp>;
c = <exp>; d = <exp>;
e = <exp>; f = <exp>;

<exp>::= <exp><GECodonValue-0+9>
|<GECodonValue-0+9>

In this grammar the variablesa through f are being
assigned integer values as a result of the concatenation of
the digits generated by the non-terminal<exp>. As already
described, these integers can contain multiple digits, and
under such circumstances crossover can occur in the middle
of these integers, yielding potentially destructive effects.

The second grammar was designed to address this prob-
lem, splitting each variable assignment into an atomic unit
as far as crossover is concerned, through the use of the
<GEXOMarker> symbol:

<s>::= a = <exp>;<GEXOMarker>
b = <exp>;<GEXOMarker>
c = <exp>;<GEXOMarker>
d = <exp>;<GEXOMarker>
e = <exp>;<GEXOMarker>
f = <exp>;

<exp>::= <exp><GECodonValue-0+9>
|<GECodonValue-0+9>

Due to the presence of<GEXOMarker>, crossover cannot
occur in the middle of an integer, only at the points specified
in the grammar. This does not affect the mutation operator,
which may still be applied across the individual.

The final grammar tested presents a variation on the
second, by making the use of<GEXOMarker> optional:

<s>::= a = <exp>;<XO>
b = <exp>;<XO>
c = <exp>;<XO>
d = <exp>;<XO>
e = <exp>;<XO>
f = <exp>;

<exp>::= <exp><GECodonValue-0+9>
|<GECodonValue-0+9>

<XO>::=<GEXOMarker>|

This grammar allows for the possibility of one or more
variables to be treated as atomic units under crossover. The
non-terminal symbol<XO> enables this process by being
replaced with either<GEXOMarker> or a void, giving
evolution the power to protect beneficial groups of vars from
being destroyed in crossover.

1) Symbolic Regression: These three grammars are exam-
ined against a symbolic regression problem [29], in which a
set of coefficients is evolved and plugged into an equation.
We departed slightly from Wu and Garibay’s approach by

adding an extra coefficient for the purposes of these experi-
ments, in order to create a more complex environment.

Considering this, the purpose of these experiments is to
evolve 6 coefficients for the equation

f(x) = ax3 + bx2 + cx + d + ecos(x) + f sin(x) (1)

The target coefficients are generated randomly at the be-
ginning of each run. Rather than trying to match the target
coefficients, the fitness score is calculated from the ratio of
difference between the target data points and the function
values generated using the evolved coefficients. This ratiois
calculated for each target data point as follows:

ratio(i) =

{

di

f(x) if di < f(x)
f(x)
di

otherwise

where di is the target data point andf(x) the function
value with the generated coefficients. The fitness is simply
the average of all ratios, across alln data points (in our
experiments,100 were used, in the range0..99):

fitness =

∑n

i=1 ratio(i)

n
.

Although not a standard GP symbolic regression problem,
this problem is suitable to analyse the effect of specifying
crossover locations, as it is composed of clear, separable
blocks, which interact between them.

VI. RESULTS AND ANALYSIS

For every problem instance, 30 runs were conducted
using population sizes of 500, adopting one-point crossover
at a probability of 0.9, and mutation at 0.1, along with
roulette-wheel selection and a generational rank replacement
strategy, where the worst performing 25% of the population
is replaced each generation.

A. <GECodonValue>

The goal of these experiments was to examine if the ben-
efits in grammar design and implementation introduced by
the new extension had a detrimental effect on performance.

1) Static Constant: Each run for this problem was con-
ducted over 50 generations. Fig. 2 displays the average
best fitness for both grammars over 30 runs. By the fi-
nal generation on average the benchmark grammar without
<GECodonValue> produced an average error from target
of 211.166 while the grammar with the new feature included
produced an average error of 171.005 by the final generation.
However, close examination of these results across the 30
runs, using a t-test and a bootstrap t-test, showed no statistical
significance in the difference.

2) Moving Peaks Benchmark: This experiment was con-
ducted over 500 generations with the peaks being moved
every 100 generations leading to four different target values
over the course of a run. Fig. 3 displays the average error of
each grammar. In this case again a t-test and a bootstrap t-test
yielded no statistical significance in the difference between
the results, while using either grammar.



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  5  10  15  20  25  30  35  40  45  50

E
rr

or

Generation

Grammatical Evolution - 20021.11501

Cat
GECodonVal

Fig. 2. Plot of the mean best fitness for the Static Constant problem, using a
standard concatenation grammar and one including the<GECodonValue>
extension (lower values are better).

