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Abstract. The goal of the paper is to achieve - in the special case of the lin-
ear group SL2 - some understanding of the relation between group homology

and its A1-invariant replacement. We discuss some of the general proper-

ties of the A1-invariant group homology, such as stabilization sequences and
Grothendieck-Witt module structures. Together with very precise knowledge

about refined Bloch groups, these methods allow us to deduce that in general

there is a rather large difference between group homology and its A1-invariant
version. In other words, weak homotopy invariance fails for SL2 over many

families of non-algebraically closed fields.
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1. Introduction

In this paper, we investigate the difference between group homology and its A1-
invariant version. It is well-known that K-theory and hence also the homology of
the infinite general linear group GL is A1-invariant, i.e. for a regular ring R, the
map GL(R)→ GL(R[T ]) given by inclusion of constants induces an isomorphism in
homology. This, however, is only a stable phenomenon: examples [KM97] show that
H1 of SL2 is not A1-invariant because there exist many non-elementary matrices in
SL2(R[T ]) if R is not a field. One can nevertheless force group homology of a linear
group G to be A1-invariant by considering the homology of the polynomial singular
resolution BG(k[∆•]). There is a natural change-of-topology morphism BG(k) →
BG(k[∆•]), and we will investigate some of the properties of this morphism in the
paper.

The main result is the following failure of weak homotopy invariance (see 2.2
below). We refer to Theorem 7.4 and Theorem 7.6 for precise formulations.
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Theorem 1. (1) For k an infinite finitely-generated field and ` an odd prime
such that [k(ζ`) : k] is even, the kernel of the change-of-topology morphism

H3(SL2(k),Z/`)→ H3(BSL2(k[∆•]),Z/`)
is not finitely generated. In particular, weak homotopy invariance with finite
coefficients can fail for fields which are not algebraically closed.

(2) For k a field complete with respect to a discrete valuation, with finite residue
field k of order q = pf (p odd), the change-of-topology morphism

H3(SL2(k),Z[1/2])→ H3(BSL2(k[∆•]),Z[1/2])

factors through K ind
3 (k) ⊗ Z[1/2], and its kernel is isomorphic to the pre-

Bloch group P(k)⊗Z[1/2] which is cyclic of order (q+1)′ (where n′ denotes
the odd part of the positive integer n).

There are several ingredients coming together. On the side of A1-invariant
group homology, we can use A1-homotopy theory to produce stabilization results
and Grothendieck-Witt module structures. On the other hand, the computa-
tions in [Hut11a, Hut11b, Hut13] allow to understand very explicitly the struc-
ture of H3(SL2(k)). In particular, the above theorem follows from a comparison
of the k×/(k×)2-module structures on both sides: the module structure on the
A1-invariant group homology factors through an action of the Grothendieck-Witt
ring of k but the corresponding statement for H3(SL2(k)) is false for fields with
non-trivial valuations. In the case of number fields there is a further contrast be-
tween the two sides: the A1-invariant group homology is finitely generated, while
the residue maps of [Hut11a] show that the group homology itself is not finitely
generated.

There are some negative consequences of our findings. As mentioned before,
the results strengthen our understanding that homotopy invariance of algebraic
K-theory is a strictly stable phenomenon and tends to fail badly in unstable set-
tings. Our results also have consequences for “unstable K-theories”. On the one
hand, one could use a Quillen-style definition via homotopy groups of the plus con-
struction of the classifying space: π•BSLn(k)+. On the other hand, one could use
the Karobi-Villamayor-style definition using the simplicial polynomial resolution:
π•BSLn(k[∆•]). It is well-known (and primarily a consequence of homotopy in-
variance of algebraic K-theory) that these definitions agree in the limit n → ∞.
Our results show that they do not agree for n = 2. In particular, there will never be
a unique natural definition of unstable K-theory. In a similar spirit, the failure of
weak homotopy invariance also implies that it is not possible to use A1-homotopy
theory to prove results on the homology of linear groups over arbitrary fields. How-
ever, our results leave open the possibility that group homology coincides with its
A1-invariant version over separably closed fields: the change-of-topology morphism
is injective for quadratically closed fields, cf. Corollary 4.3. Weak homotopy invari-
ance with finite coefficients over separably closed fields is a necessary ingredient in
Morel’s approach to the Friedlander-Milnor conjecture [Mor11].

We would like to mention some questions that could be pursued in further re-
search: first, the relation between homotopy invariance and weak homotopy invari-
ance deserves further study. The behaviour of the spectral sequence associated to
the bisimplicial set BSL2(k[∆•]) plays a major role, and relates disparate phenom-
ena like counterexamples to homotopy invariance, scissors congruence groups and
surjective stabilization for symplectic groups. Second, it would be interesting to
see what happens to (weak) homotopy invariance for homology groups beyond the
metastable range as well as for higher rank groups.

Structure of the paper: We review the definition and basic properties of the
A1-invariant version of group homology in Section 2. In Section 3 we prove some
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stabilization results which are need in Section 4 and Section 7. In Section 4 we re-
view the relationship between H3(SL2(k),Z) and K ind

3 (k) and apply these results
to the change-of-topology morphism in the case of quadratically closed fields of
characteristic 0. The Grothendieck-Witt module structures on A1-invariant homol-
ogy of SL2 are investigated in Section 5. Some details on (refined) Bloch groups
and their module structures are provided in Section 6. In Section 7, we use the
results of the preceding sections to prove our main results: that the kernel of the
change-of-topology morphism is often very large. In Section 8 we conclude with
some remarks on the cokernel of the change-of-topology morphism.

Acknowledgements: We would like to thank Aravind Asok for some discussions
on the computations in [AF12a], and Jens Hornbostel and Marco Schlichting for
some discussions on finiteness properties of symplectic K-theory of number fields.

2. Group homology made A1-invariant: definition

In this section, we recall the construction which enforces A1-invariance in group
homology, i.e. replaces group homology by something representable in A1-homotopy
theory. The crucial definition is the singular resolution of a linear algebraic group,
cf. [Jar83]:

Definition 2.1. Let k be a field. There is a standard simplicial k-algebra k[∆•]
with n-simplices given by

k[∆n] = k[X0, . . . , Xn]/(
∑

Xi − 1)

and face and degeneracy maps given by

di(Xj) =

 Xj j < i
0 j = i
Xj−1 j > i

, si(Xj) =

 Xj j < i
Xi +Xi+1 j = i
Xj+1 j > i

.

To a linear algebraic group G, we can associate a simplicial group G(k[∆•])
which can be considered as a topologized version of the discrete group G(k).

Recall that the classifying space of the simplicial group G(k[∆•]) is defined to
be the diagonal of the bisimplicial set BG(k[∆•]). One simplicial direction is given
by the usual classifying space construction, the other one is given by the simplicial
algebra k[∆•] above.

Definition 2.2. We call the homology of BG(k[∆•]) the group homology made
A1-invariant. There is a natural inclusion G(k) ↪→ G(k[∆•]) which identifies G(k)
with the set of zero-simplices G(k[X0]/(X0−1)) in G(k[∆•]). We refer to this as the
natural change-of-topology morphism. We say that the group G has weak homotopy
invariance in degree n over the field k with M -coefficients, if the change-of-topology
map induces an isomorphism

Hn(G(k),M)
∼=−→ Hn(BG(k[∆•]),M).

The change-of-topology morphism and in particular its effect on third homol-
ogy is the centre of interest in the present work. We will only consider constant
coefficients.

Remark 2.3. Recall that in A1-homotopy theory, one can associate a singular
resolution SingA1

• (X) to any simplicial sheaf X on the site Smk of smooth schemes
over a field k, essentially by setting

SingA1

• (X)(U) = Hom(U ×∆•, X).

Because a field is a local henselian ring, the simplicial group G(k[∆•]) above is
the simplicial group of sections of (the Nisnevich sheafification of) SingA1

• (G) over
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Spec k. The corresponding classifying space is the simplicial set of sections of the
corresponding simplicial (pre-)sheaf B SingA1

• (G) over Spec k.

The singular resolution of algebraic groups is almost fibrant in A1-homotopy
theory. We collect this statement in the following proposition:

Proposition 2.4. Let G be an isotropic reductive group of rank ≥ 2 or SL2 over
a perfect base field k. Then the resolution SingA1

• (G) has the affine Brown-Gersten
property in the Nisnevich topology. In particular, there are isomorphisms

πi (G(k[∆•]))→ πA1

i (G)(Spec k).

Proof. This proposition is a consequence of the theory of the affine Brown-Gersten
property and A1-invariance of unstable K1-functors. For the affine Brown-Gersten
property, cf. [Mor12, Appendix A] resp. [Wen10, Section 3]. The A1-invariance of
unstable K1-functors has been established by Stavrova [Sta11]. The part of Propo-
sition 2.4 dealing with isotropic reductive groups of rank ≥ 2 has been formulated
in [VW12, Proposition 4.1]. The SL2-case of Proposition 2.4 has been proven by
Moser, cf. [Mos].

Note that in the central theorem on the affine Brown-Gersten property [Mor12,
Appendix A], the base field is assumed to be perfect. However, the isomorphism

πi (G(k[∆•]))→ πA1

i (G)(Spec k).

applies to all finitely generated field extension of the base field. In particular, there
is no perfectness assumption necessary for the special groups Sp2n which are defined
over Z. �

For the rest of the paper, we will mostly need this in the case of SL2 and the
symplectic groups Sp2n. The result makes it possible to deduce statements about
H•(BG(k[∆•])) from computations in A1-homotopy theory.

3. Group homology made A1-invariant: stabilization

In this section, we will develop some stabilization results for the A1-invariant
homology of symplectic groups. These will be helpful in understanding the change-
of-topology morphism.

3.1. Fibre sequences in A1-homotopy theory. We first discuss results produc-
ing fibre sequences in A1-homotopy theory as well as the corresponding exact stabi-
lization sequences. The results are due to Morel [Mor12, Theorem 8.1, Proposition
8.12] and Wendt [Wen11].

