
The second homology of SL2 of S -integers
Kevin Hutchinson

Abstract. We calculate the structure of the finitely generated groups H2(SL2(Z[1/m]),Z) when
m is a multiple of 6. Furthermore, we show how to construct homology classes, represented
by cycles in the bar resolution, which generate these groups and have prescribed orders. When
n ≥ 2 and m is the product of the first n primes, we combine our results with those of Jun Morita
to show that the projection St(2,Z[1/m])→ SL2(Z[1/m]) is the universal central extension. Our
methods have wider applicability: The main result on the structure of the second homology of
certain rings is valid for rings of S -integers with sufficiently many units. For a wide class of
rings A, we construct explicit homology classes in H2(SL2(A),Z), functorially dependent on a
pair of units, which correspond to symbols in K2(2, A).

1. Introduction

We calculate the structure of the finitely generated groups H2(SL2(Z[1/m]),Z) – the Schur
multiplier of SL2(Z[1/m]) – when m is a multiple of 6 (Theorem 6.12 below). Furthermore, we
show how to construct explicit homology classes, in the bar resolution, which generate these
groups and have prescribed orders (sections 7 and 8). Our methods have wider applicability,
however: The main result on the structure of the second homology of certain rings is valid for
rings of S -integers with sufficiently many units. The homology classes which we construct
make sense over any ring in which 6 is a unit.
For a ring A satisfying some finiteness conditions the homology groups H2(SLn(A),Z) are nat-

urally isomorphic to the K-theory group K2(A) when n is sufficiently large. However, n = 2 is
rarely sufficiently large, even when A is a field.
We review some background results (see Milnor [8] for details). For a commutative ring A,

the unstable K2-groups of the ring A, K2(n, A), are defined to be the kernel of a surjective
homomorphism St(n, A) → En(A) where St(n, A) is the rank n − 1 Steinberg group of A and
where En(A) is the subgroup of SLn(A) generated by elementary matrices. There are compatible
homomorphisms St(n, A)→ St(n + 1, A), En(A)→ En+1(A), and taking direct limits as n→ ∞,
we obtain a surjective map St(A)→ E(A) whose kernel is K2(A) := lim K2(n, A). In fact, K2(A)
is central in St(A) and the extension

1→ K2(A)→ St(A)→ E(A)→ 1

is the universal central extension of E(A) and hence H2(E(A),Z) � K2(A). Furthermore, for a
commutative ring A, E(A) = SL(A) = lim SLn(A).
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When A satisfies some reasonable finiteness conditions these statements remain true when
K2(A), St(A) and E(A) are replaced with K2(n, A), St(n, A) and En(A) for all sufficiently large n.
In particular, when F is a field with at least 10 elements H2(SL2(F),Z) � K2(2, F).
When F is a global field and when S is a nonempty set of primes of F containing the infinite

primes, we let OS denote the corresponding ring of S -integers. (For example if F = Q and
1 < m ∈ Z, we have Z[1/m] = OS where S consists of the primes dividing m and the infinite
prime.) Now the groups H2(SL2(OS ),Z) and K2(2,OS ) are finitely-generated abelian groups
which satisfy

lim
S

H2(SL2(OS ),Z) = H2(SL2(F),Z) and lim
S

K2(2,OS ) = K2(2, F).

It is natural to guess that we might have H2(SL2(OS ),Z) � K2(2,OS ) when S is sufficiently large
in some appropriate sense. The example ofOS = Z, when H2(SL2(Z),Z) = 0 while K2(2,Z) � Z
shows that some condition on S will be required.
In the current paper, rather than comparing H2(SL2(OS ),Z) to K2(2,OS ) directly, we introduce a

convenient proxy for K2(2,OS ) which we denote K̃2(2,OS ) (see section 6 below for definitions).
There are natural maps

H2(SL2(OS ),Z)→ K̃2(2,OS ), K2(2,OS )→ K̃2(2,OS )

and the structure of the group K̃2(2,OS ) is easy to describe (see Lemma 6.3):

K̃2(2,OS ) � K2(OS )+ ⊕ Z
r

where K2(OS )+ is the subgroup of totally positive elements of K2(OS ) and r is the number of
real embeddings of F.
Our main theorem (6.10) states that when S is sufficiently large (see the statement for more

details) that the natural map H2(SL2(OS ),Z)→ K̃2(2,OS ) is an isomorphism. In the case F = Q,
the condition that S be sufficiently large reduces to the requirement that 2, 3 ∈ S . In particular,
when 6|m, we obtain isomorphisms

H2(SL2(Z[1/m]),Z) � K̃2(2,Z[1/m]) � Z ⊕
(
⊕p|mF

×
p

)
.

Jun Morita ([13]) proved isomorphisms of the form

K2(2,Z[1/m]) � K̃2(2,Z[1/m])

for certain integers m (eg. if m is the product of the first n prime numbers). Combining Morita’s
results with those above we deduce that

H2(SL2(Z[1/m]),Z) � K2(2,Z[1/m])

for such m, and that, consequently, the extension

1→ K2(2,Z[1/m])→ St(2,Z[1/m])→ SL2(Z[1/m])→ 1

is a universal central extension.
The main tool we use to prove Theorem 6.10 is the expression of SL2(OS∪{p}) as an amalga-

mated product
SL2(OS ) ∗Γ0(OS ,p) H(p)

associated to the action of SL2(OS∪{p}) on the Serre tree corresponding to the discrete valua-
tion of the prime ideal p. This decomposition gives a Mayer-Vietoris sequence in homology.
Analysis of the terms and the maps in low dimension yields, for S sufficiently large, an exact
sequence

H2(SL2(OS ),Z) // H2(SL2(OS∪{p}),Z) δ // H1(k(p),Z)→ 0.
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where the map δ is essentially the tame symbol of K-theory (see Theorem 5.17). This analysis
requires, in particular, the deep and beautiful theorem of Vaserstein and Liehl ([21] and [5]) and
the solution of the congruence subgroup problem for SL2 (Serre, [14]).
In the later part of the paper, we tackle an old question in K2-theory; namely, how to write down

natural homology classes in H2(SL2(A),Z), depending functorially on a pair of units u, v ∈ A×,
which correspond, under the map H2(SL2(A),Z) → K2(2, A) when it exists, to the symbols
c(u, v) ∈ K2(2, A). The answer to the corresponding question for H2(SL3(A),Z) and K2(3, A) is
well-known, namely the homology class (in the bar resolution)(

[diag(u, u−1, 1)|diag(v, 1, v−1)] − [diag(v, 1, v−1)|diag(u, u−1, 1)]
)
⊗ 1

corresponds to the symbol {u, v} ∈ K2(3, A), at least up to sign. There is no such simple expres-
sion in the case of K2(2, A). The symbols c(u, v) are easily and naturally described in terms of
the generators of the Steinberg group, but the corresponding natural homology classes, even in
the case of a field, have no known simple construction. Since K2(2,Z) is infinite cyclic with
generator c(−1,−1) while H2(SL2(Z),Z) = 0 it follows that there can be no simple universal
expression defined over the ring Z. The homology classes, C(u, v), that we construct in section
7 below are not very elegant (though it seems unlikely that they can be greatly improved on).
To begin with, the construction of the representing cycles requires the presence of a unit λ such
that λ2 − 1 is also a unit, although the resulting homology classes can be shown quite generally
to be independent of the choice of λ. Furthermore, the representing cycles consist usually of 32
terms and hence are far from simple.
However, the cycles we construct are explicit and functorial for homomorphisms of rings. We

prove (Theorem 7.8) that they map to the symbols c(u, v) ∈ K2(2, A) when A is a field. We
can thus use them to write down provably non-trivial homology classes in H2(SL2(A),Z) for
more general rings A. In particular, in section 8, we use them to write down explicit ele-
ments of the groups H2(SL2(OS ),Z) with given order and to construct generators of the groups
H2(SL2(Z[1/m]),Z) when m is divisible by 6.

2. Preliminaries and notation

2.1. Notation. For a Dedekind Domain A with field of fractions F, Cl(A) denotes the ideal
classgroup of A. If p is a nonzero prime ideal of A, vp : F× → Z denotes the corresponding
discrete value. For a global field F and a nonempty set of primes S of F we let OS denote the
ring of S -integers:

OS := {a ∈ F× | vp(a) ≥ 0 for all p < S }.

For a finite abelian group M, M(p) denotes the Sylow p-subgroup of M.
For a commutative ring A, we let RA := Z[A×/(A×)2] be the group ring of the group of square

classes of units. For a ∈ A×, the square class of a will be denoted 〈a〉 ∈ RA. Furthermore, the
element 〈a〉 − 1 in the augmentation ideal, IA ⊂ RA, will be denoted 〈〈a〉〉.

2.2. Elementary matrices. We will have occasion to refer to the following facts:
For a commutative ring A, and any x ∈ A we define the elementary matrices

E12(x) :=
[

1 x
0 1

]
, E21(x) :=

[
1 0
x 1

]
∈ SL2(A).

Let E2(A) be the subgroup of SL2(A) generated by E12(x), E21(y), x, y ∈ A.
The following theorem of Vaserstein and Liehl will be essential below. Its proof relies on the

resolution of the congruence subgroup problem for SL2 (see Serre [14]).
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Theorem 2.1 (Vaserstein [21], Liehl [5]). Let K be a global field and let S be a set of places of
K of cardinality at least 2 and containing all archimedean places. Let

OS := {x ∈ K | v(x) ≥ 0 for all v < S }

be the ring of S -integers of K. Let I1 and I2 be nonzero ideals of OS . Let

Γ̃(I1, I2) :=
{[

a b
c d

]
∈ SL2(OS ) | b ∈ I1, c ∈ I2, a − 1, b − 1 ∈ I1I2

}
Then Γ̃(I1, I2) is generated by the elementary matrices

E12(x), x ∈ I1 and E21(y), y ∈ I2.

Proposition 2.2. Let A be a commutative ring.

(1) E2(A) = SL2(A) if A is a field or a Euclidean domain or if A = OS is the ring of
S -integers in a global field and |S | ≥ 2.

(2) E2(A) is perfect if there exists λ1, . . . , λn ∈ A× and b1, . . . , bn ∈ A such that∑n
i=1 bi(λ2

i − 1) = 1 in A.
In particular, E2(A) is perfect if there exists λ ∈ A× such that λ2 − 1 ∈ A× also.

Proof. (1) This is standard linear algebra in the case of a Euclidean Domain or a field,
and the theorem of Vaserstein-Liehl in the case of S -integers.

(2) For λ ∈ A×, let

D(λ) :=
[
λ 0
0 λ−1

]
∈ SL2(A).

Note that D(λ) ∈ E2(A) since

D(λ) = w(λ)w(−1) where w(λ) :=
[

0 λ
−λ−1 0

]
= E12(λ)E21(−λ−1)E12(λ).

Then

D(λ)E12(x)D(λ)−1 = E12(λ2x)

and hence, for any b ∈ A we have

[D(λ), E12(bx)] = D(λ)E12(bx)D(λ)−1E12(−bx) = E12((λ2 − 1)bx).

Thus

E12(x) = E12(
∑

i

(λ2
i − 1)bix) =

∏
i

E12((λ2
i − 1)bix) =

∏
i

[D(λi), E12(bix)].

�

Remark 2.3. On the other hand, the groups E2(F2) = SL2(F2) and E2(F3) = SL2(F3) are not
perfect. It follows that if the ring A admits a homomorphism to F2 or F3 then E2(A) is not
perfect. In particular, the group E2(Z) is not perfect.

Remark 2.4. In [18], R. Swan showed that E2(A) , SL2(A) for A = Z[
√
−5].