B. <GEXOMarker>

The <GEXOMarker> potentially produces a significant
difference in the function of the crossover operator. With
this in mind these experiments were conducted in order to
explore the behaviour of the new feature.

1) Symbolic Regression: Each run for this problem was
conducted over 100 generations. Table I displays the average
fitness by the final generation of both the best performing
individual and the population mean along with the standard
deviation, for the benchmark grammar, and the two grammars
using crossover markers.

In this table it can be seen that the inclusion of
the <GEXOMarker> symbol lead to an improvement
in performance over the control grammar. When the
<GEXOMarker> was made optional within the grammar
a further improvement in results was again seen. After
examining the results using a t-test and bootstrap t-test,
a statistically significant improvement in performance was
seen in the mean fitness for populations as a whole for the
grammars which included<GEXOMarker>. This statistical
significance was not carried through to the best performers

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300  350  400  450  500

M
ea

n 
E

rr
or

 (
30

 R
un

s)

Generation

Grammatical Evolution - MovPeaks

Cat
GECodonVal

Fig. 3. Plot of the mean best fitness for the Moving Peaks problem, using a
standard concatenation grammar and one including the<GECodonValue>
extension (lower values are better).

TABLE I

MEAN AND STANDARD DEVIATION ON THE SYMBOLIC REGRESSION

PROBLEM. THE FIRST COLUMN DISPLAYS THE RESULTS OF THE DIGIT

CONCATENATION GRAMMAR, THE SECOND THOSE OF THE COMPULSORY

INCLUSION OF CROSSOVER MARKERS, AND THE FINAL ONE THOSE OF

THE OPTIONAL INCLUSION OF THE CROSSOVER MARKERS

Cat XOMarker XOMaybe
Best Mean 0.98831 0.99229 0.99264
Best Std 0.110992 0.0090787 0.0064935

Pop Mean 0.93218 0.95837 0.96474
Pop Std 0.0171193 0.0150013 0.0093356

from the population, although this is more a reflection of the
complexity of the problem, as by the final generation each
grammar in general produced a solution which very closely
estimated the target coefficients.

It is also interesting to notice how the inclusion of
<GEXOMarker> has minimised the standard deviation
across all runs; this suggests that the (potentially) disruptive
effects of crossover are minimised when using this feature.
Allowing the locations of<GEXOMarker> to evolve sees a
further decrease in standard deviation.



2) Further Experimentation: To investigate the implica-
tions of allowing the<GEXOMarker> to be optional within
the grammar, a final experiment was conducted. Using the
third grammar, 30 runs were conducted on the same symbolic
regression problem, but this time for 500 generations.

On average by the final generation each run yielded a best
performing individual with an average fitness of 0.99798 and
mean fitness over the population of 0.984748. Fig. 4 displays
the average number of<GEXOMarker>s per individual per
generation across the 30 runs. By the final generation the
system had reached an average of just 0.831667 crossover
markers for each individual, suggesting that because the
results at this stage closely estimated the target, GE attempted
to evolve out the destructive capacity of crossover. Further
analysis on the positioning of the<GEXOMarker>s reveals
that the system over the course of evolution expressed a
preference for placing the<GEXOMarker>s towards the
end of the individuals. The significance of this is two-fold:
firstly, because for the first two coefficients thex is raised
to the power of 3 and 2 respectively, GE is seen to protect
the individual from the potentially large changes in fitness
by allowing crossover to disrupt this pair; secondly, because
GE’s mapping is left to right dependent, crossover points
closer to the left have are more likely to inflict damage to a
good performing individual, so over the course of evolution
the crossover markers are seen to migrate to the right.

Table II displays the total number of<GEXOMarker>s
that were present in each of the possible positions for the best
performing individuals. From this we can see that GE had
the least preference for conducting crossover after the first
variable. The number of occurrences takes a step up after the
second variable with a value of 7845, which correlates to the
position after wherex has been raised to powers in Eq. 1. The
next three locations steadily rise after to the highest value at
the final position which produces the least destructive impact
for the equation under investigation and GE in general.