Proposition 3.1. Let k be an infinite field, and let G be a smooth split reductive
group. Then the classifying space B SingA1

• (G) of rationally trivial G-torsors is A1-
local. For every rationally trivial G-torsor p : E → B there is a fibre sequence of
simplicial sheaves

SingA1

• (G)→ SingA1

• (E)→ SingA1

• (B),

which is A1-local. In particular, there is a long exact sequence

· · · → πA1

i (G)(Spec k)→ πA1

i (E)(Spec k)→ πA1

i (B)(Spec k)→ · · ·

Proof. The locality of the classifying space is established in [Mor12, Theorem 8.1]
and [Mor11]. The fibre sequence statement is [Wen11, Corollary 1.1]. The long
exact sequence is a direct consequence of that. �

The next result recalls the computation of low-dimensional homotopy groups of
spheres due to Morel, cf. [Mor12, Theorem 6.40, Theorem 8.9].
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Proposition 3.2. The space An \ {0} is A1-(n− 2)-connected and

πA1

n−1(An \ {0})(Spec k) ∼= KMW
n (k).

The space An \ {0} has the affine Brown-Gersten property, in particular, the
simplicial set SingA1

• (An \ {0}) is (n− 2)-connected and

πn−1(SingA1

• (An \ {0})(Spec k)) ∼= KMW
n (k).

Denote by q2n =
∑n
i=1XiYi the split quadratic form in 2n variables and by

Q2n−1 = V (q2n) the (2n−1)-dimensional split affine quadric. It is well-known that
the projection morphism

Q2n−1 → An \ {0} : (X1, . . . , Xn, Y1, . . . , Yn) 7→ (Y1, . . . , Yn)

is Zariski locally trivial with fibres An, hence it is an A1-weak equivalence. The
results stated in Proposition 3.2 above apply verbatim to Q2n−1. While An \ {0} is
the space appearing in the A1-homotopy discussions in [Mor12, Theorem 8.9], the
latter is the space naturally relevant for stabilization theorems.

3.2. A relative Hurewicz argument. The next result contains the central ar-
gument which yields the stabilization results.

Theorem 3.3. Let k be an infinite field, H ↪→ G an inclusion of linear algebraic
groups over k.

Assume that H is isotropic, that the H-torsor G→ G/H is rationally trivial and
that SingA1

• G/H(k) is n-connected. Then the induced morphisms

Hi(BH(k[∆•]),Z)→ Hi(BG(k[∆•]),Z)

are isomorphisms for all i = 0, . . . , n. Moreover, there is an exact sequence

Hn+2(BH(k[∆•]),Z)→ Hn+2(BG(k[∆•]),Z)→ Hrel
n+2 →

→ Hn+1(BH(k[∆•]),Z)→ Hn+1(BG(k[∆•]),Z)→ 0,

where Hrel
n+2 is obtained from πn+1(SingA1

• G/H(k)) by factoring out the action of
π1(BH(k[∆•])).

Proof. For any closed subgroup H of G, the quotient G/H exists and is a quasi-
projective variety. Note that our assumption is that the H-torsor G → G/H is
locally trivial in the Nisnevich topology.

We choose the base points of SingA1

• H and SingA1

• G to be the identity, and the
base point of SingA1

• G/H to be the image of the identity in SingA1

• G. The fibre over
this point is H, and from Proposition 3.1 we obtain a fibre sequence of simplicial
sets

H(k[∆•])→ G(k[∆•])→ SingA1

• (G/H)(k).
From the standard theory of classifying spaces for simplicial groups, we obtain
another fibre sequence of simplicial sets

SingA1

• (G/H)(k)→ BH(k[∆•])→ BG(k[∆•]).

The associated long exact homotopy sequence for this fibre sequence is

· · · → πn(BH(k[∆•]))→ πn(BG(k[∆•]))→

→ πn−1(SingA1

• G/H(k)) = πn(BG(k[∆•]), BH(k[∆•))→
→ πn−1(BH(k[∆•]))→ πn−1(BG(k[∆•]))→ · · ·

The assumption that SingA1

• G/H(k) is n-connected is equivalent to the assump-
tion that the pair (BG(k[∆•]), BH(k[∆•])) is (n+ 1)-connected.
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Now we consider the long exact relative homology sequence for the pair

(BG(k[∆•]), BH(k[∆•])).

By construction, the spaces BG(k[∆•]) and BH(k[∆•]) are connected, and we
saw above that the pair (BG(k[∆•]), BH(k[∆•])) is (n + 1)-connected. By the
relative Hurewicz theorem, we find that H̃i(BG(k[∆•]), BH(k[∆•])) = 0 for i <
n+ 2 and Hn+2(B SingA1

• G(k), B SingA1

• H(k)) is obtained from

πn+2(B SingA1

• G(k), B SingA1

• H(k)) = πn+1(SingA1

• G/H(k))

by factoring out the action of π1(B SingA1

• H(k)).
From this, all the claims in the theorem follow by invoking the relative Hurewicz

theorem [GJ99, Corollary III.3.12]. �

3.3. Stabilization theorems. We first provide an analogue of the stabilization
results of Hutchinson and Tao [HT10] for the homology of SLn made A1-invariant:

Proposition 3.4. Let k be an infinite field. Then the homomorphisms

Hi(BSLn−1(k[∆•]),Z)→ Hi(BSLn(k[∆•]),Z)

induced by the standard inclusion SLn−1(k) ↪→ SLn(k) are isomorphisms for i ≤
n− 2. There is an exact sequence

Hn(BSLn−1(k[∆•]),Z)→ Hn(BSLn(k[∆•]),Z)→ KMW
n (k)→

→ Hn−1(BSLn−1(k[∆•]),Z)→ Hn−1(BSLn(k[∆•]),Z)→ 0.

Proof. The special linear groups are special in the sense of Serre, so any SLn-torsor
is already Zariski-locally trivial. In particular, we can apply Theorem 3.3. The
quotient SLn/SLn−1 is classically identified with An \ {0}, and by Proposition 3.2,
the space SingA1

• (An \ {0}) is (n− 2)-connected. This implies the claim about the
isomorphisms. For the exact sequence, we still need to identify

Hrel
n = πn−1(SingA1

• (SLn/SLn−1)(k))/π1(BSLn−1(k[∆•])).

But BSLn−1(k[∆•]) is simply-connected because the group SLn−1(k[∆•]) is con-
nected. Therefore, using Proposition 3.2, we find that Hrel

n can be identified with
KMW
n (k). �

As an aside, we state a restricted A1-homotopy version of the stabilization result
for GLn due to Nesterenko and Suslin, cf. [NS90].

Proposition 3.5. Let k be an infinite field. Then the homomorphisms

Hi(BGLn−1(k[∆•]),Z)→ Hi(BGLn(k[∆•]),Z)

induced by the standard inclusion GLn−1 ↪→ GLn are isomorphisms for i ≤ n− 2.
There is an exact sequence

Hn(BGLn−1(k[∆•]),Z)→ Hn(BGLn(k[∆•]),Z)→ KM
n (k)→

→ Hn−1(BGLn−1(k[∆•]),Z)→ Hn−1(BGLn(k[∆•]),Z)→ 0,

Proof. The argument is the same as for the SLn-case, with one exception. We have

π1(B SingA1

• GLn(k)) = H1(GLn(k),Z) = k×.

The operation of k× on An \ {0} is the one induced by the embedding of k× ↪→
GLn(k) : λ 7→ diag(λ, 1, . . . , 1). It is proven in [Mor12, Lemma 3.10] that the
abelian group of homomorphisms KMW

n → KMW
n is isomorphic to KMW

0 (k) =
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GW (k), the Grothendieck-Witt ring of k. The action is then given by a homomor-
phism k× → GW (k). Moreover, the Brouwer degree of the map An\{0} → An\{0}
induced by λ ∈ k× is exactly the image of λ under the canonical morphism

Gm → Gm/2→ KMW
0 (k) = GW (k).

A unit λ ∈ k× therefore acts via multiplication with the class [λ] ∈ KMW
0 (k). The

corresponding quotient of KMW
n (k) modulo this action is KM

n (k). The action of
k× on KMW

n (k) has also been described in [BM99]. �

Next, we consider the symplectic groups. This is the main result we will use in
the later development.

Proposition 3.6. Let k be an infinite field. Then the homomorphisms

Hi(BSp2n−2(k[∆•]),Z)→ Hi(BSp2n(k[∆•]),Z)

induced by the standard inclusion Sp2n−2(k) ↪→ Sp2n(k) are isomorphisms for i ≤
2n− 2. There is an exact sequence

H2n(BSp2n−2(k[∆•]),Z)→ H2n(BSp2n(k[∆•]),Z)→ KMW
2n (k)→

→ H2n−1(BSp2n−2(k[∆•]),Z)→ H2n−1(BSp2n(k[∆•]),Z)→ 0.

Proof. The symplectic groups are also special in the sense of Serre, so any Sp2n-
torsor is already Zariski-locally trivial. In particular, we can apply Theorem 3.3.
The quotient Sp2n/Sp2n−2 is classically identified with Q4n−1 ' A2n \ {0}, and by
Proposition 3.2, the space SingA1

• (A2n \{0}) is (2n−2)-connected. This implies the
claim about the isomorphisms. For the exact sequence, we still need to identify

Hrel
2n = πn−1(SingA1

• (Sp2n/Sp2n−2)(k))/π1(BSp2n−2(k[∆•])).

But BSp2n−2(k[∆•]) is simply-connected because the group Sp2n−2(k[∆•]) is con-
nected. Therefore, using Proposition 3.2, we find that Hrel

2n can be identified with
KMW

2n (k). �

Finally, we mention an A1-homotopy version of the stabilization results of Cathe-
lineau for the orthogonal groups, cf. [Cat07].

Proposition 3.7. Let k be an infinite field (of characteristic 6= 2). We consider
spin resp. special orthogonal groups for hyperbolic forms, which we denote by Spinn
resp. SOn.

• The homomorphisms

Hi(B Spin2n−1(k[∆•]),Z)→ Hi(B Spin2n(k[∆•]),Z)

induced by the standard inclusion Spin2n−2 ↪→ Spin2n are isomorphisms for
i ≤ n− 2. The same holds for the groups SO2n.

• There is an exact sequence

Hn(B Spin2n−1(k[∆•]),Z)→ Hn(B Spin2n(k[∆•]),Z)→ KMW
n (k)→

→ Hn−1(B Spin2n−1(k[∆•]),Z)→ Hn−1(B Spin2n(k[∆•]),Z)→ 0.