Indeed, when A is the ring of integers in a quadratic imaginary number field then E2(A) ,
SL2(A) except in the five cases that A is a Euclidean Domain (see [21]).
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2.3. Homology of Groups. For any group G, F•(G) will denote the (right) bar resolution
of Z over Z[G]: i.e. for n ≥ 1, Fn(G) is the free right Z[G]-module with generators [gn| · · · |g1],
γi ∈ G, and F0(G) = Z[G] (regarded as a right Z[G]-module). The boundary homomorphism
dn : Fn(G)→ Fn−1(G) is given by

dn([gn| · · · |g1]) = [gn| · · · |g2]g1 +

n−1∑
i=1

(−1)n−i[gn−1| · · · |gi+1gi| · · · |g1] + (−1)n[gn−1| · · · |g1]

for n ≥ 2 and d1([g]) := g − 1.
We let F̄•(G) denote the complex {F̄n(G)}n≥0 where

F̄n(G) := Fn(G) ⊗Z[G] Z.

Thus Hn(G,Z) � Hn(F̄•(G)).
We will require the following standard “centre kills” argument from group homology:

Lemma 2.5. Let G be a group and let M be a Z[G]-module. Suppose that g ∈ Z(G) has the
property that g − 1 acts as an automorphism on M. Then Hi(G,M) = 0 for all i ≥ 0.

3. The functor K2(2, A)

In this section, we review some of the theory of the functor K2(2, A) for commutative rings A.

3.1. Definitions. Let A be a commutative ring.
We let A× act by automorphisms on SL2(A) as follows: Let

M(a) :=
[

a 0
0 1

]
∈ GL2(A).

and define
a ∗ X := XM(a) = M(a)−1XM(a)

for a ∈ A×, X ∈ SL2(A).
In particular, we have

a ∗ E12(x) = E12(a−1x) and a ∗ E21(x) = E21(ax)

for all a ∈ A×, x ∈ A.
The rank one Steinberg group St(2, A) is defined by generators and relations as follows: The

generators are the terms
x12(t) and x21(t), t ∈ A

and the defining relations are

(1)
xi j(s)xi j(t) = xi j(s + t)

for i , j ∈ {1, 2} and all s, t ∈ A, and
(2) For u ∈ A×, let

wi j(u) := xi j(u)x ji(−u−1)xi j(u)

for i , j ∈ {1, 2}. Then

wi j(u)xi j(t)wi j(−u) = x ji(−u−2t)

for all u ∈ A×, t ∈ A.
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There is a natural surjective homomorphism φ : St(2, A) → E2(A) defined by φ(xi j(t)) = Ei j(t)
for all t. It is easily verified that the formulae

a ∗ x12(t) = x12(a−1t) and a ∗ x21(t) = x21(at)

define an action of A× on St(2, A) by automorphisms. Clearly the homomorphism φ is equivari-
ant with respect to this action.
By definition K2(2, A) is the kernel of φ. It inherits an action of A×.
For u ∈ A× and for i , j ∈ {1, 2}, we let

hi j(u) := wi j(u)wi j(−1).

Note that

φ(w12(u)) =

[
0 u
−u−1 0

]
and φ(h12(u)) =

[
u 0
0 u−1

]
.

Note that, from the definitions and defining relation (1), for any a ∈ A and for any unit u we
have

xi j(a)−1 = xi j(−a) and wi j(u)−1 = wi j(−u).

The defining relation (2) above thus immediately gives the following conjugation formula.

Lemma 3.1. Let A be a commutative ring. Let a ∈ A and u ∈ A×. For i , j ∈ {1, 2}

xi j(a)wi j(−u) = x ji(−u−2a).

Since the right-hand-side is unchanged by u→ −u, we deduce:

Corollary 3.2. Let A be a commutative ring. Let a ∈ A and u ∈ A×. For i , j ∈ {1, 2}

xi j(a)wi j(u)−1
= x ji(−u−2a) = xi j(a)wi j(u).

and
x ji(a)wi j(u) = xi j(−u2a).

Form the definition of hi j(u), we then obtain:

Corollary 3.3. Let A be a commutative ring. Let a ∈ A and u ∈ A×. For i , j ∈ {1, 2}

xi j(a)hi j(u) = xi j(u−2a) and xi j(a)hi j(u)−1
= xi j(u2a).

3.2. Symbols. In particular, for u, v ∈ A× the symbols

c(u, v) := h12(u)h12(v)h12(uv)−1

lie in K2(2, A).
The elements c(u, v) are central in St(2, A). We let C(2, A) denote the subgroup of K2(2, A)

generated by these symbols.
Note that for a, u ∈ A× we have

a ∗ w12(u) = w12(a−1u) and a ∗ w21(u) = w21(au)

and hence
a ∗ h12(u) = h12(a−1u)h12(a−1)−1 and a ∗ h21(u) = h21(au)h21(a)−1.

It follows easily that
a ∗ c(u, v) = c(u, a−1)−1c(u, a−1v).

Thus the abelian group C(2, A) is a module over the group ring Z[A×] with this action.
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Lemma 3.4. Let A be a commutative ring. Then

a2 ∗ c(u, v) = c(u, v)

for all a, u, v ∈ A×.
In particular, C(2, A) is naturally an RA-module.

Proof. We have hi j(u) = h ji(u)−1 in St(2, A). Thus

c(u, v) = h12(u)h12(v)h12(uv)−1 = h21(u)−1h21(v)−1h21(uv).

Thus

a ∗ c(u, v) = h21(a)h21(au)−1h21(a)h21(av)−1h21(auv)h21(a)−1

= h21(a)h21(au)−1h21(a) ·
(
h21(u)h21(u)−1

)
· h21(av)−1h21(auv)h21(a)−1

= h21(a)c(u, a)−1c(u, av)h21(a)−1

= c(u, a)−1c(u, av)
= a−1 ∗ c(u, v).

�

The symbols c(u, v) satisfy the following properties (see [6], or also [16])

Proposition 3.5. Let A be a commutative ring. Then

(1) c(u, v) = 1 if u = 1 or v = 1.
(2) c(u, v) = c(v−1, u) for all u, v ∈ A×.
(3) c(u, vw)c(v,w) = c(uv,w)c(u, v) for all u, v,w ∈ A×.
(4) c(u, v) = c(u,−uv) for all u, v ∈ A×

(5) c(u, v) = c(u, (1 − u)v) whenever u, 1 − u, v ∈ A×.

Remark 3.6. Combining the result of Lemma 3.4 with Proposition 3.5 (3), we see that the
square class 〈a〉 ∈ RA acts on C(2, A) via

〈a〉 c(u, v) = c(u, a)−1c(u, av) = c(au, v)c(a, v)−1.

Futhermore Proposition 3.5 (4) is equivalent to

〈v〉 c(u,−u) = 1 for all u, v ∈ A×

and Proposition 3.5 (5) is equivalent to

〈v〉 c(u, 1 − u) = 1 for all u, v ∈ A×.

We will use the following property of symbols ([6]):

Lemma 3.7. If u, v,w are units in A, then

c(u, v2w) = c(u, v2)c(u,w)

and
c(u, v2) = c(u, v)c(v, u)−1 = c(u2, v).

Furthermore, we have the following theorem of Matsumoto and Moore ([6],[10]):

Theorem 3.8. Let F be an infinite field. Then
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(1) The sequence

1→ K2(2, F)→ St(2, F)→ SL2(F)→ 1

is the universal central extension of the perfect group SL2(F).
In particular, K2(2, F) � H2(SL2(F),Z) naturally.

(2) K2(2, F) has the following presentation: It is generated by the symbols c(u, v), u, v ∈
F×, subject to the five relations of Proposition 3.5.

3.3. The stabilization homomorphism K2(2, F) → K2(F). For a field F, the Theorem of
Matsumoto also gives a presentation of K2(n, F) for all n ≥ 3. In particular, it follows that
K2(F) = KM

2 (F), the second Milnor K-group of the field F. The stabilization map K2(2, F) →
K2(F) is surjective and sends the symbols c(u, v) to the symbols {u, v} of algebraic K-theory.
Let GW(F) be the Grothendieck-Witt ring of isometry classes of nondegerate quadratic forms

over F. It is generated by the classes 〈a〉 of 1-dimensional forms and the map RF → GW(F)
sending 〈a〉 → 〈a〉 is a surjection of rings. The fundamental ideal I(F) of GW(F) is the ideal
generated by the elements 〈〈a〉〉 := 〈a〉 − 1.
There is a natural surjective homomorphism of RF-modules

K2(2, F)→ I2(F), c(u, v) 7→ 〈〈u〉〉 〈〈v〉〉 .

Furthermore, by a theorem of Milnor ([9]) there is also a surjective map KM
2 (F)→ I2(F)/I3(F)

sending the symbol {u, v} to the class of 〈〈u〉〉 〈〈v〉〉. The kernel of this map is precisely 2KM
2 (F).

By a result essentially due to Suslin ([17], but see also [7]) for an infinite field F, we also have
the following description of K2(2, F):

Theorem 3.9. Let F be an infinite field. The maps K2(2, F)→ K2(F), K2(2, F)→ I2(F) induce
an isomorphism of RF-modules

K2(2, F)→ KM
2 (F) ×I2(F)/I3(F) I2(F), c(u, v) 7→ [u, v] := ({u, v}, 〈〈u〉〉 〈〈v〉〉).

Corollary 3.10. Let F be an infinite field. There is a natural short exact sequence of GW(F)-
modules

0→ I3(F)→ K2(2, F)→ KM
2 (F)→ 0.

3.4. Milnor-Witt K-theory. The homology of the special linear group of a field is related
to the Milnor-Witt K-theory of the field (see, for example, [4]).
Milnor-Witt K-theory of a field F is a Z-graded algebra KMW

• (F) generated by symbols [u],
u ∈ F× in degree 1 and a symbol η in degree −1, satisfying certain relations (see [11] for
details). It arises naturally as a ring of operations in stable A1-homotopy theory.
A deep theorem of Morel asserts:

Theorem 3.11. [[12]] There is a natural isomorphism of graded rings

KMW
• (F) � KM

• (F) ×I•(F)/I•+1(F) I•(F).

(Here, when n < 0, KMW
n (F) := 0 and In(F) := W(F), the Witt ring of the field.)

The theorem of Suslin on the structure of K2(2, F) quoted above, implies

Proposition 3.12. There is a natural isomorphism K2(2, F) � KMW
2 (F), sending c(u, v) to [u][v].
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4. The map from H2(SL2(F),Z) to K2(2, F)

Let A be a commutative ring for which E2(A) = SL2(A) is a perfect group. Suppose further that
the group extension

1 // K2(2, A) // St(2, A)
φ // SL2(A) // 1

is a central extension.
Let s : SL2(A) → St(2, A) be a section of φ. Then there is a corresponding 2-cocycle fs :

SL2(A) × SL2(A)→ K2(2, A) defined by

fs(X,Y) := s(X)s(Y)s(XY)−1.

This yields a cohomology class f ∈ H2(SL2(A),K2(2, A)) which is independent of the choice of
section s.
However, since H1(SL2(A),Z) = 0, the universal coefficient theorem tells us that there is a

natural isomorphism

H2(SL2(A),K2(2, A)) � Hom(H2(SL2(A),Z),K2(2, A))

described as follows: Let z ∈ H2(SL2(A),K2(2, A)) be represented by the 2-cocycle h. Then h
induces a homomorphism

F̄2 → K2(2, F),
∑

i

ni[Xi|Yi] 7→
∏

i

h(Xi,Yi)ni

which vanishes on boundaries, and thus in turn induces a homomorphism

h̄ : H2(SL2(A),Z)→ K2(2, F).