TABLE II

TOTAL NUMBER OF CROSSOVER MARKERS AFTER EACH VARIABLE OVER

30 RUNS FOR THE BEST PERFORMING INDIVIDUALS

After a b c d e
Total 5969 7845 7540 7787 9250

VII. CONCLUSIONS

By using a mapping process, Grammatical Evolution cre-
ates a distinct separation between its search and solution
spaces, allowing the evolution of genotypic strings indepen-
dently of their phenotypic equivalents; this is in contrast
with Genetic Programming, in which trees representing the
phenotype structures are evolved.

Up to now, the only relationship between genotype and
phenotype strings was a shared fitness measure. In this study,
this genotype/phenotype separation is somewhat blurred, in
that more information is shared between the search and
solution spaces: the<GECodonValue> symbol allows phe-
notype strings to directly manipulate raw genotypic data,

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  50  100  150  200  250  300  350  400  450  500

A
vg

Generation

Avg No XOMarkers per Individual

Avg

Fig. 4. Plot of the average number of crossover markers per individual over
500 generations, using a grammar which optionally includes these markers.

while the <GEXOMarker> symbol allows the crossover
operator to function based on information gathered during
the mapping process.

The experimental results obtained with the
<GECodonValue> extension show that its implementation
does not affect the performance of GE. Its use however
presents non-negligible advantages in grammar design,
simplifying the definition of ranges of constants.

The results obtained with the<GEXOMarker> extension
are more substantial, in that they improve the quality of the
solutions generated, in the experiment analysed. A deeper
analysis of these results reveals that the crossover points
each individual carries tend to evolve, in an effort to protect
information already discovered.

Future work will involve a deeper analysis of these ex-
tensions; more experimentation is needed, across a wider set
of problems, and a better understanding of the correlation
between search and solution spaces is required. The use of
<GECodonValue>, for example, allows the introduction of
localised mutation rules for the manipulation of the constants
generated; the effect of carrying these manipulated constants
back to the genotype string should be analysed. Also, with



the evolution of the location of<GEXOMarker> symbols,
more forms of crossover can be examined, to explore the
potential for discovery and evolution of derivation sequences
within GE.

REFERENCES

[1] O’Neill, M. and Ryan, C.: Grammatical Evolution - Evolvingprograms
in an arbitrary language. Kluwer Academic Publishers. (2003)

[2] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley. (1989)

[3] O’Sullivan, J.: An Investigation into the use of Different Search Engines
with Grammatical Evolution. MSc Thesis, University of Limerick.
(2001)

[4] O’Neill, M., and Brabazon, A.: Grammatical Swarm. In: Deb etal.
(Eds.): Genetic and Evolutionary Computation - GECCO 2004. Lecture
Notes in Computer Science, Vol. 3103. Springer. (2004) pp. 163–174

[5] O’Neill, M.: Automatic Programming in an Arbitrary Language: Evolv-
ing Programs with Grammatical Evolution. PhD Thesis, University of
Limerick. (2001)

[6] O’Neill, M., and Ryan, C.: Grammatical Evolution. IEEE Transactions
on Evolutionary Computation, Vol.5, No. 4. (2001) pp. 349–358

[7] Koza, J.: Genetic Programming. MIT Press. (1992)
[8] Banzhaf, W.: Genotype-Phenotype Mapping and Neutral Variation -

A case study in Genetic Programming. In: Davidor et al. (Eds.):
Proceedings of the third conference on Parallel Problem Solving from
Nature. Lecture Notes in Computer Science, Vol. 866. Springer-Verlag.
(1994) pp. 322–332

[9] O’Neill, M., Ryan, C., Keijzer, M., and Cattolico, M.: Crossover
in Grammatical Evolution. Genetic Programming and Evolvable Ma-
chines, Vol.4, No. 1. (2003) pp. 67–93

[10] Spencer, G.: Automatic Generation of Programs for Crawling and
Walking. In: Kinnear, K. E. Jr. (ed): Advances in Genetic Programming,
Chapter 15. MIT Press. (1994) pp. 335–353

[11] Angeline, P. J.: Two Self-Adaptive Crossover Operators for Genetic
Programming. In: Angeline, P. J. and Kinnear, K. E. Jr. (eds.):Advances
in Genetic Programming 2, Chapter 5. MIT Press. (1996) pp. 89–110

[12] Evett, M., and Fernandez, T.: Numeric Mutation Improves the Dis-
covery of Numeric Constants in Genetic Programming. In: Genetic
Programming 1998: Proceedings of the Third Annual Conference. Uni-
versity of Wisconsin, Madison, Wisconsin, USA. Morgan Kaufmann.
(1998) pp. 66–71