• The quotient of KMW
n (k) by the action of

π1(B SingA1

• SO(k)) ∼= k×/(k×)2

is isomorphic to KM
n (k). Therefore, the exact sequences above hold with

Spinn replaced by SOn and KMW
n (k) replaced by KM

n (k).
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Proof. We have

SingA1

• Spin2n / Spin2n−1 ' An \ {0}.
Again, the spin groups are perfect, which implies that there is no action to be
divided out. The more general results of [Wen11] apply to show the existence of
an A1-fibre sequence even without rational triviality assumptions. For the special
orthogonal groups, the action of k×/(k×)2 is again the one induced by the canonical
morphism k×/(k×)2 → KMW

0 (k), cf. Proposition 3.5. �

Remark 3.8. The existing methods are not yet sufficient to produce stabilization
results for the other inclusion Spin2n ↪→ Spin2n+1. The quotient there is an even-
dimensional quadric which is not yet known to possess the affine Brown-Gersten
property.

3.4. H2n(Sp2n(k),Z) surjects onto KMW
2n (k). For fields k of characteristic not

equal to 2, it is shown in [HT10, Lemma 3.5, Theorem 3.9] that there is a natural
homomorphism of graded Z[k×]-algebras

σn = Tn ◦ εn : Hn(SLn(k),Z)→ KMW
n (k), n ≥ 0.

Here the algebra structure on (Hn(SLn(k),Z))n≥0 comes from the external product

Hn(SLn(k),Z)⊗Hm(SLm(k),Z)→ Hn+m(SLn+m(k),Z))

induced by the block matrix homomorphism SLn(k)× SLn(k)→ SLn+m(k).
Thus, for any n ≥ 0, the inclusion Sp2n(k) → SL2n(k) induces a natural map

H2n(Sp2n(k),Z)→ KMW
2n (k).

Lemma 3.9. For any field k of characteristic not equal to 2, the natural map
H2n(Sp2n(k),Z)→ KMW

2n (k) is surjective.

Proof. Since Sp2(k) = SL2(k), the map H2(Sp2(k),Z) → KMW
2 (k) is an iso-

morphism, cf. [HT10, Theorem 3.10]. There are natural group homomorphisms
Sp2n(k)× Sp2m(k)→ Sp2n+2m(k), and hence, for any n a homomorphism

Sp2(k)× · · · × Sp2(k)︸ ︷︷ ︸
n

→ Sp2n(k).

These maps induce a commutative diagram

H2(Sp2(k),Z)⊗ · · · ⊗H2(Sp2(k),Z) //

∼=
��

H2n(Sp2n(k),Z)

��
H2(SL2(k),Z)⊗ · · · ⊗H2(SL2(k),Z) //

∼=
��

H2n(SL2n(k),Z)

��
KMW

2 (k)⊗ · · · ⊗KMW
2 (k) // KMW

2n (k)

Finally, since KMW
n (k) is additively generated by products [a1] · · · [an], [ai] ∈

KMW
1 (k), the lowest horizontal arrow in this diagram is a surjection. �

3.5. Injective stabilization for symplectic groups. We will provide an im-
provement of the stabilization result Proposition 3.6 for the symplectic groups, us-
ing the surjectivity statement of Lemma 3.9. The main ingredient is the following
comparison between stabilization morphisms for discrete and simplicial groups.

Proposition 3.10. Let k be a field of characteristic 0.
(1) There is a commutative diagram
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Hn(GLn(k),Z) //

εn ''OOOOOOOOOOO
Hn(BGLn(k[∆•]),Z)

vvmmmmmmmmmmmmm

KM
n (k),

where the top morphism is the change of topology, the left descending mor-
phism is the one of [NS90] and the right descending morphism is the one
from the stabilization sequence of Proposition 3.5.

(2) There is a commutative diagram

Hn(SLn(k),Z) //

Tn◦εn ''PPPPPPPPPPP
Hn(BSLn(k[∆•]),Z)

vvlllllllllllll

KMW
n (k),

where the top morphism is the change of topology, the left descending mor-
phism is the one of [HT10] and the right descending morphism is the one
from the stabilization sequence of Proposition 3.4.

(3) There is a commutative diagram

H2n(Sp2n(k),Z) //

Tn◦εn◦ι ((PPPPPPPPPPPP
H2n(BSp2n(k[∆•]),Z)

uulllllllllllll

KMW
2n (k),

where the top morphism is the change of topology, the left descending mor-
phism is the one of Lemma 3.9 and the right descending morphism is the
one from the stabilization sequence of Proposition 3.6.

Proof. We first show that (2) implies (3). Consider the following commutative
diagram:

H2n(Sp2n(k),Z) //

��

H2n(BSp2n(k[∆•]),Z) //

��

KMW
2n (k)

=

��
H2n(SL2n(k),Z) // H2n(BSL2n(k[∆•]),Z) // KMW

2n (k)

The right square is part of a commutative ladder of stabilization sequences arising
as in [AF12a, Section 3] from the inclusion Sp2n ↪→ SL2n and the subsequent
isomorphism of quotients SL2n/SL2n−1

∼= Sp2n/Sp2n−2. The left square is simply
induced by the respective inclusions of groups and change-of-topology maps. Our
goal is to show that the top composition H2n(Sp2n(k),Z) → KMW

2n (k) is the map
from Lemma 3.9. But this is a consequence of the commutativity and (1).

To show (2), we use the stabilization results above, in a manner analogous to the
arguments in [AF12b, Section 3, Lemma 3.4]. There is a case distinction, based on
the parity of n. In the case n = 2i+ 1, we consider the following diagram:

KMW
2i+2 (k)

α

��

0

))SSSSSSSSSSSSSS

H2i+1(SL2i+1(k),Z)
ι2i+1

//

∼=
��

H2i+1(BSL2i+1(k[∆•]),Z)

��

σ
// KMW

2i+1 (k)

H2i+1(SL2i+2(k),Z)
ι2i+2

// H2i+1(BSL2i+2(k[∆•]),Z)

55
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The left vertical map is the stabilization map of [HT10], which is an isomorphism
by [HT10, Corollary 6.12]. The middle column is a part of the stabilization exact
sequence of Proposition 3.4. The morphism σ is the map we want to compare
with Tn ◦ εn. Note that the map α is the one from the stabilization sequence for
the inclusion SL2i+1 ↪→ SL2i+2, while the morphism σ is the one induced from
the stabilization sequence for the inclusion SL2i ↪→ SL2i+1. The composition
σ ◦α : KMW

2i+2 (k)→ KMW
2i+1 (k) is then the same as the corresponding composition in

the stabilization sequences for A1-homotopy groups of [Wen11, Theorem 6.8]. This
morphism has been identified as 0 in [AF12b, Lemma 3.3], hence σ extends through
H2i+1(BSL2i+2(k[∆•]),Z) as claimed. The question reduces to commutativity of
the same diagram for n =∞, i.e. the stable case.

In the case n = 2i, we consider the following diagram:

KMW
2i+1 (k)

α

��

β

))

0

��
I2i+1(k)

= //

γ

��

I2i+1(k)

��
H2i(SL2i(k),Z)

ι2i

//

��

H2i(BSL2i(k[∆•]),Z)

��

σ
// KMW

2i (k)

��
H2i(SL2i+1(k),Z)

ι2i+1
//

��

H2i(BSL2i+1(k[∆•]),Z)

��

// KM
2i (k)

��
0 0 0

The right vertical column is one of the standard exact sequences for Milnor-Witt
K-theory, cf. [Mor04]. The left vertical column is the exact sequence from the
Hutchinson-Tao stabilization theorem [HT10]. The middle column is the stabiliza-
tion exact sequence of Proposition 3.4. The diagram without the dotted arrows is
commutative, the only square is obviously commutative.

Note that the map α is the one from the stabilization sequence for the inclusion
SL2i ↪→ SL2i+1, while the morphism σ is the one induced from the stabilization
sequence for the inclusion SL2i−1 ↪→ SL2i. The composition σ ◦ α : KMW

2i+1 (k) →
KMW

2i (k) is then the same as the corresponding composition in the stabilization
sequences for A1-homotopy groups of [Wen11, Theorem 6.8]. This morphism has
been identified as η in [AF12b, Section 3, Lemma 3.3], hence α factors through β
as claimed.

The composition σ ◦ ι2i ◦ γ has been identified in [HT10, Corollary 6.13] as the
canonical inclusion I2i+1(k) ↪→ KMW

2i (k) arising from η : KMW
2i+1 (k) → KMW

2i (k).
Hence, we have the dotted equality arrow in the diagram. This means that on
the subgroup I2i+1 ↪→ H2i(SL2i(k),Z), the two maps - change of topology plus
stabilization and T2i ◦ ε2i agree. To show that they agree on all of H2i(SL2i(k),Z),
we need to consider the bottom row. The dotted arrow exists, since KMW

2i+1 (k) →
KMW

2i (k) has been identified with η.
There is another map H2i(SL2i+1(k),Z) → KM

2i (k) induced from T2i ◦ ε2i :
H2i(SL2i(k),Z) → KMW

2i (k) modulo I2i+1. It now suffices to identify this map
with the bottom composition in the big diagram.

To show that the bottom composition agrees with T2i ◦ ε2i modulo I2i+1, it
suffices to check this after stabilization to SL∞. We have a commutative diagram
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H2i(SL2i+1(k),Z) //

∼=
��

H2i(BSL2i+1(k[∆•]),Z)

∼=
��

H2i(SL∞(k),Z) ∼=
// H2i(BSL∞(k[∆•]),Z)

The left isomorphism is a case of [HT10, Theorem 1.1], the right isomorphism is
a case of Proposition 3.4, and the bottom isomorphism is a consequence of homo-
topy invariance of algebraic K-theory. After stabilization, we see that both maps
H2i(SL∞(k),Z) → KM

2i (k) and H2i(BSL∞(k[∆•]),Z) → KM
2i (k) factor through

Suslin’s homomorphism H2i(BGL∞(k[∆•]),Z)→ KM
2i (k) and the respective inclu-

sion.
Finally, (1) is proved in the same way as (2). The result becomes easier as there

is no case distinction, we always have a diagram as in (2), case n = 2i + 1. The
argument given there also applies to reduce the claim to the case n =∞.