In particular, the cocycle fs above induces the homomorphism

H2(SL2(A),Z)→ K2(2, F),
∑

i

ni[Xi|Yi] 7→
∏

i

fs(Xi,Yi)ni

This homomorphism is an isomorphism precisely when the central extension is universal. In
particular, it is an isomorphism when A is an infinite field, by the theorem of Matsumoto-Moore.
We now specialise to the case of a field F.
For our calculations, we will use the following section s : SL2(F)→ St(2, F):

s
([

a b
c d

])
:=

{
x12(ab)h12(a), if c = 0,
x12(ac−1)w12(−c−1)x12(dc−1), if c , 0.

Note that, in particular, we have

s(Ei j(a)) = xi j(a) and s(D(u)) = h12(u)

when i , j ∈ {1, 2}, a ∈ A and u ∈ F×.
Furthermore, functoriality of the constructions above guarantee that the induced homomor-

phism
f̄ : H2(SL2(F),Z)→ K2(2, F)

is a map of Z[F×]-modules. Recall that this homomorphism is induced by the homomorphism

F̄2(SL2(F))→ K2(2, F), [X|Y] 7→ fs(X,Y) = s(X)s(Y)s(XY)−1.
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Lemma 4.1. Let F be a field. Let u, v ∈ F× and a, b ∈ F. Let

X =

[
u a
0 u−1

]
, Y =

[
v b
0 v−1

]
Then fs(X,Y) = c(u, v).

Proof. We have,

s(X) = x12(au)h12(u), s(Y) = x12(bv)h12(v) and s(XY) = x12(bu2v + au)h12(uv).

Thus

f (X,Y) = x12(au)h12(u)x12(bv)h12(v)h12(uv)−1x12(−bu2v − au)

= x12(au)x12(bv)h12(u)−1
h12(u)h12(v)h12(uv)−1x12(−bu2v − au)

= x12(au)x12(bu2v)c(u, v)x12(−bu2v)x12(−au) by Corollary 3.3
= c(u, v) since c(u, v) is central.

�

Corollary 4.2. Let F be a field. Let a, b ∈ F×. Then

([D(a)|D(b)] − [D(b)|D(a)]) ⊗ 1 ∈ F2(SL2(F)) ⊗ Z

is a cycle and the corresponding homology class maps to c(a2, b) under the natural isomorphism
H2(SL2(k),Z) � K2(2, F) induced by fs.

Proof. The first statement in immediate since D(a)D(b) = D(ab) = D(b)D(a).
The image of this cycle is

fs(D(a),D(b)) · fs(D(b),D(a))−1 = c(a, b)c(b, a)−1 = c(a2, b)

by Lemma 3.7. �

5. The Mayer-Vietoris sequence

Throughout this section A will denote a Dedekind Domain with field of fractions K.

5.1. The groups H(I). We collect together some basic and well-known facts about certain
subgroups of SL2(K) (see for example [14, p. 520]).
Let I be a fractional ideal of A.
We consider the lattice Λ = ΛI := A ⊕ I ⊂ K ⊕ K = K2.
Let H(I) denote the the subgroup

{M ∈ SL2(K) |M · Λ = Λ} =

{[
a b
c d

]
∈ SL2(K) | a, d ∈ A, c ∈ I, d ∈ I−1

}
= Γ̃(I, I−1).

Note that, in particular, H(A) = SL2(A).
We also note that if J is any nonzero fractional ideal of A, then

H(I) = {M ∈ SL2(K) |M · (JΛ) = JΛ}

where
JΛ = J · (A ⊕ I) = J ⊕ IJ.

Lemma 5.1. Let I be a fractional ideal of the A.
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(1) Suppose that I′ = aI where 0 , a ∈ K. Then H(I′) = H(I)M(a) where

M(a) =

[
a 0
0 1

]
∈ GL2(K).

(2) Suppose I is an integral ideal. Let

A′ = {r ∈ K |vq(r) ≥ 0 for all q 6 |I}.

Then there exists M ∈ SL2(A′) such that H(I2) = SL2(A)M. In particular, H(I2) �
SL2(A).

Proof.

(1) This follows from the observation that multiplication by M(a) induces an isomorphism
of lattices A⊕ I′ � a · (A⊕ I), and hence conjugation by M(a) induces an isomorphism
of the stabilizers.

(2) We first observe that, since I−1 · ΛI = I−1 ⊕ I, H(I2) is the stabilizer of I−1 ⊕ I.
There exists an integral ideal J of A satisfying: I + J = A and IJ = xA for some

nonzero x ∈ A. So J = xI−1. Thus multiplication by M(x) induces an isomorphism
I−1 ⊕ I � J ⊕ I.

Choose a ∈ I, b ∈ J with a+b = 1. Consider the short exact sequence of A-modules

0 // xA
f // J ⊕ I

g // A // 0

where g(y) = (y,−y) and f (y, z) = y + z. There is a splitting A → J ⊕ I given by
y 7→ (by, ay). This gives an isomorphism of A-modules

J ⊕ I � xA ⊕ A, (y, z) 7→ (ay − bz, y + z);

i.e.multiplication by

N :=
[

a −b
1 1

]
∈ SL2(A)

induces an isomorphism of lattices J ⊕ I � xA ⊕ A.
Now, multiplication by M(x)−1 induces an isomorphism xA ⊕ A � A ⊕ A.
Putting all of this together, multiplication by

M := M(x)−1NM(x) =

[
a −b/x
x 1

]
∈ SL2(K)

induces an isomorphism of lattices I−1⊕ I � A⊕A, and thus conjugation by M induces
an isomorphism of stabilizers as required.

Finally, we note that since xA = IJ and bA = JK for some integral ideal K,
(b/x)A = KI−1 and hence b/x ∈ A′. Thus M ∈ SL2(A′) as claimed.

�

Corollary 5.2. Let I be a fractional ideal of A. Suppose that the class of I in Cl(A) is a square.
Then H(I) � SL2(A).

Remark 5.3. In particular, the ideal p̃ := pAp in Ap is a principal ideal with generator π, say. It
follows from Lemma 5.1 that

H(p̃) = SL2(Ap)M(π).
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Let p be a nonzero prime ideal of A. Let n ≥ 1 and let π ∈ A satisfy vp(π) = 1. We let
γπ,n : H(p)→ SL2(A/pn) be the composite

H(p) // H(p̃) �

conjM(1/π)

// SL2(Ap) // SL2(Ap/p̃n) � // SL2(A/pn)

Lemma 5.4. The map γπ,n is surjective for all n and the kernel of this map is independent of the
choice of π.

Proof. By definition, we have

γπ,n

([
a b
c d

])
=

[
ā π̄b
¯c/π d̄

]
where

x̄ := x + p̃n ∈ Ap/p̃n � A/pn.

Since SL2(A/pn) is generated by elementary matrices, we need only show how to lift these.
We begin by observing that πA = pJ where J is an ideal not contained in p. It follows that
A = pn + J for any n ≥ 1; i.e. the map J → A/pn is surjective.
Thus, given any x ∈ A there exists x′ ∈ J with x̄′ = x̄. Since x′ ∈ J it follows that x′/π ∈
J · (pJ)−1 = p−1. Hence E12(x′/π) ∈ H(p) and

γπ,n(E12(x′/π)) = E12(x̄′) = E12(x̄).

Of course, we also have E21(πx) ∈ H(p) and γπ,n(E21(πx)) = E21(x̄). This proves the surjectivity
statement.
For the second part, suppose that π′ ∈ A also satisfies vp(π′) = 1. Then π′ = π · u for some

u ∈ A×p . From the definition, we have

γπ′,n = f ◦ γπ,n

where f is conjugation by M(ū−1) on SL2(A/pn). It follows at once that Ker(γπ′,n) = Ker(γπ,n)
as claimed. �

We let Γ̃(A, pn) denote the kernel of the γπ,n (for any choice of π). Thus, for all n ≥ 1, there is a
short exact sequence

1→ Γ̃(A, pn)→ H(p)→ SL2(A/pn)→ 1.

Note that

Γ̃(A, pn) =

{[
a b
c d

]
∈ H(p) | a − 1, d − 1 ∈ pn, c ∈ pn+1, b ∈ pn−1

}
.

In particular, for all n ≥ 1 we have

Γ(A, pn+1) ⊂ Γ̃(A, pn) ⊂ Γ0(A, pn) ⊂ SL2(A).

For a field F, we will use the notation

B(F) :=
{[

a b
0 a−1

]
∈ SL2(F)

}
and B′(F) :=

{[
a 0
c a−1

]
∈ SL2(F)

}
.

Of course, these two subgroups of SL2(F) are naturally isomorphic.
We will need the following result below.

Lemma 5.5. There is a natural short exact sequence

1→ Γ̃(A, p)→ Γ0(A, p)→ B′(k(p))→ 1.
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Proof. This is immediate from the fact that the image of Γ0(A, p) in SL2(A/p) = SL2(k(p))
under the map γπ,1 is precisely B′(k(p)). �

5.2. The Mayer-Vietoris sequence. Let p be a nonzero prime ideal of A and let v = vp
be the associated discrete valuation. We let k(p) or k(v) denote the residue field A/p. We will
further suppose that the class of p has finite order in Cl(A). Thus pn = xA for some n ≥ 1 and
x ∈ A. (This condition is automatically satisfied when K is a global field.)
Let

Γ(A, p) := Ker(SL2(A)→ SL2(k(π))) =

{[
a b
c d

]
∈ SL2(A) : 1 − a, 1 − d, b, c ∈ p

}
and let

Γ0(A, p) :=
{[

a b
c d

]
∈ SL2(A) : c ∈ p

}
.

We let p̃ denote the extension of p to the localization Ap, which is thus a discrete valuation ring
with unique (principal) nonzero prime ideal p̃.
The action of SL2(K) on the Serre tree associated to the valuation v ([15, Chapter II]) yields a

decomposition

SL2(K) = SL2(Ap) ?Γ0(Ap,p̃) H(p̃)(1)

of SL2(K) as the sum of SL2(Ap) and H(p̃) amalgamated along their intersection
SL2(Ap) ∩ H(p̃) = Γ0(Ap, p̃).
Let

A′ := {a ∈ K | vq(a) ≥ 0 for all prime ideals q , p}.
Note that since pn = xA by assumption, A′ = A[1/x].
Since A[1/x] is dense in K in the p-adic topology, and since

SL2(A[1/x]) ∩ SL2(Ap) = SL2(A), SL2(A[1/x]) ∩ H(p̃) = H(p)

there is also an induced decomposition

SL2(A[1/x]) = SL2(A) ?Γ0(A,p) H(p).

For convenience, in the remainder of this section we will set

G := SL2(A[1/x]), G1 := SL2(A), G2 := H(p) and Γ0 := Γ0(A, p).

Thus G = G1 ?Γ0 G2 and this decomposition gives rise a short exact sequence of Z[G]-modules:

0 // Z[G/Γ0] α // Z[G/G1] ⊕ Z[G/G2]
β // Z // 0.

where α is the map

α : Z[G/Γ0]→ Z[G/G1] ⊕ Z[G/G2], gΓ0 7→ (gG1, gG2)

and β is the unique Z[G]-homomorphism

β : Z[G/G1] ⊕ Z[G/G2]→ Z, (G1, 0) 7→ −1, (0,G2) 7→ 1.