[13] Iba, H., and Nikolaev, N.: Genetic Programming PolynomialModels
of Financial Data Series. In: Proceedings of the 2000 IEEE International
Congress on Evolutionary Computation. IEEE Press. pp. 1459–1466

[14] Nikoaev, N., and Iba, H.: Regularization Approach to Inductive Ge-
netic Programming. IEEE Transactions on Evolutionary Computation,
Vol. 5, No. 4. (2001) pp. 359–375

[15] Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic
and Linear Scaling. In: Ryan et al. (Eds.): Proceedings of EuroGP-2003.
Lecture Notes in Computer Science, Vol. 2610. Springer-Verlag. (2003)
pp. 70–82

[16] Ryan, C., and Keijzer, M.: An Analysis of Diversity of Constants of
Genetic Programming. In: Ryan et al. (eds): Proceedings of EuroGP-
2003. Lecture Notes in Computer Science, Vol. 2610. Springer-Verlag.
(2003) pp. 404–413

[17] O’Neill, M., Dempsey, I., Brabazon, A., and Ryan, C.: Analysis of
a Digit Concatenation Approach to Constant Creation. In: Ryan et
al. (Eds.): Proceedings of EuroGP-2003. Lecture Notes in Computer
Science, Vol. 2610. Springer-Verlag. (2003) pp. 173–182

[18] Dempsey, I., O’Neill, M., and Brabazon, A.: Grammatical Constant
Creation. In: Deb et al. (Eds.): Genetic and Evolutionary Computation -
GECCO 2004. Lecture Notes in Computer Science, Vol. 3103. Springer.
(2004) pp. 447–458

[19] Dempsey, I., O’Neill, M., and Brabazon, A.: meta-Grammar Constant
Creation with Grammatical Evolution by Grammatical Evolution.In:
Beyer et al. (Eds.): Genetic and Evolutionary Computation Conference
- GECCO 2005. ACM 1-59593-010-8/05/0006. (2005) pp. 1665-1671.

[20] Rosenberg, R. S.: Simulation of Genetic Populations With Biochemical
Properties. PhD Thesis, University of Michigan. (1967)

[21] Schaffer, J. D., and Morishima, A.: An Adaptive Crossover Dis-
tribution Mechanism for Genetic Algorithms. In Grefenstette, J. J.
(Ed.): Proceedings of the Second International Conferenceon Genetic
Algorithms. Lawrence Erlbaum Associates. (1987) pp. 36–40

[22] Levenik, J. R.: Metabits: Generic Endogenous Crossover Control. In
Eshelman, L. J. (Ed.): Proceedings of the Sixth International Conference
on Genetic Algorithms. Morgan Kaufmann Publishers. (1995) pp. 88–
95

[23] Smith, J., and Fogarty, T. C.: Recombination Strategy Adaptation via
Evolution of Gene Linkage. In: B̈ack, T. et al. (Eds.): Proceedings
of 1996 IEEE International Conference on Evolutionary Computation.
IEEE Press. (1996) pp. 826–831

[24] Edmonds, B.: Meta-Genetic Programming: Co-evolving the Operators
of Variation. CPM Report 98-32, Centre for Policy Modelling, Manch-
ester Metropolitan University, UK.

[25] Harper, R., and Blair, A.: A Structure Preserving Crossover In Gram-
matical Evolution. In: Proceedings of the 2005 IEEE International
Conference on Evolutionary Computation, Vol. 3. (2005) pp. 2537–
2544

[26] Branke, J.: Evolutionary algorithms for dynamic optimization prob-
lems - a survey. Technical Report 387, Institute AIFB, University of
Karlsruhe. (1999)

[27] Branke, J.: Memory Enhanced Evolutionary Algorithms forChanging
Optimization Problems. In: Proceedings of the 1999 IEEE International
Conference on Evolutionary Computation, Vol. 3. IEEE Press.(1999)
pp. 1875–1882

[28] Morrison, R. W., and DeJong, K. A.: A Test Problem Generator for
Non-Stationary Environments. In: Congress on EvolutionaryComputa-
tion, volume 3. IEEE press. (1999) pp. 2047–2053

[29] Wu. A. S., and Garibay, I.: The Proportional Genetic Algorithm:
Gene Expression in a Genetic Algorithm. Genetic Programming and
Evolvable Machines, Vol.3, No. 2. (2002) pp. 157–192