Now we have reduced all the claims to the commutativity of the diagram

Hn(GLn(k),Z) //

''OOOOOOOOOOO
Hn(BGLn(k[∆•]),Z)

vvmmmmmmmmmmmmm

KM
n (k),

where the morphism on the left is Suslin’s homomorphism, the top morphism is the
change-of-topology and the right morphism is obtained from the A1-stabilization
sequence. This compatibility follows from Suslin’s characterization of the homo-
morphism Hn(GLn(k),Z)→ KM

n (k), cf. [Sus84] or [BM99, Theorem 1.3], and the
computations in [AF12b, Section 3, Lemma 3.10].

The result is proved. �

The following is now an obvious consequence of Proposition 3.6, Lemma 3.9 and
Proposition 3.10.

Corollary 3.11. Let k be a field of characteristic 0.
(1) In the stabilization sequence for the special linear groups, cf. Proposi-

tion 3.4, the morphism

H2n(BSL2n(k[∆•]),Z)→ KMW
2n (k)

is surjective. Hence, the standard inclusion SL2n−1 ↪→ SL2n induces an
isomorphism

H2n−1(BSL2n−1(k[∆•]),Z)
∼=−→ H2n−1(BSL2n(k[∆•]),Z) ∼= H2n−1(BSL∞(k)).

(2) In the stabilization sequence for the symplectic groups, cf. Proposition 3.6,
the morphism

H2n(BSp2n(k[∆•]),Z)→ KMW
2n (k)

is surjective. Hence, the standard inclusion Sp2n−2 ↪→ Sp2n induces an
isomorphism

H2n−1(BSp2n−2(k[∆•]),Z)
∼=−→ H2n−1(BSp2n(k[∆•]),Z) ∼= H2n−1(BSp∞(k)).

Remark 3.12. We recall the computation of the homotopy group πA1

2 (SL2) from
[AF12a, Theorem 3]. For an infinite perfect field of characteristic 6= 2, there is an
exact sequence

0→ S′′4 (k)→ πA1

2 (SL2)(Spec k)→ KSp3(k)→ 0.
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The group S′′4 (k) sits in an exact sequence

I5(k)→ S′′4 (k)→ S′4(k)→ 0,

where I5(k) is the fifth power of the fundamental ideal of the Witt ring W (k) and
there is a surjection KM

4 (k)/12 � S′4(k).
Comparing with our stabilization result above, we find that the group S′′4 lies in

the kernel of the Hurewicz homomorphism πA1

3 (BSL2)(k)→ H3(BSL2(k[∆•]),Z),
at least if the field k has characteristic 0.

3.6. Remarks on join operations. A natural way to generalize Proposition 3.10
to infinite fields of characteristic 6= 2 would be to define an external product struc-
ture

Hn(BSLn(k[∆•]),Z)⊗Hm(BSLm(k[∆•]),Z)→ Hn+m(BSLn+m(k[∆•]),Z)

such that we get a commutative diagram

Hn(BSLn(k[∆•]),Z)⊗Hm(BSLm(k[∆•]),Z) //

��

KMW
n (k)⊗KMW

m (k)

��
Hn+m(BSLn+m(k[∆•]),Z) // KMW

n+m(k)

where all morphism Hi(BSLi(k[∆•]),Z) → KMW
i (k) are induced from the stabi-

lization sequence Proposition 3.4 and the vertical map on the right is the product
structure of Milnor-Witt K-theory.

Of course, the natural morphism BSLn ×BSLm → BSLn+m induced by

SLn × SLm → SLn+m : (A,B) 7→
(
A 0
0 B

)
provides the obvious candidate. Moreover, it has the nice property that the change-
of-topology morphism Hi(SLn(k))→ Hi(BSLn(k[∆•])) maps the external product
of homology of the discrete groups

Hn(SLn(k),Z)⊗Hm(SLm(k),Z)→ Hn+m(SLn+m(k),Z)

to the product above.
Checking compatibility with the product structure in Milnor-Witt K-theory is

more involved. For now, we can check if such a compatibility is at least true
on the level of homotopy groups of BSLn(k[∆•]). In that case, the morphism
πn(BSLn(k[∆•]))→ KMW

n (k) is given by the natural projection SLn → An \ {0}.
Moreover, the product structure described above is induced from an A1-version of
James’ intrinsic join construction [Jam58]

SLn(k[∆•]) ∗ SLm(k[∆•])→ SLn+m(k[∆•]).

An argument as in [Jam58] shows that this intrinsic join is compatible with the
morphisms in the stabilization sequence where the product structure on spheres
is also induced from the usual join. The latter then gives rise to the product of
Milnor-Witt K-theory. This way, we find that the stabilization morphisms on A1-
homotopy groups maps the join product on A1-homotopy groups of the groups SLn
to the product in Milnor Witt K-theory.

This indicates that the stabilization morphism on homology would also map the
external product on A1-invariant group homology into the product of Milnor-Witt
K-theory. However, a precise argument for this is still missing. The description
of the effect of the stabilization morphism on homology is more difficult than on
homotopy.
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4. The third homology of SL2 and indecomposable K3

Suslin has shown in [Sus90, Corollary 5.2] that for any field k, the Hurewicz
homomorphism K3(k)→ H3(GL∞(k)) induces an isomorphism

H3(SL∞(k)) ∼=
K3(k)

{−1} ·K2(k)
.

It follows that there is a natural induced surjective map

H3(SL∞(k))→ K ind
3 (k) :=

K3(k)
KM

3 (k)
.

Let γ denote the induced composite map

H3(SL2(k))→ H3(SL∞(k))→ K ind
3 (k).

Lemma 4.1. Let k be an infinite field.
(1) γ is surjective.
(2) γ induces an isomorphism

H3(SL2(k),Z[1/2])⊗Z[k×/(k×)2] Z ∼= K ind
3 (k)⊗ Z[1/2]

(3) If k× = (k×)2 then γ induces an isomorphism

H3(SL2(k),Z) ∼= K ind
3 (k).

Proof. (1) This is [HT09, Lemma 5.1]
(2) This is [Mir08, Proposition 6.4 (ii)].
(3) This is [Mir08, Proposition 6.4 (iii)].

�

We also note that since the map γ factors through the stabilization homomor-
phism we have

Lemma 4.2. Let k be a field of characteristic 0. Then there is a natural surjective
homomorphism γ′ : H3(BSL2(k[∆•]),Z) → K ind

3 (k) giving rise to a commutative
triangle

H3(SL2(k),Z)

��

γ

((QQQQQQQQQQQQQ

H3(BSL2(k[∆•]),Z)
γ′ // K ind

3 (k).

Proof. There is a natural commutative square

H3(SL2(k),Z) //

��

H3(SL∞(k),Z)

∼=
��

H3(BSL2(k[∆•]),Z) // H3(BSL∞(k[∆•]),Z).

In this diagram, the right-hand vertical map is an isomorphism by Corollary 3.11.
�

Combining Lemma 4.1 (3) and Lemma 4.2, we immediately deduce:

Corollary 4.3. Let k be a field of characteristic 0 satisfying k× = (k×)2. Then
the change-of-topology morphism

H3(SL2(k),Z)→ H3(BSL2(k[∆•]),Z)

is injective. The image of this map is isomorphic to K ind
3 (k) and is a direct sum-

mand of H3(BSL2(k[∆•]),Z).
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5. Actions of multiplicative groups and Grothendieck-Witt rings

In this section, we will discuss the comparison of natural Z[k×/(k×)2]-module
structures on the homology groups H•(SL2(k),Z) and H•(BSL2(k[∆•]),Z). The
two main statements are that the change-of-topology morphism is equivariant for
these additional module structures, and that on the A1-homotopy side, the module
structure on H•(BSL2(k[∆•]),Z) descends to GW (k)-module structure. This is
achieved by analysing the action of units on the A1-homotopy type of P1.

5.1. Review of Grothendieck-Witt rings. We first recall definition and nota-
tion for Grothendieck-Witt rings, collated from various sources [KK82], [HT10] and
[Mor12, Section 3].

For a field k, we have the ring Z[k×/(k×)2], which is the integral group ring
over the group k×/(k×)2 of square classes of k. For a ∈ k× we will let 〈a〉 ∈
Z[k×/(k×)2] denote the square class of a. We let Ik denote the augmentation ideal
with generators 〈〈a〉〉 := 〈a〉 − 1.

The Grothendieck-Witt ring GW (k) of the field k is the group completion of
the set of isometry classes of nondegenerate symmetric bilinear forms over k. The
addition and multiplication operations are given by orthogonal sum and tensor
product of symmetric bilinear forms, respectively. For a ∈ k, the 1-dimensional
form (x, y) 7→ axy is denoted by 〈a〉 ∈ GW (k). The dimension function provides
an augmentation dim : GW (k)→ Z, and the augmentation ideal I(k) is called the
fundamental ideal. It is generated by the Pfister forms 〈〈a〉〉 := 〈a〉 − 1.

There is a homomorphism of augmented rings

Z[k×/(k×)2]→ GW (k) : 〈a〉 7→ 〈a〉 .

This homomorphism is surjective, and its kernel is the ideal, Jk, generated by the
‘Steinberg elements’ 〈〈a〉〉 〈〈1− a〉〉 ∈ I2

k .
Recall from [Mor12, Definition 3.1] that the Milnor-Witt K-theory KMW

• (k)
of the field k is defined to be the graded associative ring generated by symbols
[a], a ∈ k× of degree 1 and η of degree −1 with the following relations:

(1) [a][1− a] = 0 for each a ∈ k× \ {1},
(2) [ab] = [a] + [b] + η[a][b] for each a, b ∈ k×,
(3) [a]η = η[a] for each a ∈ k×,
(4) ηh = 0 for h = η[−1] + 2.

There is an augmentation KMW
0 (k)→ KMW

0 (k)/η ∼= Z. The morphism

GW (k)→ KMW
0 (k) : 〈a〉 7→ 1 + η[a]

induces an isomorphism of augmented rings.

5.2. Module structures and equivariance.

Definition 5.1. The standard exact sequence of algebraic groups

1 ↪→ SL2 ↪→ GL2
det−→ Gm → 1

induces an action of Gm on SL2. For any k-algebra R, we can describe the action
of k× on SL2(R) as

k× × SL2(R)→ SL2(R) : (u,A) 7→
(
u 0
0 1

)
·A ·

(
u−1 0

0 1

)
We note that for a ring homomorphism R → S, the induced homomorphism

SL2(R)→ SL2(S) is obviously k×-equivariant.
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Lemma 5.2. (i) The projection

SL2 → P1 :
(
a b
c d

)
7→ [c : d].

induces an action of k× on P1(k). This action is given by

k× × P1(k)→ P1(k) : (u, [x, y]) 7→ [ux : y].