This short exact sequence of Z[G]-modules gives rise to a long exact sequence in homology.
Combining this with the isomorphisms of Shapiro’s lemma, Hr(G,Z[G/H]) � Hr(H,Z), gives
us the Mayer-Vietoris exact sequence of the amalgamated product:

· · ·
δ // Hr(Γ0,Z) α // Hr(G1,Z) ⊕ Hr(G2,Z)

β // Hr(G,Z) δ // · · ·
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The maps α and β in this sequence can be described as follows: Let ι1 : Γ0 → G1 and ι2 : Γ0 →

G2 be the natural inclusions. Then

α(z) = (ι1(z), ι2(z)) for all z ∈ Hr(Γ0,Z).

Likewise, let j1 : G1 → G and j2 : G2 → G be the natural inclusions. Then

β(z1, z2) = j2(z2) − j1(z1) for all z1 ∈ Hr(G1,Z), z1 ∈ Hr(G1,Z).

The amalgamated product decomposition (1) – i.e. taking the case A = Ap – also gives rise to
a Mayer-Vietoris sequence

· · ·
δ // Hr(Γ0(Ap, p̃),Z) α // Hr(SL2(Ap),Z) ⊕ Hr(H(p̃),Z)

β // Hr(SL2(K),Z) δ // · · ·

5.3. The connecting homomorphism. As above, let p be a prime ideal of the Dedekind
Domain A and let

δ : H2(SL2(K),Z)→ H1(Γ0(Ap, p̃),Z)
be the connecting homomorphism in the Mayer-Vietoris sequence associated to the decompo-
sition

SL2(K) = SL2(Ap) ?Γ0(Ap,p̃) H(p̃) = SL2(Ap) ?Γ0(Ap,p̃) SL2(Ap)M(π).

Proposition 5.6. Let ρ : Γ0(Ap, p̃)→ k(p̃)× be the (surjective) map[
a b
c d

]
7→ a (mod p̃).

Then the composite homomorphism, ∆ say,

K2(2,K) � H2(SL2(K),Z) δ // H1(Γ0(Ap, p̃),Z)
ρ // H1(k(p̃)×,Z) � k(p̃)×

is the map

c(a, b) 7→ (−1)v(a)v(b) bv(a)

av(b) (mod p̃).

Remark 5.7. In fact, the isomorphisms in the statement of Proposition 5.6 are canonical only
up to sign. We have made our choices so that the sign is +1; but the choice of sign does not
materially affect our main results.

Before proving Proposition 5.6, we require

Lemma 5.8. Let K be a field with discrete valuation v. Then K2(2,K) is generated by the set
Cv := {c(x, u) | v(u) = 0, v(x) = 1}.

Proof. Let D be the subgroup of K2(2,K) generated by Cv. Let a, b ∈ K×. We must prove
that c(a, b) ∈ D.
Since

c(a, b) = c(b−1, a) = c(a−1, b−1) = c(b, a−1)
we can assume that v(a), v(b) ≥ 0.
We will prove the result by induction on n = v(a) + v(b) ≥ 0.
If n = 0, then v(a) = v(b) = 0 and choosing π ∈ K× with v(π) = 1 we have

c(a, b) = c(πa, b)−1c(πa, b)c(π, a) ∈ D.

On the other hand, suppose that v(a), v(b) > 0. If 0 < v(b) ≤ v(a) then a = bc with 0 ≤ v(c) <
v(a) and hence

c(a, b) = c(bc, b) = c(−c, b) ∈ D
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by the inductive hypothesis. An analogous argument applies to the case 0 < v(a) < v(b).
Since c(a, b) = c(b−1, a), we can reduce to the case where v(b) = 0 and v(a) ≥ 2. Then let

a = a′π where v(π) = 1 and 1 ≤ v(a′) < v(a). We have

c(a, b) = c(a′π, b) = c(a′, πb)c(π, b)c(a′, π)−1

which lies in D by the induction hypothesis (using the argument for the case v(a), v(b) > 0 for
the first term). �

Proof of Proposition 5.6. By Lemma 5.8, we must prove that

∆(c(x, u)) = u (mod p̃)

whenever v(u) = 0, v(x) = 1.
We note that it is enough to prove that ∆(c(x, u2)) = u2 (mod p̃) whenever v(u) = 0, v(x) = 1.

For if u ∈ K is not a square, choose an extension v′ of v to K′ := K(
√

u). Then there is a natural
map of Mayer Vietoris exact sequences inducing a commutative square

H2(SL2(K),Z) δ //

��

k(v)×
� _

i
��

H2(SL2(K′),Z) δ′ // k(v′)×

so that i(∆(c(x, u)) = ∆′(c(x, u)) = ū ∈ k(v′)× since u is a square in K′, and thus ∆(c(x, u)) = ū ∈
k(v)×.
Now, by Corollary 4.2, the symbol c(x, u2) ∈ K(2,K) corresponds to the homology class rep-

resented by the cycle

Z := ([D(x)|D(u)] − [D(u)|D(x)]) ⊗ 1 ∈ F2(G) ⊗Z[G] Z

where G = SL2(K).
Recall that the Mayer-Vietoris sequence is the long exact homology sequence derived from the

short exact sequence of complexes

0→ F•(G) ⊗Z[G] Z[G/Γ0]→ F•(G) ⊗Z[G] (Z[G/G1] ⊕ Z[G/G2])→ F•(G) ⊗Z[G] Z→ 0.

Now the cycle Z lifts to

([D(x)|D(u)] − [D(u)|D(x)]) ⊗ (1 ·G1, 0) ∈ F2(G) ⊗ (Z[G/G1] ⊕ Z[G/G2]) .

Under the boundary map d2, this is sent to

[D(u)] ⊗ (D(x) ·G1 − 1 ·G1, 0) ∈ F1(G) ⊗ (Z[G/G1] ⊕ Z[G/G2])

since D(u) ∈ Γ0 ⊂ G1.
Now let

w :=
[

0 1
−1 0

]
∈ G1.

Then
w · D(x) = wM(x) ∈ G2.

Thus (D(x) ·G1 − 1 ·G1, 0) is the image of

w−1 · (wM(x)Γ0 − Γ0) = D(x)Γ0 − w−1Γ0

under the map α : Z[G/Γ0]→ Z[G/G1] ⊕ Z[G/G2].
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Thus the homology class δ(Z) ∈ H1(Γ0,Z) is represented by the cycle

[D(u)] ⊗ (D(x)Γ0 − w−1Γ0) =
(
[D(u)]D(x) − [D(u)]w−1

)
⊗ Γ0 ∈ F1(G) ⊗Z[G] Z[G/Γ0].

This, in turn, is the image of(
[D(u)]D(x) − [D(u)]w−1

)
⊗ 1 ∈ F1(G) ⊗Z[Γ0] Z

under the natural isomorphism

F•(G) ⊗Z[Γ0] Z � F•(G) ⊗Z[G] Z[G/Γ0].

For a group H we let C•(H) denote the right homogeneous resolution of H. The isomorphism
F•(H)→ C•(H) of complexes of right Z[H]-modules is given by

[hn| · · · |h1] 7→ (hn · hn−1 · · · h1, . . . , h1, 1).

Thus the cycle
(
[D(u)]D(x) − [D(u)]w−1

)
⊗ 1 ∈ F1(G) ⊗Z[Γ0] Z corresponds to the cycle(

(D(ux),D(u)) − (D(u)w−1,w−1)
)
⊗ 1 ∈ C1(G) ⊗Z[Γ0] Z.

To construct an augmentation-preserving map of Z[Γ0]-resolutions from C•(G) to C•(Γ0), we
choose any set-theoretic section s : G/Γ0 → G of the natural surjection G → G/Γ0, g 7→ gΓ0.
For g ∈ G we let ḡ := s(gΓ0)−1g ∈ Γ0. Then the map

τ : C•(G)→ C•(Γ0), (gn, . . . , g0) 7→ (ḡn, . . . , ḡ0)

is an augmentation preserving map of Z[Γ0]-complexes.
We further specify that we the section s satisfies

s(D(u)w−1Γ0) = w−1 and s(D(x)Γ0) = D(x)

for all u with v(u) = 0. Then

τ
(
(D(ux),D(u)) − (D(u)w−1,w−1)

)
= (D(u), 1) − (D(u−1), 1) ∈ C1(Γ0)

since wD(u)w−1 = D(u−1) in G.
Finally, the homology class(

(D(u), 1) − (D(u−1), 1)
)
⊗ 1 ∈ C1(Γ0) ⊗Z[Γ0] Z

corresponds to the element

D(u) · D(u−1)−1 = D(u2) ∈ Γ0/[Γ0,Γ0]

under the isomorphism H1(Γ0,Z) � Γ0/[Γ0,Γ0], and hence maps to u2 (mod p̃) ∈ k(p̃)× under
the map ρ. �

5.4. The abelianization of some congruence subgroups.

Proposition 5.9. Let A be a ring of S -integers in a global field K. Suppose that |S | ≥ 2 and
that there exists λ ∈ A× such that λ2 − 1 ∈ A× also. Let p be a nonzero prime ideal of A.
Then the map ρ : Γ0(A, p)→ k(p)× induces an isomorphism

H1(Γ0(A, p),Z) � k(p)×.
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Proof. The map ρ induces a short exact sequence

1 // Γ1(A, p) // Γ0(A, p)
ρ // k(p)× // 1

where

Γ1(A, p) :=
{[

a b
c d

]
∈ SL2(A) | ,̧a − 1, d − 1 ∈ p

}
= Γ̃(A, p)

in the notation of Theorem 2.1.
Since k(p)× is an abelian group, it follows that

[Γ0(A, p),Γ0(A, p)] ⊂ Γ1(A, p)

On the other hand, by Theorem 2.1, Γ1(A, p) = Γ̃(A, p) is generated by elementary matrices
E12(x), x ∈ A, E21(y), y ∈ p. However,

E12(x) = [D(λ), E12(x/(λ2 − 1))], E21(y) = [D(λ), E21(y/(λ2 − 1)) ∈ [Γ0(A, p),Γ0(A, p)].

So [Γ0(A, p),Γ0(A, p)] = Γ1(A, p) as required. �

For a field k we let sl2(k) denote the 3-dimensional vector space of 2 × 2 trace zero matrices.

Lemma 5.10. Let A be a Dedekind domain and let p be a maximal ideal. Then for any m ≥ 1
there are natural isomorphisms of groups

Γ̃(A, pn)
Γ̃(A, pn+1)

� sl2(k(p)) �
Γ(A, pn)

Γ(A, pn+1)

Proof. From the definitions of Γ(A, pn) and Γ̃(A, pn) we have

Γ̃(A, pn)
Γ̃(A, pn+1)

� Ker(SL2(A/pn+1)→ SL2(A/pn)) �
Γ(A, pn)

Γ(A, pn+1)
.

Let π ∈ p \ p2. For any n ≥ 1, the group pn/pn+1 is a 1-dimensional k(p)-vector spaces with
basis {πn + pn+1}.
The required isomorphism

sl2(k(p))→ Ker(SL2(A/pn+1)→ SL2(A/pn))

is then the map [
ā b̄
c̄ d̄

]
7→

[
1 + aπn bπn

cπn 1 + dπn

]
where a, b, c, d ∈ A map to ā, b̄, c̄, d̄ ∈ k(p). �

Corollary 5.11. Let A be a Dedekind domain and let p be a maximal ideal. Suppose that k(p)
is a finite field with q elements. Then

[Γ̃(A, p) : Γ̃(A, pn)] = q3(n−1) = [Γ(A, p) : Γ(A, pn)]

for all n ≥ 1.