(ii) The conjugation action above induces an action of k× on the simplicial sets
SL2(k[∆•]) and BSL2(k[∆•]).

Proof. (i) is obvious.
(ii) The action of k× on SL2(k[∆•]) follows from the k×-equivariance of maps

induced from ring homomomorphisms. This action is an action by group automor-
phisms (as opposed to just automorphisms as a space), hence it induces an action
of k× on BSL2(k[∆•]). �

From the above definition, the following is immediate:

Lemma 5.3. The following morphisms are k×-equivariant, for the module struc-
tures defined above:

(i) the Hurewicz homomorphism π•(BSL2(k[∆•]))→ H•(BSL2(k[∆•])),
(ii) the identification π•(BSL2(k[∆•])) ∼= πA1

• (BSL2)(k),
(iii) the loop-space isomorphism πA1

•+1(BSL2) ∼= πA1

• (SL2),
(iv) the projection πA1

• (SL2)→ πA1

• (P1) (which happens to be an isomorphism for
• ≥ 2).

Proposition 5.4. The k×-action on SL2(k[∆•]) induces a GW (k)-module struc-
ture on π3(BSL2(k[∆•])) and hence on H3(BSL2(k[∆•])).

Proof. By [Caz08, Theorem 2] or [Mor12, Theorem 7.36], we have

[(P1,∞), (P1,∞)]• ∼= GW (k)×k×/(k×)2 k
×

where the left-hand side denotes pointed A1-homotopy classes of morphisms P1 →
P1. Moreover, the endomorphism [x : y] 7→ [ux : y] corresponds to the pair (〈u〉 , u)
on the right-hand side. From [Mor12, Theorem 6.13], we find

[(SL2, 1), (SL2, 1)]• ∼= (KMW
2 (k))−2

∼= KMW
0 (k) ∼= GW (k),

where the left-most term denotes pointed A1-homotopy classes of maps SL2 → SL2.
The conjugation action provides a monoid homomorphism k× → GW (k), and we

claim that it is the natural map u ∈ k× 7→ 〈u〉 ∈ GW (k) up to sign, cf. also [Caz12,
Section 3.5]. We noted above that for any unit u ∈ k×, there is a commutative
diagram of pointed maps

SL2
//

��

P1

��
SL2

// P1

where the horizontal arrows are the natural projections, the left vertical arrow is
conjugation with u and the right vertical arrow the map [x : y] 7→ [ux : y]. The
projection map SL2 → P1 induces KMW

0 (k) ∼= [SL2, SL2]→ [SL2,P1] ∼= KMW
−1 (k)

and KMW
0 (k) ×k×/(k×)2 k

× ∼= [P1,P1] → [SL2,P1] ∼= KMW
−1 (k). The first map is

multiplication with η, since SL2 → P1 is the Hopf map. Similarly, the second
map is multiplication with η. From the discussion in [Mor12, p.195], the k×-
factor of [P1,P1] is included via multiplication with h, hence it is annihilated by
multiplication with η. Commutativity of the diagram implies that the two possible
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maps k× → [SL2, SL2] ∼= GW (k) → W (k) and k× → [P1,P1] ∼= GW (k) → W (k)
agree. In particular, it follows from the results of Cazanave and Morel that under
the above identification, the homotopy class of conjugation with diag(u, 1) is the
class of η 〈u〉 ∈ W (k). Since η : GW (k) → W (k) annihilates exactly Z · h, the
morphism k× → [SL2, SL2] ∼= GW (k) must by u 7→ 〈u〉+nh for some n ∈ Z. Since
conjugation with u is invertible, the augmentation must map the image of u to 1,
hence the morphism k× → [SL2, SL2] ∼= GW (k) must map u exactly to 〈u〉.

It is clear that the k×-action on the homotopy of SL2 is induced from the
natural action [(SL2, 1), (SL2, 1)]• × SL2 → SL2 together with the composition
k× → GW (k) ∼= [(SL2, 1), (SL2, 1)]• associating to u the conjugation by diag(u, 1).
In particular, the k×-action coming from conjugation extends to a GW (k)-module
structure on homotopy and homology of SL2(k[∆•]). Using the equivariance of
the isomorphisms from Lemma 5.3, we find that the same is true for homotopy of
BSL2(k[∆•]). This proves the first assertion.

For the second assertion, recall that since BSL2(k[∆•]) is simply-connected, so
the Hurewicz homomorphism π3(BSL2(k[∆•]))→ H3(BSL2(k[∆•])) is surjective,
and by Lemma 5.3, it is also equivariant. Therefore, the GW (k)-module structure
on π3 descends to a GW (k)-module structure on H3. �

Remark 5.5. There is probably a very explicit description of the isomorphism
[SL2, SL2] ∼= GW (k) along the lines of [Caz12], which would allow to prove the
above result without the passage through P1.

Lemma 5.6. The conjugation action of k× on SL2(k) descends to an action of
Z[k×/(k×)2] on H•(SL2(k),Z). The natural change-of-topology morphism

H3(SL2(k),Z)→ H3(BSL2(k[∆•]),Z)

is equivariant for the Z[k×/(k×)2]-module structures.

Proof. For any unit u ∈ k×, the conjugation action of u2 is the same as conjugating
with diag(u, u−1) ∈ SL2(k). The squares therefore act via inner automorphisms,
hence trivially on the homology. Homology groups are abelian groups, so the action
of k×/(k×)2 can be extended to the group ring linearly.

The change-of-topology morphism is induced from the inclusion of bisimplicial
sets BSL2(k) → BSL2(k[∆•]), where the first bisimplicial set is constant in the
∆•-direction. The degree-wise morphisms BSL2(k) → BSL2(k[∆n]) are induced
from the inclusion of the constants k ↪→ k[∆n]. Equivariance for the k×-module
structures is then clear. The Z[k×/(k×)2]-module structure on H3(SL2(k)) has
been described above. The Z[k×/(k×)2]-module structure on H3(BSL2(k[∆•]))
comes from theGW (k)-module structure in the previous proposition composed with
Z[k×/(k×)2]→ GW (k). The corresponding equivariance is then also clear. �

We state an obvious corollary:

Corollary 5.7. We have the following factorization of the change-of-topology mor-
phism:

H3(SL2(k),Z)→ H3(SL2(k),Z)⊗Z[k×/(k×)2] GW (k)→ H3(BSL2(k[∆•]),Z).

6. Bloch groups and specialization homomorphisms

We review the relationship between H3(SL2(k),Z) and the refined Bloch group,
RB(k) and we use this relationship to compute lower bounds for the kernel of the
map

H3(SL2(k),Z[1/2])→ H3(SL2(k),Z[1/2])⊗Z[k×/(k×)2] GW (k).
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We begin by recalling that for any infinite field k there is a natural surjective
homomorphism H3(SL2(k),Z) → K ind

3 (k) ([HT09, Lemma 5.1]) which induces an
isomorphism

H3(SL2(k),Z[1/2])⊗Z[k×/(k×)2] Z ∼= K ind
3 (k)⊗ Z[1/2]

([Mir08]).
Recall from Section 5 that Ik ⊆ Z[k×/(k×)2] is the augmentation ideal and Jk ⊆

Z[k×/(k×)2] is the kernel of Z[k×/(k×)2]→ GW (k). Thus, if M is a Z[k×/(k×)2]-
module we have

IkM = ker(M →M ⊗Z[k×/(k×)2] Z)
and

JkM = ker(M →M ⊗Z[k×/(k×)2] GW (k)).
In particular, the natural map

M ⊗Z[k×/(k×)2] GW (k)→M ⊗Z[k×/(k×)2] Z

(induced by GW (k)→ Z) is an isomorphism if and only if JkM = IkM .
For a field k with at least 4 elements, the scissors congruence group or pre-Bloch

group, P(k), is the Z-module with generators [a], a ∈ k×, subject to the relations
(1) [1] = 0, and
(2)

[x]− [y] +
[y
x

]
−
[

1− x−1

1− y−1

]
+
[

1− x
1− y

]
for x, y 6= 1.

The refined pre-Bloch group, RP(k), is the Z[k×/(k×)2]-module with generators
[a], a ∈ k×, subject to the relations

(1) [1] = 0, and
(2)

[x]− [y] + 〈x〉
[y
x

]
−
〈
x−1 − 1

〉 [1− x−1

1− y−1

]
+ 〈1− x〉

[
1− x
1− y

]
for x, y 6= 1.

We let

S2(k) :=
k× ⊗Z k

×

〈{x⊗ y + y ⊗ x|x, y ∈ k×}〉
,

the second (graded) symmetric power. We let x ◦ y denote the image of x ⊗ y in
S2(k). We endow S2(k) with the trivial Z[k×/(k×)2]-module structure.

The refined Bloch group, RB(k), of the field k (with at least 4 elements) is the
kernel of the Z[k×/(k×)2]-module homorphism Λ:

Λ = (λ1, λ2) : RP(k) → I2
k ⊕ S2(k),

[a] 7→ (〈〈a〉〉 〈〈1− a〉〉 , a ◦ (1− a)) .

The following is main result (Theorem 4.3 (1)) of [Hut11b]:

Proposition 6.1. For an infinite field k there is a natural complex

0→ Tor(µk, µk)→ H3(SL2(k),Z)→ RB(k)→ 0

of Z[k×/(k×)2]-modules which is exact except possibly at the middle term where the
homology is annihilated by 4.

For 1 6= x ∈ k×, the element [x] + [1 − x] ∈ P(k) is independent of x and has
order dividing 6 ([Sus90, Lemma 1.3, Lemma 1.5]). We denote this constant by Ck.
Furthermore, by [Sus90, Lemma 1.2], for x ∈ k× the elements ψ(x) := [x] + [x−1] ∈
P(k) satisfy 2ψ(x) = 0 and ψ(xy) = ψ(x) + ψ(y). We denote by Sk the group
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{ψ(x)|x ∈ k×} ⊂ P(k) and by P̃(k) the group P(k)/Sk. Observe that the natural
map P(k)→ P̃(k) induces an isomorphism P(k)⊗ Z[1/2] ∼= P̃(k)⊗ Z[1/2].

Similarly, we let ψ1(x) denote the element [x] + 〈−1〉 [x−1] ∈ RP(k). (These ele-
ments are not generally of finite order.) Let R̃P(k) denote the Z[k×/(k×)2]-module
obtained by taking the quotient of RP(k) modulo the Z[k×/(k×)2]-module gener-
ated by the set {ψ1(x)|x ∈ k×} and let R̃B(k) denote the image of the composite
map RB(k)→ RP(k)→ R̃P(k). Then ([Hut11a, Lemma 4.1]) we have:

Lemma 6.2. The natural map RB(k) → R̃B(k) is surjective with kernel annihi-
lated by 4. In particular, it induces an isomorphism RB(k) ⊗ Z[1/2] ∼= R̃B(k) ⊗
Z[1/2].

Now suppose that k is an infinite field with (surjective) valuation v : k× → Γ,
where Γ is a totally ordered additive abelian group, and corresponding residue field
k̄. Let φ : Γ → Z/2 be a group homomorphism. For an abelian group A, we let
A[φ] denote A endowed with the Z[k×/(k×)2]-module structure

〈x〉 · a := (−1)φ(v(x))a for all x ∈ k×, a ∈ A.
Then we have ([Hut11b, section 4.3]):

Proposition 6.3. There is a natural surjective Z[k×/(k×)2]-module homomor-
phism Sv,φ = Sφ : R̃P(k)→ P̃(k̄)[φ] determined by the formula

Sφ([a]) =

 [ā], v(a) = 0
Ck̄, v(a) > 0
−Ck̄, v(a) < 0

Furthermore, if φ 6= 0 the image of the induced composite homomorphism

H3(SL2(k),Z)→ RB(k)→ P̃(k̄)[φ]

contains 4 · P̃(k̄).

The following corollary, which follows from the case φ = 0 in 6.3, will be needed
below:

Corollary 6.4. Let k be a field with valuation and corresponding residue field k̄.
There is a natural surjective homomorphism P(k)→ P̃(k̄).

Proof. When φ = 0, P̃(k̄) has the trivial Z[k×/(k×)2]-module structure and hence
the homomorphism Sφ factors through RP(k)k× = P(k). �

Corollary 6.5. Let k be a field with valuation v : k× → Γ and residue field k̄.
Suppose that

(1) Γ/2Γ 6= 0 and
(2) 16 · P̃(k̄) 6= 0.

Then JkH3(SL2(k),Z) 6= 0.

Proof. Let φ : Γ→ Z/2 be a non-zero homomorphism. Let y ∈ P̃(k̄) with 16y 6= 0.
There exists x ∈ H3(SL2(k),Z) with Sφ(x) = 4y.

Choose π ∈ Ov with φ(v(π)) = 1. So 〈π〉 y = −y and hence 〈〈π〉〉 y =
〈〈
π−1

〉〉
y =

−2y.
But v(1−π) = 0 = v(π−1) and hence v(1−π−1) = v(π−1) and φ(v(1−π−1)) = 1

also. Thus
〈〈

1− π−1
〉〉
y = −2y also. It follows that

Sφ(
〈〈
π−1

〉〉 〈〈
1− π−1

〉〉
x) =

〈〈
π−1

〉〉 〈〈
1− π−1

〉〉
Sφ(x) = (−2) · (−2) · 4y = 16y 6= 0

and hence 0 6=
〈〈
π−1

〉〉 〈〈
1− π−1

〉〉
x ∈ JkH3(SL2(k),Z). �

The following is Theorem 6.19 in [Hut11a]:
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Proposition 6.6. Let k be a local field with finite residue field k̄ of odd order. If
Q3 ⊂ k, suppose that [k : Q3] is odd. Then there is an isomorphism of Z[k×/(k×)2]-
modules

H3(SL2(k),Z[1/2]) ∼=
(
K ind

3 (k)⊗ Z[1/2]
)
⊕
(
P(k̄)⊗ Z[1/2]

)
.

In this isomorphism, the map from H3(SL2(k),Z[1/2]) to the second factor is
induced by Sφ where φ is the nontrivial homomorphism Γ = Z→ Z/2.

Remark 6.7. If k is a finite field with q elements, then P(k) has order q + 1 and
P(k) ⊗ Z[1/2] is cyclic ([Hut11b, Lemma 7.4]) of order (q + 1)′. Here, n′ denotes
the odd part of the integer n: n = 2an′ with a ≥ 0 and n′ odd.

More generally we have the following ([Hut13]):

Proposition 6.8. Let k0, k1, . . . , kn = k be a sequence of fields satisfying:
(1) For each i ∈ {1, . . . , n} there is a complete discrete value vi on ki with

residue field ki−1.
(2) k0 is either finite or real-closed or quadratically closed.
(3) char(k0) 6= 2.
(4) Either char(k) = 3 or char(k0) 6= 3 or k contains a primitive cube root of

unity.
Then there is a natural split short exact sequence

0→
n−1⊕
i=0

(P(ki)⊗ Z[1/2])⊕2n−i−1
→ H3(SL2(k),Z[1/2])→ K ind

3 (k)⊗ Z[1/2]→ 0.

Remark 6.9. The direct sum decomposition occurring here is the eigenspace de-
composition for the group of characters on k×/(k×)2 which restrict to the trivial
character on k×0 /(k

×
0 )2 (see [Hut13, section 6]).

To spell this out, let k be complete with respect to a discrete valuation v with
residue field k̄ of characteristic not equal to 2. Let U := {a ∈ k×| v(a) = 0}.
By Hensel’s Lemma u ∈ U is square if and only if ū ∈ k̄× is a square. Thus
U/U2 ∼= k̄×/(k̄×)2, and if π ∈ k× is a uniformizer there is a natural (split) short
exact sequence

1→ k̄×/(k̄×)2 → k×/(k×)2 → πZ/2 → 1

where the first injection is obtained by choosing an inverse image x in U of a given
element x̄ ∈ k̄.

Now let Xk := Hom(k×/(k×)2, µ2). As noted, the conditions on k in the propo-
sition (completeness of vi and char(k0) 6= 2) ensure that there are natural injective
maps

k×i−1/(k
×
i−1)2 → k×i /(k

×
i )2

and hence there are surjective restriction homomorphisms

Xki
→ Xki−1 .

For each i ≤ n, let

Wi := ker(Xk → Xki
) = {χ ∈ Xk| χ|k×i = 1}.

For each i < n and χ ∈ Wi \ Wi+1, the χ-eigenspace of H3(SL2(k),Z[1/2]) –
which we will denote H3(SL2(k),Z[1/2])χ – is isomorphic to P(ki) ⊗ Z[1/2], and,
by definition, the square class 〈a〉 acts as multiplication by χ(a) on this factor.

Lemma 6.10. Let k be as in Proposition 6.8. Let M be a Z[k×/(k×)2] ⊗ Z[1/2]-
module. Let i < n and χ ∈Wi \Wi+1. Then JkMχ = Mχ.
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Proof. Let On = {a ∈ k = kn|vn(a) ≥ 0} and for j < n define recursively Oj =
{a ∈ Oj+1|vj(πj(a)) ≥ 0}, where πj : Oj+1 → kj is the natural surjection. Let
x ∈ Oi+1 with vi+1(πi+1(x)) = 1. Then the group (of order 2) k×i+1/

(
(k×i+1)2 · k×i

)
is generated by the class of x and hence χ(〈x〉) = χ(

〈
x−1

〉
) = −1. Since

vi+1(πi+1(x− 1)) = 0,

it follows that the class of x−1 represents an element - possibly trivial - of k×i /(k
×
i )2

and hence χ(〈x− 1〉) = 1. Hence

χ(
〈
1− x−1

〉
) = χ(

〈
x−1

〉
)χ(〈x− 1〉) = −1 · 1 = −1.

Thus
〈〈
x−1

〉〉
and

〈〈
1− x−1

〉〉
both act on Mχ as multiplication by −2, and hence〈〈

x−1
〉〉 〈〈

1− x−1
〉〉
∈ Jk acts on Mχ as multiplication by 4. �

Corollary 6.11. If k is as in Proposition 6.8 then
(1)

H3(SL2(k),Z[1/2])⊗Z[k×/(k×)2] GW (k) ∼= H3(SL2(k),Z[1/2])⊗Z[k×/(k×)2] Z
∼= K ind

3 (k)⊗ Z[1/2]

and
(2) there is a natural short exact sequence

0→
n−1⊕
i=0

(P(ki)⊗ Z[1/2])⊕2n−i−1
→ H3(SL2(k),Z[1/2])→

→ H3(SL2(k),Z[1/2])⊗Z[k×/(k×)2] GW (k)→ 0.

(3) JkH3(SL2(k),Z[1/2]) ∼=
⊕n−1

i=0 (P(ki)⊗ Z[1/2])⊕2n−i−1
.

Proof. The second statement follows from the first by Proposition 6.8, and the third
is an immediate consequence of the second.

To prove the first isomorphism of statement (1), we must show that

JkH3(SL2(k),Z[1/2]) = IkH3(SL2(k),Z[1/2]).

Now

IkH3(SL2(k),Z[1/2]) =
n−1⊕
i=0

(P(ki)⊗ Z[1/2])⊕2n−i−1

=
n−1⊕
i=0

 ⊕
χ∈Wi\Wi+1

H3(SL2(k),Z[1/2])χ


by Proposition 6.8 and the remark which follows it. The result follows by Lemma
6.10. �

Remark 6.12. Let k satisfy the hypotheses of Proposition 6.8. If k0 is finite or
quadratically closed then the Witt ring W (k0) of k0 is 2-torsion. An easy induction
using Springer’s Theorem on Witt rings of fields complete with respect to a discrete
valuation ([Lam05, Chapter VI, Theorem 1.4]) implies that W (k) is 2-torsion and
hence that GW (k)⊗ Z[1/2] = Z[1/2].

However, in the case that k0 is real closed, then – by Springer’s Theorem again
– the fundamental ideal of W (k) contains a free abelian group of rank 2n and the
map GW (k)⊗ Z[1/2]→ Z[1/2] has a large kernel.

The following is a special case of [Hut11a, Theorem 5.1]:
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Proposition 6.13. Let O be a unique factorization domain with field of fractions
k. Let P be a set of representatives of the association classes of prime elements of
k. For each p ∈ P there is a discrete valuation vp : k× → Z with corresponding
residue field k̄p. Let φ : Z→ Z/2 be the non-zero homomorphism.