Lemma 5.12. Suppose that I and J are comaximal ideals in A; i.e. I+J = A. Then the composite
map Γ(A, I)→ SL2(A)→ SL2(A/J) is surjective.
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Proof. By the Chinese Remainder Theorem the map A/IJ → (A/I)×(A/J), a 7→ (a+I, a+J)
is an isomorphism of rings. It follows that the map

SL2(A/IJ)→ SL2(A/I) × SL2(A/J), X mod IJ 7→ (X mod I, X mod J)

is an isomorphism of groups and hence that

SL2(A)→ SL2(A/I) × SL2(A/J), X 7→ (X mod I, X mod J)

is a surjective group homomorphism. This implies the statement of the Lemma. �

Lemma 5.13. Suppose that k(p) is a finite field with q elements. We have

[SL2(A) : Γ(A, p)] = q(q2 − 1) = [SL2(A) : Γ̃(A, p)]

Proof. The first equality follows from the isomorphism

SL2(A)
Γ(A, p)

� SL2(k(p)).

For the second inequality, denote by C the image of the map

Γ̃(A, p)→ SL2(A)→ SL2(A/p2).

Then C fits into a short exact sequence

1→ W → C → T → 1

where

T =

{[
a 0
0 d

]
∈ SL2(A/p2) |a − 1, d − 1 ∈ p

}
� k(p)

and

W =

{[
1 b
0 1

]
∈ SL2(A/p2)

}
� A/p2.

It follows that |C| = [Γ̃(A, p) : Γ(A, p2)] = q3. Since [SL2(A) : Γ(A, p2)] =
∣∣∣SL2(A/p2)

∣∣∣ =

q4(q2 − 1), the second equality follows. �

Proposition 5.14. Let A be a ring of S -integers in a global field K where |S | ≥ 2. Let p be a
nonzero prime ideal and let p > 0 be the characteristic of the residue field k(p).
Suppose that pn = xA for some n ≥ 1 and x ∈ A. Suppose further that there exist λ ∈ A[1/x]×

such that λ2 − 1 ∈ A[1/x]× also. Then H1(Γ(A, p),Z) and H1(Γ̃(A, p),Z) are finite abelian
p-groups.

Proof. Let Γ denote either Γ(A, p) or Γ(A, p). By Proposition 2 of [14] the commutator
subgroup [Γ,Γ] contains a principal congruence subgroup Γ(A, I) for some ideal I of A. There
exists a nonzero ideal J of A such that I factors as pmJ where J 1 p and m ≥ 1. Since
Γ(A, pm+1J) ⊂ Γ(A, pmJ), we can suppose without loss that m ≥ 2.
By definition, Γ(A, I) is the kernel of the natural map SL2(A)→ SL2(A/I). This map is surjec-

tive since SL2(A/I) = E2(A/I).
Since J 1 p, it follows that A = pm + J and hence, by Lemma 5.12, the map Γ(A, pm) →

SL2(A/J) is surjective. Since Γ(A, pm) ⊂ Γ, it follows that the map Γ→ SL2(A/J) is surjective.
However, since SL2(A/J) = E2(A/J) and since x + J is a unit in A/J the hypotheses of the

proposition ensure that all elementary matrices are commutators and hence that SL2(A/J) is a
perfect group. It then follows that the natural map [Γ,Γ]→ SL2(A/J) is surjective.
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Thus [Γ,Γ]/Γ(A, I) surjects onto SL2(A/J) and hence

|SL2(A/J)| divides [[Γ,Γ] : Γ(A, I)]] .

It follows that
[SL2(A) : [Γ,Γ]]| |SL2(A/pm)| = (q2 − 1)q3m−2.

Since [SL2(A) : Γ] = q(q2 − 1) by Lemma 5.13 it follows that |Γ/[Γ,Γ]| divides q3m−3, and so is
a power of p as claimed. �

5.5. The second homology of congruence subgroups.

Lemma 5.15. Let k be a finite field of characteristic p and let M be an SL2(k)-module. Then,
for all i ≥ 0, the natural map

Hi(B(k),M)(p) → Hi(SL2(k),M)(p)

is an isomorphism.

Proof. As in the proof of [3, Cor 3.10.2]. �

Proposition 5.16. Let A be a ring of S -integers in a global field K where |S | ≥ 2. Let p be
a nonzero prime ideal and let p > 0 be the characteristic of the residue field k(p). Suppose
that pm = xA for some m ≥ 1, x ∈ A. Suppose further that there exist λ ∈ A[1/x]× such that
λ2 − 1 ∈ A[1/x]× also.
Then the natural maps

ι1 : H2(Γ0(A, p),Z)→ H2(SL2(A),Z)
and

ι2 : H2(Γ0(A, p),Z)→ H2(H(p),Z)
are surjective.

Proof. Let k = k(p). There is a commutative diagram of group extensions

1 // Γ(A, p) //

id
��

Γ0(A, p) //

ι1
��

B(k) //

ι

��

1

1 // Γ(A, p) // SL2(A) // SL2(k) // 1

and (using Lemma 5.5)

1 // Γ̃(A, p) //

id
��

Γ0(A, p) //

ι2

��

B′(k) //

ι

��

1

1 // Γ̃(A, p) // H(p)
γπ,1 // SL2(k) // 1.

We give the argument for ι1. The analogous argument for ι2 is achieved by replacing B(k) with
B′(k).
The top group extension gives rise to a spectral sequence

E2
i, j(Γ0(A, p)) = Hi(B(k),H j(Γ(A, p),Z))⇒ Hi+ j(Γ0(A, p),Z)

and the lower one gives rise to the spectral sequence

E2
i, j(SL2(A)) = Hi(SL2(k),H j(Γ(A, p),Z))⇒ Hi+ j(SL2(A),Z).

The map of extensions induces a natural map of spectral sequences compatible with the map ι1
on abutments.



20 KEVIN HUTCHINSON

For H = Γ0(A, p) or SL2(A), the image of the edge homomorphism E∞0, j(H)→ H j(H,Z) is equal
to the image of H j(Γ(A, p),Z)→ H j(H,Z). Thus, comparing the E∞-terms of total degree 2, we
obtain a commutative diagram of the form

H2(Γ(A, p),Z) //

id
��

H2(Γ0(A, p),Z) //

ι1
��

C(Γ0(A, p)) //

��

0

H2(Γ(A, p),Z) // H2(SL2(A),Z) // C(SL2(A)) // 0

where, for H = Γ0(A, p) or SL2(A), C(H) is a group fitting into an exact sequence

0→ E∞1,1(H)→ C(H)→ E∞2,0(H)→ 0.

Since H1(Γ(A, p),Z) is a finite abelian p-group, it follows from Lemma 5.15 that the natural
maps

E2
i,1(Γ0(A, p)) = Hi(B(k),H1(Γ(A, p),Z))→ Hi(SL2(k),H1(Γ(A, p),Z)) = E2

i,1(SL2(A))

are all isomorphisms.
Since, furthermore, all these groups E2

i,1 are finite abelian p-groups, it follows that the differen-
tials

d2
i,0 : E2

i,0(H)→ E2
i−1,1(H)

factor through E2
i,0(H)

(p)
, for H = Γ0(A, π) or SL2(A).

By Lemma 5.15 again, we have natural isomorphisms

E2
i,0(Γ0(A, p))(p) = Hi(B(k),Z)(p) � Hi(SL2(k),Z)(p) = E2

i,0(SL2(A))(p).

Thus, we have
E∞1,1(Γ0(A, p)) � E∞1,1(SL2(A))

since
E∞1,1(H) = Coker(d2 : E2

3,0(H)(p) → E2
1,1(H))

when H = Γ0(A, p) or SL2(A).
Finally, for H = Γ0(A, p) or SL2(A), we have

E∞2,0(H) = Ker(d2 : E2
2,0(H)→ E2

0,1(H)).

But straightforward calculations (see, for example, [3, Section 3]) show that

E2
2,0(Γ0(A, p)) = H2(B(k),Z) = H2(B(k),Z)(p) = H2(SL2(k),Z)(p) = H2(SL2(k),Z) = E2

2,0(SL2(A)).

Thus
E∞2,0(Γ0(A, p)) � E∞2,0(SL2(A)).

Hence the map C(Γ0(A, p))→ C(SL2(A)) is an isomorphism, and the result follows. �

5.6. An exact sequence for the second homology of SL2 of S -integers. Let K be a global
field and let S ⊂ T be nonempty sets of primes of K containing the infinite primes. Then there
is a natural short exact sequence

0 // K2(OS ) // K2(OT )
∑
τp // ⊕p∈T\S k(p)× // 0.

In this section, we demonstrate an analogous exact sequence for H2(SL2(OS ),Z), at least when
S is sufficiently large.
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Theorem 5.17. Let A be a ring of S -integers in a global field K where |S | ≥ 2. Let p be a
nonzero prime ideal and let p > 0 be the characteristic of the residue field k(p).
Suppose also that there exists λ ∈ A× such that λ2 − 1 ∈ A× also.
Let x ∈ A and m ≥ 1 such thatpm = xA.
Then there is a natural exact sequence

H2(SL2(A),Z) // H2(SL2(A[1/x]),Z) δ // H1(k(p)×,Z) // 0

Here the map δ fits into a commutative diagram

H2(SL2(A[1/x]),Z) δ //

��

H1(k(p)×,Z)

�

��
H2(SL(K),Z) = KM

2 (K)
τp // k(p)×

where τp : KM
2 (K)→ k(p)× is the tame symbol

τp({x, y}) = (−1)v(x)v(y)x−v(y)yv(x) (mod p) ∈ k(p)×.

Proof. By Proposition 5.16 the map ι2 : H2(Γ0(A, p),Z)→ H2(H(p),Z) is surjective.
Thus the Mayer-Vietoris sequence yields the exact sequence

H2(SL2(A),Z) // H2(SL2(A[1/x]),Z) δ // H1(Γ0(A, p),Z) // 0.

The remaining statements of the theorem follow from Proposition 5.6 and Proposition 5.9. �

Remark 5.18. In this proof, the hypothesis that λ, λ2 − 1 ∈ A× is needed so that Proposition 5.9
is validly applied.
The first part of the proof only requires the weaker condition that λ, λ2 − 1 ∈ A[1/x]×. For

example, taking A = Z[1/3], p = 2A, x = 2 and λ = 3, we obtain an exact sequence

H2(SL2(Z[1/3]),Z)→ H2(SL2(Z[1/6]),Z)→ H1(Γ0(Z[1/3], 2),Z)→ 0.

In this sequence,

H2(SL2(Z[1/3]),Z) � Z and H2(SL2(Z[1/6]),Z) � Z ⊕ Z/2

by the calculations of Adem-Naffah, [1], and Tuan-Ellis, [19].
Thus

H1(Γ0(Z[1/3], 2),Z) , 0
while H1(k(2)×,Z) = H1(F×2 ,Z) = 0, so that the conclusion of Proposition 5.9 is false in the case
A = Z[1/3] and p = 2A.

Remark 5.19. Theorem 5.17 is not valid for more general Dedekind Domains A, even when
there is a unit λ such that λ2 − 1 is also a unit.
For example, let k be an infinite field and let K = k(t), A = k[t], p = tA, x = t. It is shown in [2,

Theorem 4.1] that the cokernel of the natural map

H2(SL2(A),Z)→ H2(SL2(A[1/t]),Z)

is isomorphic to KMW
1 (k), the first Milnor-Witt K-group of the residue field k. It seems reason-

able to suppose that this statement should be true for a larger class of Dedekind Domains.
Note that there is a natural surjective map KMW

1 (k) → KM
1 (k) � k× which is an isomorphism

when the field k is finite. However, in general, the kernel of this homomorphism is I2(k) (see
section 3.4 above).
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Corollary 5.20. Let K be a global field. Let S be a set of primes of K containing the infinite
primes. Suppose that |S | ≥ 2 and that OS contains a unit λ such that λ2 − 1 is also a unit.
Let T be any set of primes containing S . Then there is a natural exact sequence

H2(SL2(OS ),Z)→ H2(SL2(OT ),Z)→ ⊕p∈T\S k(p)× → 0.