Then the specialization homomorphisms induce a well-defined surjective map of
Z[k×/(k×)2]-modules

S =
∑
p∈P

Sp,φ : H3(SL2(k),Z[1/2])→
⊕
p∈P
P(k̄p)⊗ Z[1/2].

Corollary 6.14. Let O be a unique factorization domain with field of fractions k.
Then the map induced by S

JkH3(SL2(k),Z[1/2])→
⊕
p∈P
P(k̄p)⊗ Z[1/2]

is surjective.
More generally, the map

Jk(H3(SL2(k),Z)⊗A)→
⊕
p∈P

(P(k̄p)⊗A)

is surjective for any commutative Z[1/2]-algebra A.

Proof. Denote the right-hand side by P(O). By Proposition 6.13, it is enough to
show that JkP(O) = P(O).

Let x ∈ P(O). There exist primes p1, . . . , pt ∈ P such that x =
∑t
i=1 xi with

xi ∈ P(k̄pi
)⊗ Z[1/2].

Recall that 〈a〉 ∈ Z[k×/(k×)2] acts as multiplication by (−1)vpi
(a) on P(k̄pi

).
Choose a ∈ O with the property that vpi

(a) is odd for 1 ≤ i ≤ t. Let b = 1/a. Then
vpi

(b) = vpi
(1 − b) is odd for all i. It follows that 〈〈b〉〉 〈〈1− b〉〉xi = (−2)2xi = 4xi

for all i and hence that

x = 〈〈b〉〉 〈〈1− b〉〉
(x

4

)
∈ JkP(O).

�

Remark 6.15. With a little more care, one can show that the image of the map

JkH3(SL2(k),Z)→
⊕
p∈P
P̃(k̄p)

contains
⊕

p∈P 16 · P̃(k̄p).

7. On the failure of weak homotopy invariance

This section sums up our insights into the failure of weak homotopy invariance
for the third homology of SL2.

7.1. Module structures. We show how the failure of weak homotopy invariance
derives from the fact that module structure on A1-invariant group homology de-
scends to a Grothendieck-Witt module structure, by the results of section Section
5, while the one on group homology typically does not, by the results of section
Section 6.

We begin by noting that the kernel of the change-of-topology morphism is non-
trivial for a quite general class of fields.

Theorem 7.1. Let k be a field with valuation v : k× → Γ and residue field k̄.
Suppose that

(1) Γ/2Γ 6= 0 and
(2) 16 · P̃(k̄) 6= 0.
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Then the kernel of the natural change-of-topology morphism

H3(SL2(k),Z)→ H3(BSL2(k[∆•]),Z)

is not trivial.
Furthermore, if ` is an odd prime and if P(k̄)⊗Z/` 6= 0, then the same statement

holds with Z replaced by Z/`.

Proof. The first statement is a direct consequence of Corollaries 5.7 and 6.5 above.
For the second statement, the universal coefficient theorem implies that the ker-

nel of H3(SL2(k),Z)⊗Z/`→ H3(BSL2(k[∆•]),Z)⊗Z/` embeds in the kernel of the
map H3(SL2(k),Z/`) → H3(BSL2(k[∆•]),Z/`). But the former kernel contains
Jk(H3(SL2(k),Z) ⊗ Z/`), since GW (k) ⊗ Z/` = (Z[k×/(k×)2] ⊗ Z/`)/Image(Jk).
This, in turn, maps onto the nonzero group P(k̄)⊗ Z/` = P̃(k̄)⊗ Z/`. �

Next, we observe (Theorem 7.4 below) that when the field k is small, the kernel
of the change-of-topology morphism is always large.

Lemma 7.2. Let k be a global field. Let ` be an odd prime such that [k(ζ`) : k]
is even, where ζ` denotes a primitive `-th root of unity. Then there are infinitely
many finite places v of k satisying `|qv+1, where qv is the cardinality of the residue
field, k̄v, at v.

Proof. Let L = k(ζ`). By the Chebotarev density theorem there are infinitely many
primes (not dividing `) whose Frobenius in Gal(L/k) has order 2. It follows that,
for such a prime v, ζ` 6∈ k̄v = Fqv

, but ζ` ∈ Fq2v . Thus, for such v, ` - qv − 1, but
`|q2

v − 1. �

Remark 7.3. Of course, for any given number field k, [k(ζ`) : k] = ` − 1 for all
but finitely many odd primes `.

If k is a global field of positive characteristic, there are infinitely many odd primes
` such that [k(ζ`) : k] is even.

Theorem 7.4. Let k be an infinite but finitely-generated field. Then the kernel of
the natural change-of-topology morphism

H3(SL2(k),Z[1/2])→ H3(BSL2(k[∆•]),Z[1/2])

is not finitely-generated.
Furthermore, if ` is an odd prime for which [k(ζ`) : k] is even, then the same

statement holds with Z[1/2] replaced by Z/`.

Proof. Let A = Z[1/2] or A = Z/` for an odd prime `.
Now the field must contain a subfield, k0 say, isomorphic either to Q or to Fp(x)

where p = char(k) > 0. Let d denote the transcendence degree of k over k0. We
will prove the result, together with the statement that P(k) ⊗ A is not finitely
generated, by induction on d.

Suppose first that d = 0. Then k is a global field. In this case (fixing an infinite
prime in the function field case), the ring of integers Ok is a Dedekind domain with
finite class group. Hence there exists a ∈ Ok for which O := Ok[a−1] is a unique
factorization domain. Now for any prime p of O, P(k̄p) ⊗ Z[1/2] is cyclic of order
(qp+1)′ where n′ denotes the prime-to-2 part of the number n (Remark 6.7). This,
together with Lemma 7.2 implies that P(k̄p) ⊗ A is nonzero for infinitely many
primes p.

We also observe that for any field k, there is an exact sequence

P(k)→ S2(k)→ K2(k)→ 0.
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But when k is a global field K2(k) is a torsion group while S2(k) modulo torsion is
a free abelian group of infinite rank. It follows that P(k) maps onto a free abelian
group of infinite rank, and hence P(k)⊗A is not finitely generated.

Now suppose d > 0 and the result is known for fields of smaller transcendence
degree over k0. Then for any discrete valuation p on k, k̄p is an infinite finitely-
generated field of smaller transcendence degree. By the proof of Corollary 6.5 the
kernel of the change-of-topology morphism surjects onto P(k̄p)⊗A. By induction,
P(k̄p) ⊗ A is already not finitely generated. Also by Corollary 6.4 we have the
surjection P(k)⊗A→ P(k̄p)⊗A and the result follows. �

Remark 7.5. The induction step could also be proved by noting that the conditions
on the field k in the theorem imply that there is a subring O of k with following
properties: O is a unique factorization domain with field of fractions k and for
which the set P of association classes of prime elements is infinite.

Finally, we note that in the case of local fields, we can describe the exact structure
of the change-of-topology kernel over Z[1/2].

Theorem 7.6. Let k be a higher local field as in Proposition 6.8. Then the change-
of-topology morphism factors through K ind

3 (k)⊗Z[1/2]. Its kernel is isomorphic to
n−1⊕
i=0

(P(ki)⊗ Z[1/2])⊕2n−i−1
.

In particular, if k is complete with respect to a discrete valuation with residue
field k0 which is either finite of odd order or real-closed or quadratically closed then
this kernel is isomorphic to P(k0)⊗ Z[1/2].

Proof. Recall that JkH3(SL2(k),Z[1/2]) is contained in the change-of-topology
morphism by Corollary 5.7. But

JkH3(SL2(k),Z[1/2]) = ker
(
H3(SL2(k),Z[1/2])→ K ind

3 (k)⊗ Z[1/2]
)

by Corollary 6.11. Since the map to K ind
3 (k) factors through the change-of-topology

morphism by Lemma 4.2, it follows that JkH3(SL2(k),Z[1/2]) is equal to the
change-of-topology kernel.

Finally,

JkH3(SL2(k),Z[1/2]) ∼=
n−1⊕
i=0

(P(ki)⊗ Z[1/2])⊕2n−i−1

by Corollary 6.11 (3). �

7.2. Number fields: finite generation. In the case when k is a number field,
we can deduce the failure of weak homotopy invariance in another way, which
is of independent interest: It follows from simple size considerations - the group
H3(SL2(k),Z) is not finitely-generated while H3(BSL2(k[∆•]),Z) is. This last fact
is a consequence of finite-generation results in symplectic K-theory:

Proposition 7.7. (i) Let k be a non-archimedean local field of characteristic
6= 2, and let ` be an odd prime different from the characteristic. Then the
group H3(BSL2(k[∆•]),Z/`) is finite.

(ii) Let k be a number field. Then the homology group H3(BSL2(k[∆•]),Z[1/2])
is a finitely generated Z[1/2]-module.

Proof. By Corollary 3.11, it suffices to prove the statements for H3(Sp∞(k),Z) ∼=
H3(BSp∞(k[∆•]),Z). The simplicial set BSp∞(k[∆•]) is simply-connected because
Sp∞ is A1-connected. Therefore, the Hurewicz theorem implies a surjection

πA1

3 (BSp∞)(Spec k) ∼= π3(BSp∞(k[∆•]))→ H3(BSp∞(k[∆•]),Z).
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We are thus reduced to show finite generation for πA1

3 (BSp∞)(k) ∼= KSp3(k). The
symplectic K-theory assertion is proved in Proposition 7.8 resp. Proposition 7.9
below. �

Proposition 7.8. Let k be a number field. Then KSp3(k) ⊗Z Z[1/2] is a finitely
generated Z[1/2]-module.

Proof. To determine KSp3(k), we use the computations of Hornbostel, cf. [Hor02].
Note that in loc.cit., the group KSp3(k) is denoted by −1K

h
3 (k). Let A = Ok,S

be a ring of S-integers for a finite set S of places containing all the infinite places
and all the places lying above 2. Using [Hor02, Corollary 4.15], we obtain an exact
sequence

· · · →
⊕

p

−1U3(A/p)→ −1K
h
3 (A)→ −1K

h
3 (k)→

⊕
p

−1U2(A/p)→ · · ·

The U -theory groups of finite fields are determined in [Hor02, Corollary 4.17]:

−1U2(Fq) ∼= Z/2, and −1U3(Fq) ∼= Gr4,

where Gr4 is either Z/4 or Z/2 ⊕ Z/2. In particular, tensoring the above exact
sequence with Z[1/2] yields an isomorphism −1K

h
3 (A) ⊗Z Z[1/2] ∼= −1K

h
3 (k) ⊗Z

Z[1/2].
Finally, we give an argument to show that the hermitian K-groups of the ring

A = Ok,S are finitely generated. For algebraic K-theory, this is proved in [Qui73].
For the symplectic groups, we can use the Borel-Serre compactification [BS73] to
see that the group Sp2n(Ok,S) is of type FP∞, hence the homology groups are all
finitely generated. The elementary subgroup Ep2n(Ok,S) equals the commutator
subgroup, hence it is of finite index, hence also of type FP∞, and it is perfect. The
symplectic K-groups can be defined as KSpi(Ok,S) = πi(BEp∞(Ok,S)+). This
space is simply-connected, and by FP∞ (and homology stabilization for the sym-
plectic groups) has finitely generated homology groups. From Serre’s theory of
classes of abelian groups [Ser53], the homotopy groups of this space are also finitely
generated. �

Proposition 7.9. Let k be a non-archimedean local field of characteristic 6= 2, and
let ` be an odd prime different from the characteristic. Then KSp3(k) ⊗Z Z/` is
finite.

Proof. We denote by O the valuation ring, and by O/m the residue field. Using
the localization sequence for symplectic K-theory as in Proposition 7.8 before, it
suffices to prove the assertion for −1U2(O/m) and −1K

h
3 (O). As in Proposition 7.8,

−1U2(Fq) is a finite 2-group, hence it does not contribute. The valuation ring is a
complete discrete valuation ring, therefore we have an isomorphism

−1K
h
3 (O)⊗ Z/` ∼= −1K

h
3 (O/m)⊗ Z/`.

The group on the right-hand side is a finite group. �

Remark 7.10. Note that the finite generation argument above more generally
proves that the group πA1

3 (BSL2)(k)⊗ Z[1/2] is finitely generated if k is a number
field. From [AF12a, Theorem 3], there is an exact sequence

0→ S′′4 (k)→ πA1

2 (SL2)(Spec k)→ KSp3(k)→ 0.

The group S′′4 (k) sits in an exact sequence

I5(k)→ S′′4 (k)→ S′4(k)→ 0,

where I5(k) is the fifth power of the fundamental ideal of the Witt ring W (k) and
there is a surjection KM

4 (k)/12 � S′4(k). Since I5(k) ⊗ Z[1/2] and KM
4 (k)/12 ⊗
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Z[1/2] are finitely generated, we get the finite generation for the above A1-homotopy
group. This seems to be an interesting finite-generation result in A1-homotopy.
Together with the surjection

πA1

3 (BSL2)(k)⊗ Z[1/2]→ H3(BSL2(k[∆•]),Z[1/2]),

this provides another way of proving the below Theorem 7.11 without resorting to
the improved stability results Corollary 3.11.

Theorem 7.11. Let k be a number field. Then the kernel of the natural change-
of-topology morphism

H3(SL2(k),Z)→ H3(BSL2(k[∆•]),Z)

is not finitely generated. The same also holds with Z/`-coefficients, ` an odd prime
for which [k(ζ`) : k] is even.

Proof. Let A denote either Z[1/2] or Z/` where ` is an odd prime for which [k(ζ`) : k]
is even. By the proof of Theorem 7.4, the group H3(SL2(k), A) is not finitely gen-
erated while, by Proposition 7.7, H3(BSL2(k[∆•]), A) is finitely generated. Thus
the kernel of

H3(SL2(k), A)→ H3(BSL2(k[∆•]), A)

is not finitely generated. �

8. The cokernel of the change-of-topology morphism

The main results in this article concern estimates of the kernel of the change-of-
topology morphism from H3(SL2(k), A) to H3(BSL2(k[∆•]), A). In this section, we
discuss the cokernel of this morphism. In order to do this, we treat some aspects of
the spectral sequence associated to the bisimplicial set BSL2(k[∆•]). This spectral
sequence has the form

E1
p,q = Hq(BSL2(k[∆p])),Z)⇒ Hp+q(dBSL2(k[∆•]),Z),

with differentials drp,q : Erp,q → Erp−r,q+r−1. Here, the differentials

d1
p,q =

p∑
i=0

(−1)iHq(di) : Hq(BSL2(k[∆p])),Z)→ Hq(BSL2(k[∆p−1])),Z)

are induced from the simplicial structure of the simplicial algebra k[∆•].
We will assume in this section that the underlying field k is infinite.

Remark 8.1. For infinite k, homotopy invariance for homology of SL2(k[T ]), cf.
[Knu01, Theorem 4.3.1], implies E2

1,q
∼= 0 for all q > 1.

Since H0(SL2(k[∆n]),Z) ∼= Z for all n, we also have

E2
p,0
∼=
{

Z p = 0
0 otherwise

Remark 8.2. The differential d2
2,1 is trivial: we have H2(BSL2(k[∆•]),Z) ∼=

KMW
2 (k) [Mor12, p.185], and H2(SL2(k),Z) ∼= KMW

2 (k) [Sus87]. By the stabi-
lization results, the natural change-of-topology morphism

H2(SL2(k))→ H2(BSL2(k[∆•]))

is the identity. By the vanishing in Remark 8.1, we have an exact sequence

H1(SL2(k[∆2]),Z)/(im d1
3,1)

d22,1−→ H2(SL2(k),Z)→ H2(BSL2(k[∆•]),Z)→ 0,

which proves the claim.
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Proposition 8.3. There is a short exact sequence

0→ H3(SL2(k))/(im d2
2,2 + im d3

3,1)→ H3(BSL2(k[∆•]))→

→ H1(SL2(k[∆2]))/(im d1
3,1)→ 0

Moreover, the natural change-of-topology H3(SL2(k))→ H3(BSL2(k[∆•])) factors
through the injection above.

Proof. By the vanishing in Remark 8.1, we have E∞1,2 = E∞3,0 = 0. The exact
sequence claimed is the one induced from the spectral sequence:

0→ E∞0,3 → H3(BSL2(k[∆•]))→ E∞2,1 → 0.

We prove E∞2,1 = H1(SL2(k[∆2]))/(im d1
3,1). We have H1(SL2(k[T ])) = 0, since

SL2(k[T ]) is perfect. Hence the differential d1
2,1 is trivial. No differential except

d1
3,1 hits the (2, 1)-entry. By Remark 8.2, the differential d2

2,1 is also trivial. This
proves the claim.

We identify E∞0,3. All differentials starting at (0, 3) are trivial. Therefore, E∞0,3 is
the quotient of H3(SL2(k)) by all differentials hitting it. The differentials d1

1,3 and
d1

4,0 are trivial by Remark 8.1. Only the differentials d2
2,2 and d2

3,1 remain.
The last statement is obvious, since the natural change-of-topology morphism

includes SL2(k) as 0-simplices. Therefore, the natural map factors as

H•(SL2(k),Z)→ E∞0,• → H•(BSL2(k[∆•]),Z).

�

Remark 8.4. This is a good place to point out that the above result implies that
the spectral sequence

E1
p,q = Hq(BSL2(k[∆p])),Z)⇒ Hp+q(dBSL2(k[∆•]),Z),

does not degenerate at the E2-page. Moreover, the differentials d2
2,2 and d3

3,1 provide
a natural relation between the counterexamples to homotopy invariance for homology
of SL2 and the kernel of the natural change-of-topology morphism

H3(SL2(k),Z)→ H3(BSL2(k[∆•]),Z).

In the cases discussed in Theorem 7.4 and Theorem 7.6, the above differentials
induce non-trivial morphisms from homotopy-invariance-counterexamples to pre-
Bloch groups of residue fields.

The explicit computation of such differentials is very complicated, for various rea-
sons. First of all, our knowledge of the groups H2(SL2(k[∆2])) and H1(SL2(k[∆3]))
is very limited. The constructions of [KM97] show that these groups tend to be very
large, but do not give a precise description of their structure. Second, the essen-
tial step in the computation of d2

2,2 needs explicit lifts of null-homologous cycles in
Z2(SL2(k[T ])) to 3-chains. While the amalgam decomposition of SL2(k[T ]) can
in principle be used to compute such things, the computations easily become too
complicated to follow through.

Proposition 8.5. Let k be an infinite field of characteristic 6= 2. There is a
commutative diagram with exact columns
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0

��

0

��
H3(SL2(k))/(im d2

2,2 + im d3
3,1)

��

// H3(Sp∞(k))

��
H3(BSL2(k[∆•])) s //

��

H3(BSp∞(k[∆•]))

��
E∞2,1

��

// 0

0
The map s above is surjective. In particular, we have a surjection

t : E∞2,1 � coker (H3(SL2(k))→ H3(Sp∞(k))) .

If k is of characteristic 0, then s and t are isomorphisms.

Proof. We first note that the inclusions of groups SL2 ↪→ Sp∞ induces a morphism
of the bisimplicial object BSL2(k[∆•]) → BSp∞(k[∆•]). The spectral sequence
computing the homology of the diagonal of a bisimplicial object is compatible with
morphisms of bisimplicial objects. The exact column on the left is a consequence of
Proposition 8.3. By [Kar73], the homology of the infinite symplectic group has A1-
invariance for regular rings in which 2 is invertible. Therefore the spectral sequence
associated to the bisimplicial object BSp∞(k[∆•]) collapses and produces the exact
column on the right. The whole diagram is commutative by the abovementioned
compatibility of the spectral sequences with the stabilization morphism.

Surjectivity of s is a consequence of stabilization Proposition 3.6, and the charac-
teristic 0 isomorphism is a consequence of our improved stabilization result Corol-
lary 3.11. An application of the snake-lemma then proves the last claim. Note in
particular that the top horizontal morphism is induced from the standard inclusion
SL2 → Sp∞, hence it is really the stabilization morphism. �

Remark 8.6. It is interesting to see that the surjectivity of the change-of-topology
map can be completely translated into a question on stabilization of the homology
of linear groups, namely the question of surjective stabilization for the morphism
H3(SL2)→ H3(Sp∞). The known stabilization results for the symplectic groups do
not seem to decide surjective stabilization in this range.
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[KM97] S. Krstić and J. McCool. Free quotients of SL2(R[x]). Proc. Amer. Math. Soc. 125

(1997), 1585–1588.
[Knu01] K.P. Knudson. Homology of linear groups. Progress in Mathematics, 193. Birkhäuser
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