Proof. We proceed by induction on |T \ S |.
The case |T \ S | = 1 is just Theorem 5.17.
The inductive step follows immediately by applying the snake lemma to the commutative dia-

gram with exact rows

H2(SL2(OT ′),Z) //

����

H2(SL2(OT ),Z) //

��

k(q)× //

id
��

0

0 // ⊕p∈T ′k(p)× // ⊕p∈T k(p)× // k(q)× // 0

where q is any element in T \ S and T ′ = T \ {q}. �

Corollary 5.21. Let K be a global field. Let S be a set of primes of K containing the infinite
primes. Suppose that |S | ≥ 2 and that OS contains a unit λ such that λ2 − 1 is also a unit.
Then there is a natural exact sequence

H2(SL2(OS ),Z)→ H2(SL2(K),Z)→ ⊕p<S k(p)× → 0.

Proof. Since
K = lim

S⊂T
OT

this follows from Corollary 5.20 by taking (co)limits. �

6. The main theorem

Let K be a global field. In this section, we use the results above to prove our main theorem
which identifies H2(SL2(OS ),Z) with a certain subgroup of K2(2,K), which we now describe.
For a prime p of K, we denote by Tp the composite

K2(2,K) // // KM
2 (K)

τp // k(p)×

where τp is the tame symbol, as above.
When S is a nonempty set of primes of K containing the infinite primes, we set

K̃2(2,OS ) := Ker(K2(2,K)→ ⊕p<S k(p)×).

We begin by noting that this group is closely related to K2(OS ):

Lemma 6.1. For any global field K and for any nonempty set S of primes which contains the
infinite primes there is a natural exact sequence

0→ I3(K)→ K̃2(2,OS )→ K2(OS )→ 0.

In particular, K̃2(2,OS ) � K2(OS ) if K is of positive characteristic or is a totally imaginary
number field.
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Proof. Apply the snake lemma and Corollary 3.10 (1) to the map of short exact sequences

0 // K̃2(2,OS ) //

��

K2(2,K) //

��

⊕p<S k(p)×

id
��

// 0

0 // K2(OS ) // KM
2 (K) // ⊕p<S k(p)× // 0.

The second statement follows from the fact that, for a global field K, I3(K) � Zr(K) where r(K)
is the number of distinct real embeddings of K. �

Example 6.2. Consider the global field K = Q.
For any set S of prime numbers, we will set

ZS := Z[{1/p}p∈S ] = OS∪{∞}.

The kernel of the surjective map
K2(2,Q)→ ⊕pF

×
p

is an infinite cyclic direct summand with generator c(−1,−1).
It follows that for any set S of prime numbers

K̃2(2,ZS ) � Z ⊕
(
⊕p∈SF

×
p

)
.

More generally, we have the following description of the groups K̃2(2,OS ):
For a global field K, let Ω be the set of real embeddings of K. For σ ∈ Ω, there is a correspond-

ing homomorphism

Tσ : K2(K)→ µ2, {a, b} 7→
{
−1, if sgn(σ(a)), sgn(σ(b)) < 0
1, otherwise

Let
K2(K)+ := Ker(⊕σ∈ΩTσ : K2(K)→ µΩ

2 )
and let K2(OS )+ = K2(OS ) ∩ K2(K)+.

Lemma 6.3. Let K be a global field. Let S be a nonempty set of primes of K including the
infinite primes. Then

K̃2(2,OS ) � K2(OS )+ ⊕ Z
Ω.

Proof. By classical quadratic form theory, the group In(R) is infinite cyclic with generator
〈〈−1〉〉n = (−2)n−1 〈〈−1〉〉.
It is shown in [2] that for a global field K the natural surjective map

K2(2,K)→ I2(R)Ω � ZΩ, c(u, v) 7→ (
〈〈

sgn(σ(u))
〉〉 〈〈

sgn(σ(u))
〉〉

)σ∈Ω
has kernel isomorphic to K2(K)+, where this isomorphism is realised by restricting the natural
map K2(2,K)→ K2(K). Furthermore, the composite map I3(K)→ K2(2,K)→ I2(R)Ω induces
an isomorphism

I3(K) � I3(R)Ω = 2 · (I2(R)Ω).

Since I3(K) ⊂ K̃2(2,OS ), the image of the map

K̃2(2,OS )→ I2(R)Ω � ZΩ

contains a full sublattice.
On the other hand, the kernel of this map is isomorphic – via the map K2(2,K) → K2(K) – to
K2(OS ) ∩ K2(K)+. �
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It is natural to ask, of course, about the relation between K̃2(2,OS ) and K2(2,OS ).
It is a theorem of van der Kallen ([20]) that when K is a global field and when S contains all

infinite places and |S | ≥ 2 then the stabilization map

K2(2,OS )→ K2(OS )

is always surjective.
We deduce:

Lemma 6.4. Let K be a global field and let S be a nonempty set of primes of K containing the
infinite primes. Then the image of the natural map K2(2,OS ) → K2(2,K) � K2(2,K) lies in
K̃2(2,OS ).
Furthermore, when |S | ≥ 2, and when there exist units uσ ∈ O×S , σ ∈ Ω satisfying

sgn(τ(uσ)) = (−1)δσ,τ ,

the resulting natural map K2(2,OS ) → K̃2(2,OS ) is surjective; i.e. the image of the map
K2(2,OS )→ K2(2,K) is precisely K̃2(2,OS ).

Proof. The diagram

K2(2,OS ) //

��

K2(2,K) //

��

⊕p<S k(p)×

id
��

0 // K2(OS ) // KM
2 (K) // ⊕p<S k(p)× // 0

commutes.
Our hypothesis on units ensures that the map

K̃2(2,OS )→ K2(2,K)→ I2(R)Ω

is surjective.
Since we also have

K2(OS )+ ⊂ K2(OS ) ⊂ K̃2(2,OS )
by the result of van der Kallen, the second statement follows.

�

One would expect that the resulting map K2(2,OS )→ K̃2(2,OS ) is very often an isomorphism.
It seems to be difficult, however, to prove this in any given instance. In the case K = Q, Jun
Morita, [13, Theorems 2,3] has proved:

Theorem 6.5. Let S be any of the following sets of primes numbers:
S = {p1, . . . , pn}, the set of the first n successive prime numbers, or S is one of {2, 5}, {2, 3, 7},
{2, 3, 11}, {2, 3, 5, 11}, {2, 3, 13}, {2, 3, 7, 13}, {2, 3, 17}, {2, 3, 5, 19}.
Then K2(2,ZS ) is central in St(2,ZS ) and the natural map

K2(2,ZS )→ K̃2(2,ZS ) � Z ⊕
(
⊕p∈SF

×
p

)
is an isomorphism.

Lemma 6.6. Let K be a global field and let S be a nonempty set of primes of K containing the
infinite primes. Then the image of the natural map

H2(SL2(OS ),Z)→ H2(SL2(K),Z) � // K2(2,K)

lies in K̃2(2,OS ).
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Proof. The diagram

H2(SL2(OS ),Z) //

��

H2(SL(OS ),Z)

��
H2(SL2(K),Z) //

�

��

H2(SL(K),Z)

�

��
K2(2,K) // KM

2 (K)

commutes. But H2(SL(OS ),Z) � K2(OS ) and the natural map K2(OS ) → K2(K) = KM
2 (K)

induces an isomorphism
K2(OS ) � Ker(KM

2 (k)→ ⊕p<S k(p)×).
�

If K is a global field and and if S is a nonempty set of primes containing the infinite primes we
will let

KS := Ker(H2(SL2(OS ),Z)→ H2(SL2(K),Z)).

Note that
KS := Ker(H2(SL2(OS ),Z)→ K̃2(2,OS ))

since K̃2(2,OS ) ⊂ K2(2,K) � H2(SL2(K),Z).

Remark 6.7. In general, the kernels KS can be arbitrarily large, even in the case K = Q:
The calculations of Adem-Naffah, [1], show that the ranks of the groups H2(SL2(Z[1/p]),Z)

grow with linearly p when p is a prime number. On the other hand, the rank of H2(SL2(Q),Z)
is 1.

Lemma 6.8. Let K be a global field. Let S be a set of primes of K containing the infinite primes.
Suppose that |S | ≥ 2 and that OS contains a unit λ such that λ2 − 1 is also a unit.
Then

(1) The natural map
H2(SL2(OS ),Z)→ K̃2(2,OS )

is surjective.
(2) If T ⊃ S , then the natural map KS → KT is surjective.

Proof.

(1) By Corollary 5.21, we have a commutative diagram with exact rows

H2(SL2(OS ),Z) //

��

H2(SL2(K),Z) //

�

��

⊕p<S k(p)× //

id
��

0

0 // K̃2(2,OS ) // K2(2,K) // ⊕p<S k(p)× // 0.

(2) Apply the snake lemma to the diagram

H2(SL2(OS ),Z) //

��

H2(SL2(OT ),Z) //

��

⊕p∈T\S k(p)× //

id
��

0

0 // K̃2(2,OS ) // K̃2(2,OT ) // ⊕p∈T\S k(p)× // 0.

�
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Remark 6.9. Note, on the other hand, that the map

0 = H2(SL2(Z),Z)→ K̃2(2,Z) � K2(2,Z) � Z

cannot be surjective.

Theorem 6.10. Let K be a global field.

(1) There exists a finite set S of primes of K satisfying
(a) S contains all infinite primes and |S | ≥ 2.
(b) There exists a unit λ of OS such that λ2 − 1 is also a unit.
(c) The natural map H2(SL2(OS ),Z)→ K̃2(2,OS ) is an isomorphism.

(2) If T is any set of primes containing S then H2(SL2(OT ),Z) � K̃2(2,OT ); i.e. there is a
natural short exact sequence

0 // H2(SL2(OT ),Z) // K2(2,K)
∑

Tp // ⊕p<T k(p)× // 0.

Proof.

(1) Let S 0 be any set of primes satisfying (a) and (b). Since H2(SL2(OS ),Z) is a finitely-
generated abelian group, so also is KS 0 . Since H2(SL2(K),Z) = limT H2(SL2(OT ),Z),
the limit being taken over finite sets T of primes, it follows that there is a finite set of
primes S containing S 0 for which

KS 0 = Ker(H2(SL2(OS 0),Z)→ H2(SL2(OS ),Z)).

By Lemma 6.8 it follows that KS = 0 and hence that H2(SL2(OS ),Z) � K̃2(2,OS )
as required.

(2) This is immediate from Lemma 6.8.

�

Lemma 6.11. Let K = Q and let S = {2, 3,∞}. Then S satisfies conditions (a)-(c) of Theorem
6.10 (1).

Proof. The set S = {2, 3,∞} clearly satisfies conditions (a) and (b).
Observe that

OS = Z{2,3} = Z

[
1
2
,

1
3

]
= Z

[
1
6

]
.

By Lemma 6.8, the natural map

H2(SL2(Z[1/6]),Z)→ K̃2(2,Z[1/6]) � Z ⊕ F×3
(see Example 6.2) is surjective.
On the other hand, the calculations of Tuan and Ellis, [19], show that

H2(SL2(Z[1/6]),Z) � Z ⊕ Z/2Z.

It follows that the natural map above is an isomorphism. �

In view of Theorem6.10 (2) and Example 6.2, we immediately deduce:

Theorem 6.12. Let T be any set of prime numbers containing 2, 3. Then there is an isomorphism

H2(SL2(ZT ),Z) � Z ⊕
(
⊕p∈TF

×
p

)
.

In particular, if m ∈ Z and if 6|m then

H2(SL2(Z[1/m]),Z) � Z ⊕
(
⊕p|mF

×
p

)
.
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Combining this with Morita’s Theorem (6.5) we deduce:

Proposition 6.13. Let S be any of the following sets of primes numbers:
S = {p1, . . . , pn}, the set of the first n successive prime numbers, or S is one of {2, 3, 7},
{2, 3, 11}, {2, 3, 5, 11}, {2, 3, 13}, {2, 3, 7, 13}, {2, 3, 17}, {2, 3, 5, 19}.
Then the natural map

H2(SL2(ZS ),Z)→ K2(2,ZS )
is an isomorphism and

1→ K2(2,ZS )→ St(2,ZS )→ SL2(ZS )→ 1

is the universal central extension of SL2(ZS ).

Proof. Since K2(2,ZS ) is central in St(2,ZS ), there is a natural homomorphism H2(SL2(ZS ),Z)→
K2(2,ZS ) through which the map H2(SL2(ZS ),Z)→ K2(2,Q) factors.
Since H2(SL2(ZS ),Z) and K2(2,ZS ) are both isomorphic to K̃2(2,ZS ) ⊂ K2(2,Q), the result

follows immediately. �

7. Some 2-dimensional homology classes

In this section we construct explicit cycles in the bar resolution of SL2(A) which represent
homology classes in H2(SL2(A),Z). We show that these classes map to the symbols c(u, v) ∈
K2(2, A), when A is a field.

7.1. The homology classes C(a, b). Let A be a commutative ring and let a ∈ A×. We define
the following elements of SL2(A):

w :=
[

0 1
−1 0

]
, Ga :=

[
0 −1
1 a + a−1

]
, Ha := E21(a) =

[
1 0
a 1

]
.

Note that

wGa =

[
1 a + a−1

0 1

]
= E12(a + a−1).

We also define

Ra := HaGaH−1
a = HaGaH−a =

[
a −1
0 a−1

]
.

Thus, by definition,

HaGa = RaHa =

[
0 −1
1 a−1

]
.

Let
Θa := [Ha|Ga] − [Ra|Ha] + [w−1|wGa] ∈ F̄2(SL2(A)) = F̄2.

Then
d2(Θa) = [w−1] + [wGa] − [Ra] ∈ F̄1.

Now let a, b ∈ A×. Then

d2(Θab − Θa − Θb + Θ1) = ([Ra] + [Rb] − [Rab]) + ([wGab] − [wGa] − [wGb] + [wG1] − [R1]) .

Now
[Ra] + [Rb] = [RaRb] + d2 ([Ra|Rb])

and
[Rab] = [RaRb] + [(RaRb)−1] − d2

(
[RaRb|(RaRb)−1(Rab)]

)
.
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Hence

[Ra] + [Rb] − [Rab] = −[(RaRb)−1Rab] + d2

(
[Ra|Rb] + [RaRb|(RaRb)−1(Rab)]

)
where

(RaRb)−1Rab =

[
1 (ab)−1(a + b−1 − 1)
0 1

]
= E12((ab)−1(a + b−1 − 1)).

Putting this together, we deduce

d2(Θab − Θa − Θb + Θ1 − [Ra|Rb] − [RaRb|(RaRb)−1(Rab)])
= [wGab] − [wGa] − [wGb] + [wG1] − [R1] + [(RaRb)−1(Rab)]
= [E12(ab + (ab)−1)] − [E12(a + a−1)] − [E12(b + b−1)]

+[E12(2)] − [E12(−1)] + [E12((ab)−1(a + b−1 − 1))].

Now suppose that there exists λ ∈ A× such that λ2 − 1 ∈ A×. Let

D(λ) :=
[
λ 0
0 λ−1

]
∈ SL2(A).

Recall that for any x ∈ A
D(λ)E12(x)D(λ)−1 = E12(λ2x)

and hence for any x ∈ A we have

E12(x) = D(λ)E12(x′)D(λ)−1E12(x′)−1

= D(λ)E12(x′)(E12(x′)D(λ))−1 = [D(λ), E12(x′)].

where x′ := x/(λ2 − 1).
Now if G is any group and if g, h ∈ G then

D2([(gh)(hg)−1|hg] − [g|h] + [h|g]) = [(gh)(hg)−1] =
[
[g, h]

]
.

Thus, we define

Ψx = Ψx,λ :=
[
E12(x)|E12(x′)D(λ)

]
−

[
D(λ)|E12(x′)

]
+

[
E12(x′)|D(λ)

]
∈ F̄2.

By the preceeding remarks, we have d2(Ψx,λ) = [E12(x)] ∈ F̄1 for any x ∈ A.
From all of these calculations we deduce:

Proposition 7.1. Let A be a commutative ring. Suppose that there exists λ ∈ A× such that
λ2 − 1 ∈ A×. Let a, b ∈ A×. Then

F(a, b)λ : = [Ra|Rb] + [RaRb|(RaRb)−1(Rab)] + Θa + Θb − Θab − Θ1

+ Ψab+(ab)−1 − Ψa+a−1 − Ψb+b−1 + Ψ2 − Ψ−1 + Ψ(ab)−1(a+b−1−1) ∈ F̄2

is a cycle, representing a homology class C(a, b)λ ∈ H2(SL2(A),Z).

Remark 7.2. The cycles F(a, b)λ are clearly functorial in the sense that if ψ : A → B is a
homomorphism of commutative rings and if a, b, λ, λ2 − 1 ∈ A× then

ψ∗(F(a, b)λ) = F(ψ(a), ψ(b))ψ(λ) ∈ F̄2(SL2(B)).

Remark 7.3. More generally, suppose that Λ = (λ1, . . . , λn, b1, . . . , bn) ∈ (A×)n × (An) satisfies
n∑

i=1

(λ2
i − 1)bi = 1
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Then for any x ∈ A
E12(x) =

∏
i

[D(λi), E12(bix)].

by the proof of Proposition 2.2.
Since

[
n∏

i=1

ci] =

n∑
i=1

[ci] − d2

 n−1∑
k=1

[c1 · · · ck|ck+1]


in F̄1(A), we can easily write down an element Ψx,Λ ∈ F̄2(A) satisfying d2(Ψx,Λ) = [E12(x)] and
thus construct cycles F(a, b)Λ.

Remark 7.4. Specialising to the case a = b = −1 we obtain:

F(−1,−1)λ = [R−1|R−1] + [E12(2)|E12(−3)] + Ψ−3 − Ψ−1 + 2(Θ−1 − Θ1 + Ψ2 − Ψ−2).

As we will see, when A is a field with at least four elements, the homology class C(a, b)λ does
not depend on the choice of λ. In fact, this is the case for many commutative rings. For example,
we have:

Lemma 7.5. Let A be a commutative ring. Suppose there exists n ∈ Z such that n, n4 − 1 ∈ A×.
Then, for any a, b ∈ A×, the homology class C(a, b)λ ∈ H2(SL2(A),Z) is independent of the

choice of λ.

Proof. Suppose that λ, µ ∈ A× satisfy the condition λ2 − 1, µ2 − 1 ∈ A×.
Let a, b ∈ A×. Note that F(a, b)λ−F(a, b)µ is a sum or difference of terms of the form Ψx,λ−Ψx,µ,
x ∈ A. We will show that each such term is a boundary.
We begin by observing that, for any x ∈ A, the elements Ψx,λ and Ψx,µ lie in F̄2(B) where

B :=
{[

u y
0 u−1

]
∈ SL2(A) | u ∈ A×

}
is the subgroup of upper-triangular matrices in SL2(A).
Note that

d2(Ψx,λ − Ψx,µ) = [E12(x)] − [E12(x)] = 0
so that Ψx,λ − Ψx,µ represents a homology class in H2(B,Z). We will show that it represents the
trivial class.
Let T := {D(u) | u ∈ A×} be the group of diagonal matrices and let π : B → T be the natural
surjective homomorphism sending D(u)E12(z) to D(u). Then

U := Ker(π) = {E12(y) | y ∈ A}

is the group of unipotent matrices.
We have T � A× via D(u)↔ u and U � A, via E12(x)↔ x.
Note that

π(Ψx,λ) = π
([

E12(x)|E12(x′)D(λ)
]
−

[
D(λ)|E12(x′)

])
= [I|D(λ)] − [D(λ)|I] + [I|D(λ)] ∈ F̄2(T ).

Since
d3([X|I|I] = [I|I] − [I|X] and d3([I|I|X]) = [X|I] − [I|I]

it follows easily that π(Ψx,λ − Ψx,µ) ∈ d3(F̄3(T )). Thus π(Ψx,λ − Ψx,µ) represents the trivial
homology class in H2(T,Z).
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To conclude, we will show that our hypotheses are enough to ensure that π induces an isomor-
phism H2(B,Z) � H2(T,Z).
We consider the Hochschild-Serre spectral sequence associated to the short exact sequence

1→ U → B→ T → 1.

This has the form
E2

i, j = Hi(T,H j(U,Z))⇒ Hi+ j(B,Z)

D(u) ∈ T acts by conjugation on U � A as multiplication by u2. Thus the induced action of
D(u) on H2(U,Z) � U

∧
ZU � A

∧
Z A is multiplication by u4.

In particular, D(n) acts as multiplication by n2 on H1(U,Z), and as multiplication by n4 on
H2(U,Z).
Since T is abelian, and since n2 − 1, n4 − 1 are units in A, it follows from the “centre kills”

argument that Hi(T,H j(U,Z)) = 0 for 1 ≤ j ≤ 2.
Thus, from the spectral sequence, the map π induces an isomorphism Hn(B,Z) � Hn(T,Z) for

n ≤ 2. �

Remark 7.6. Since 24 − 1 = 3 · 5, the condition of the Lemma 7.5 is satisfied by any ring in
which 2, 3 and 5 are units.

7.2. A variation. We describe a slightly more compact 2-cycle F̃(a, b)λ in the case where
a2 − 1, b2 − 1 and (ab)2 − 1 are all units in A.
Suppose that a ∈ A is a unit such that a2 − 1 ∈ A× also. Let

H̃a =

[
1

1−a
a

1−a
a

1+a
1

1+a

]
∈ SL2(A).

Then

H̃aGaH̃−1
a =

[
a 0
0 a−1

]
= D(a).

Thus if we let
Θ̃a := [H̃a|Ga] − [D(a)|H̃a] + [w−1|wGa] ∈ F̄2

then
d2(Θ̃a) = [w−1] + [wGa] − [D(a)].

If a2 − 1, b2 − 1, (ab)2 − 1 ∈ A× then

d2(Θ̃a + Θ̃b − Θ̃ab − Θ1) = [D(ab)] − [D(a)] − [D(b)]
+[E12(a + a−1)] + [E12(b + b−1)] − [E12(ab + (ab)−1)] + [E12(−1)] − [E12(2)]

= d2(−[D(a)|D(b)] + Ψa+a−1 + Ψb+b−1 − Ψab+(ab)−1 + Ψ−1 − Ψ2).

We deduce:

Proposition 7.7. If a, b, λ, a2 − 1, b2 − 1, (ab)2 − 1, λ2 − 1 ∈ A× then

F̃(a, b)λ := [D(a)|D(b)] + Θ̃a + Θ̃b − Θ̃ab − Θ1 + Ψab+(ab)−1 − Ψa+a−1 − Ψb+b−1 + Ψ2 − Ψ−1

is a cycle representing a homology class C̃(a, b)λ ∈ H2(SL2(A),Z).
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7.3. Symbols as homology classes. In this section, the map of sets s : SL2(F) → St(2, F)
and the homomorphism f̄ : H2(SL2(F),Z)→ K2(2, F) are those described in section 4 above.

Theorem 7.8. Let F be a field with at least four elements. Let λ ∈ F× \ {±1}.

(1) Let a, b ∈ F×. Then
f̄ (C(a, b)λ) = c(a, b).

(2) Suppose further that a, b, ab < {±1}. Then

f̄ (C̃(a, b)λ) = c(a, b).

Proof. We begin by noting that, by Lemma 4.1, we have

f̄ (Ψx) = 1 for all x ∈ F and f̄ ([RaRb|(RaRb)−1(Rab)]) = 1

since c(1, v) = c(u, 1) = 1 in K2(2, F).
Also, by Lemma 4.1,

f̄ ([Ra|Rb]) = f̄ ([D(a)|D(b)] = c(a, b).

(1) For any u ∈ F×

f̄ ([Hu|Gu]) = s(Hu)s(Gu)s(HuGu)−1

= x21(u) · w12(−1)x12(u + u−1) · x12(−u−1)w12(1)
= x21(u) · (w12(−1)x12(u)w12(1))
= x21(u)x12(u)w12(1)

= x21(u)x21(−u) = 1 by Lemma 3.1.

and

f̄ ([w−1|wGu]) = s(w−1)s(wGu)s(Gu)−1

= w12(−1)x12(u + u−1) ·
(
w12(−1)x12(u + u−1)

)−1
= 1.

Furthermore

f̄ ([Ru|Hu]) = s(Ru)s(Hu)s(RuHu)−1

= x12(−u)h12(u)x21(u)x12(−u−1)w12(1)
= h12(u)x12(−u−1)x21(u)x12(−u−1)w12(1) since x12(−u)h12(u) = x12(−u−1)
= h12(u)w12(−u−1)w12(1).

Now

w12(−u−1)w12(1) = w12(−u−1)w12(−1)w12(−1)−1w12(−1)−1 = h12(−u−1)h12(−1)−1

and hence
f̄ ([Ru|Hu]) = c(u,−u−1) = c(−u, u) = 1.

Thus
f̄ (Θu) = 1

for all units u.
Putting all of this together gives f̄ (F(a, b)λ) = c(a, b) as required.



32 KEVIN HUTCHINSON

(2) We must show that f̄ (Θ̃a) = 1 whenever a, a2 − 1 ∈ F×.
As above, we have f̄ ([w−1|wGa]) = 1.
Now,

s(D(a)) = h12(a), s(H̃a) = x12

(
1 + a

a(1 − a)

)
w12

(
1 + a
−a

)
x12(a−1),

and s(D(a)H̃a) = x12

(
a(1 + a)

1 − a

)
w12(−(1 + a))x12(a−1).

Thus

f̄ ([D(a)|H̃a]) = s(D(a))s(H̃a)s(D(a)H̃a)−1

= h12(a)x12

(
1 + a

a(1 − a)

)
w12

(
1 + a
−a

)
x12(a−1)x12(−a−1)w12(1 + a)x12

(
a(1 + a)

a − 1

)
= h12(a)x12

(
1 + a

a(1 − a)

)
w12

(
1 + a
−a

)
w12(1 + a)x12

(
a(1 + a)

a − 1

)
= h12(a)w12

(
1 + a
−a

)
x21

(
−a

1 − a2

)
w12(1 + a)x12

(
a(1 + a)

a − 1

)

using

x12

(
1 + a

a(1 − a)

)w12( 1+a
−a )

= x21

(
−a

1 − a2

)
.

Since, by Lemma 3.1,

x21

(
−a

1 − a2

)w12(1+a)
= x12

(
a(1 + a)

1 − a

)
,

this gives

f̄ ([D(a)|H̃a]) = h12(a)w12

(
1 + a
−a

)
w12(1 + a)x12

(
a(1 + a)

1 − a

)
x12

(
a(1 + a)

a − 1

)
= h12(a)w12

(
1 + a
−a

)
w12(1 + a)

= h12(a)h12

(
1 + a
−a

)
h12(−(1 + a))−1

= c(a,−(1 + a)a−1) = c(a, 1 + a).

Now

s(H̃aGa) = s
([

a
1−a

a2

1−a
1

1+a
a−1

1+a

])
= x12

(
a(1 + a)

1 − a

)
w12(−(1 + a))x12(a−1).
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So

f̄ ([H̃a|Ga]) = s(H̃a)s(Ga)s(H̃aGa)−1

= x12

(
1 + a

a(1 − a)

)
w12

(
1 + a
−a

)
x12(a−1)w12(−1)x12(a + a−1)x12(−a−1)w12(1 + a)x12

(
a(1 + a)

a − 1

)
= x12

(
1 + a

a(1 − a)

)
w12

(
1 + a
−a

)
x12(a−1)w12(−1)x12(a)w12(1 + a)x12

(
a(1 + a)

a − 1

)
= w12

(
1 + a
−a

)
x21

(
−a

1 − a2

)
w12(−1)x21(−a−1)x12(a)w12(1 + a)x12

(
a(1 + a)

a − 1

)
using

x12

(
1 + a

a(1 − a)

)w12( 1+a
−a )

= x21

(
−a

1 − a2

)
and x12(a−1)w12(−1) = x21(−a−1).

Since x12(−a)w12(a) = x21(−a−1)x12(a), we thus have

f̄ ([H̃a|Ga]) = w12

(
1 + a
−a

)
x21

(
−a

1 − a2

)
w12(−1)x12(−a)w12(a)w12(1 + a)x12

(
a(1 + a)

a − 1

)
= w12

(
1 + a
−a

)
w12(−1)x12

( a
1 − a2

)
x12(−a)w12(a)w12(1 + a)x12

(
a(1 + a)

a − 1

)
.

Since

x12

( a
1 − a2

)
x12(−a) = x12

( a
1 − a2 − a

)
= x12

(
a3

1 − a2

)
,

we obtain

f̄ ([H̃a|Ga]) = w12

(
1 + a
−a

)
w12(−1)x12

(
a3

1 − a2

)
w12(a)w12(1 + a)x12

(
a(1 + a)

a − 1

)
.

The conjugation rules of Corollary 3.2 give

x12

(
a3

1 − a2

)
w12(a)w12(1 + a) = w12(a)x12

(
−a

1 − a2

)
w12(1 + a) = w12(a)w12(1 + a)x12

(
a(1 + a)

1 − a

)
.

Therefore

f̄ ([H̃a|Ga]) = w12

(
1 + a
−a

)
w12(−1)w12(a)w12(1 + a)x12

(
a(1 + a)

1 − a

)
x12

(
a(1 + a)

a − 1

)
= w12

(
1 + a
−a

)
w12(−1)w12(a)w12(1 + a)

= h12

(
1 + a
−a

)
h12(a)h12(−(1 + a))−1

= c(−(1 + a)a−1, a) = c(1 + a, a).

Putting this together, we get

f̄ (Θ̃a) = f̄ ([H̃a|Ga]) · f̄ ([D(a)|H̃a])−1 = c(1 + a, a)c(a, 1 + a)−1

= c(a2, 1 + a) = c((−a)2, 1 + a) = c(−a, 1 + a)c(1 + a,−a) = 1.
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�

8. Applications: generators for H2(SL2(Z[1/m]),Z)

The general principle is the following:

Lemma 8.1. Let m = q1q2 · · · qn where q1, . . . , qn are distinct primes. Suppose that the positive
integers u2, . . . , un ∈ Z[1/m]× satisfy the conditions

(1) ui is a primitive root modulo qi for i ≥ 2,
(2) When i , j ∈ {2, . . . , n},

q
vq j (ui)

i � 1 (mod q j).

Then there is a direct sum decomposition

K̃2(2,Z[1/m]) � Z ⊕ Z/(q2 − 1) ⊕ · · · ⊕ Z/(qn − 1)

with the property that infinite cyclic factor is generated by c(−1,−1) and the factor Z/(qi − 1)
is generated by c(ui, qi).

Proof. The isomorphism

K̃2(2,Z[1/m]) � Z ⊕
(
⊕n

i=2F
×
qi

)
is induced by the map

σ : K̃2(2,Z[1/m])→ Z, c(a, b) 7→
{

1, a < 0 and b < 0
0, otherwise

and the tame symbols Tpi : K(2,Q)→ F×pi
.

Now

Tpi(c(ui, qi)) = τqi({ui, qi}) = ui (mod qi) = wi

while for j , i

Tq j(c(ui, qi)) = q
vq j (ui)

i (mod q j) ≡ 1 (mod q j).

�

Remark 8.2. It is not known whether there must exist units satisfying condition (1) in general,
but exceptions, if they exist, are rare.
If units ui are found satisfying condition (1), then it can always be arranged for condition (2) to

hold; namely, multiply ui by a high power of mi where mi = (
∏n

k=1 qk)/qi.

Combining Lemma 8.1 with Theorems 6.12 and 7.8, we deduce:

Corollary 8.3. Let m = q1 · · · qn be distinct primes satisfying q1 < q2 < · · · < qn and q1 =

2, q2 = 3. Let u2, . . . , un be as in Lemma 8.1. There is a direct sum decomposition

H2(SL2(Z[1/m]),Z) � Z ⊕
(
⊕n

i=2Z/(qi − 1)Z
)

where the first summand corresponds to the subgroup of H2(SL2(Z[1/m]),Z) generated by the
homology class C(−1,−1), and the summand Z/(qi−1)Z corresponds to the subgroup generated
by the homology class C(ui, qi).

Example 8.4. In the case m = 6, we can take u2 = 2. We deduce that the cyclic factors of

H2(SL2(Z[1/6]),Z) � Z ⊕ Z/2

are generated by the homology classes C(−1,−1) and C(2, 3).
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Example 8.5. In the case m = 30, then the units u2 = 2, u3 = 2 satisfy the necessary congru-
ences. Thus the cyclic factors of

H2(SL2(Z[1/30]),Z) � Z ⊕ Z/2 ⊕ Z/4

are generated by the homology classes C(−1,−1), C(2, 3) and C(2, 5).

Example 8.6. By Theorem 6.12, we have

H2(Z[1/42],Z) � Z ⊕ F×3 ⊕ F
×
7 � Z ⊕ Z/2 ⊕ Z/6.

The first factor is generated by the homology class C(−1,−1). Furthermore, u2 = 2 = u3

satisfy the congruences of Lemma 8.1. It follows that the homology classes C(2, 3) and C(2, 7)
generate the second and third cyclic factors.

Example 8.7. Let ω be a primitive cube root of unity and let p be a rational prime which is
congruent to 1 modulo 3. Let O = Z[ω, 1

3p ].

Observe that ω ∈ O× and ω2 − 1 =
√
−3ω ∈ O× also. Then pZ[ω] = p1p2 where k(pi) � Fp for

i = 1, 2. Since K2(Z[ω]) = 0, we have

K2(O) � K̃2(2,O) � k(p1)× ⊕ k(p2)× ⊕ k(q)×

� F×p ⊕ F
×
p ⊕ F

×
3

where q =
√
−3Z[ω].

By Lemma 6.8 and Theorem 7.8 the natural map

H2(SL2(O),Z)→ K2(O)

is surjective and the homology class C(−ω, p) maps, via the tame symbol, to the element −ω̄ ∈
k(pi)× of order 6, while the class C(3, p) maps to 3̄ ∈ k(pi)× � F×p .
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