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ABSTRACT 

Clustering is used by actuaries in a data compression 

process to make massive or nested stochastic 

simulations practical to run. A large data set of assets or 

liabilities is partitioned into a user-defined number of 

clusters, each of which is compressed to a single 

representative policy. The representative policies can 

then simulate the behavior of the entire portfolio over a 

large range of stochastic scenarios. Such processes are 

becoming increasingly important in understanding 

product behavior and assessing reserving requirements 

in a big-data environment. This article proposes a 

variety of clustering techniques that can be used for this 

purpose. Initialization methods for performing 

clustering compression are also compared, including 

principal components, factor analysis and segmentation. 

A variety of methods for choosing a cluster’s 

representative policy is considered. A real data set 

comprised of variable annuity policies, provided by 

Milliman, is used to test the proposed methods. It is 

found that the compressed data sets produced by the 

new methods, namely model-based clustering, Ward's 

minimum variance hierarchical clustering and k-

medoids clustering, can replicate the behavior of the 

uncompressed (seriatim) data more accurately than 

those obtained by the existing Milliman method. This is 

verified within sample, by examining location variable 

totals of the representative policies versus the 

uncompressed data at the five levels of compression of 

interest. More crucially it is also verified out of sample 

by comparing the distributions of the present values of 

several variables after 20 years across 1,000 simulated 

scenarios based on the compressed and seriatim data, 

using Kolmogorov-Smirnov goodness-of-fit tests and 

weighted sums of squared differences. 

 

JEL Classification code: C55 Large Data Sets: 

Modelling and Analysis. 

Keywords: Clustering weighted data; data compression; 

hierarchical clustering; model-based clustering; 

stochastic forecasting. 

1. INTRODUCTION 

1.1 The Need for Data Compression 

The use of stochastic scenarios is becoming 

increasingly popular in actuarial modelling versus 

deterministic approaches. The current trend is towards 

the use of nested stochastic scenarios (Reynolds and 

Man, 2008). Such simulations are useful to insurers 

who wish to see a robust probabilistic distribution of 

possible present values across a range of future 

scenarios. However, it is not computationally practical 

to run nested stochastic simulations for large data sets, 

particularly where products have moving parts or heavy 

optionality. While insurers generally have sufficient 

computing power to perform seriatim (full data) 

calculations for single scenario forecasts, or even for a 

moderate number of scenarios, the use of nested 

stochastics dramatically increases run time. 

Milliman have developed a data compression method 

using cluster analysis (Freedman and Reynolds, 2008) 

that makes nested stochastic modelling and massive 

stochastic runs practical. Millions of assets or liabilities 

can be well represented by a user-specified number of 

representative policies, typically a few hundred or a few 

thousand. The process can produce a good 

approximation to the results of a seriatim model across 

a range of economic or experience scenarios. It can be 

used for any asset class or product type and clustering 

solutions can be maintained and applied in a consistent 

manner at subsequent valuation dates. 

 

1.2 Clustering 

Clustering means identifying groups of similar objects 

in a data set, such that objects within clusters are more 

similar to each other than to objects in different clusters 

(Anderberg, 1973). In this data compression application 

each group or cluster is ultimately represented by a 

single object from the cluster, which is a member of the 

original data set, scaled up by the total size of all the 

objects in the cluster. 
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Similarity between objects, or rather dissimilarity, is 

measured by Euclidean distance in high-dimensional 

space according to p appropriately scaled "location 

variables", which can be any variables that it is 

desirable for the compressed data set to be able to 

closely reproduce. Typically when clustering, all 

observations in a data set are treated equally. However 

in this application the data are weighted: each object 

also has a "size variable", typically account value or 

face amount, meaning that larger objects will have more 

influence on the cluster locations than smaller ones. 

Consider observations xi, where i = 1,…,n, each 

comprising p location variables, and an aim of 

partitioning the data into G clusters. In this application, 

all location variables are quantitative and continuous so 

the dissimilarity between xi and xj is given by:  

d(xi, xj) =  {(xi1-xj1)2 + (xi2 –xj2)2 + ... + (xip – xjp)2}0.5                   

However, it is possible to extend model-based 

clustering methods to mixed, ordinal or categorical data 

(McParland and Gormley, 2014).  

1.3 Data Compression by Clustering 

A data set of N objects can be partitioned into G 

clusters, where G < N, by any clustering method. Given 

the cluster membership of each individual object, 

Milliman's data compression technique proceeds by 

reducing each cluster to a single representative policy. 

The size of the representative policy for cluster k, Sk, is 

the sum of sizes of the objects within the cluster, Sk = 

∑ 𝑤
𝑁𝑘
𝑖=1 i, where wi is the size of object i and Nk is the 

number of objects in cluster k. 

The location vector of the representative policy may be 

determined by several methods. It is required in this 

application that it be equal to the location of an actual 

object (original policy) in the cluster for subsequent 

modeling purposes. The centroid of cluster k is defined 

as its size-weighted mean location vector: 

x̄k = [(∑ 𝑤
𝑁𝑘
𝑖=1 ixi1,∑ 𝑤

𝑁𝑘
𝑖=1 ixi2,…, ∑ 𝑤

𝑁𝑘
𝑖=1 ixip)/ ∑ 𝑤

𝑁𝑘
𝑖=1 i]    

The optimal clustering solution is the one that partitions 

the data into clusters that can be best represented by 

single objects. Several means of selecting a cluster’s 

representative policy are considered. 

1.3.1 Nearest to Centroid Selection 

The location vector of the representative policy for 

cluster k, xk
*, is set equal to xi where i is the object in 

cluster k that minimizes d(xi x̄k). This constitutes 

Milliman’s default approach and perhaps the most 

intuitive means by which to represent a cluster by a 

single policy. For these reasons, and due to the 

widespread availability of comparative results for the 

Milliman clustering method under this approach, this 

selection rule is predominantly considered in the results 

presented in Section 4. However, this approach 

potentially underestimates variability by ignoring 

within-cluster variance. To demonstrate that the quality 

of compression and the approximation to the true 

underlying distribution is not critically impacted by this 

representative policy selection method, additional 

methods are also tested for the crucial Net Revenue and 

CTE70 variables and results presented in Sections 

4.1.3.5 and 4.1.4 respectively.  

1.3.2 Random Selection 

The location vector of the representative policy for each 

cluster is set equal to that of an object selected 

completely at random from the cluster. 

1.3.3 Random Selection Weighted by Size 

The location vector of the representative policy for each 

cluster is set equal to that of an object selected at 

random from the cluster, with the probability of an 

object being selected proportional to its size, wi. 

1.3.4 Random Selection Weighted by Distance to 

Centroid 

The location vector of the representative policy for each 

cluster is equal to that of an object selected at random 

from the cluster, with the probability of an object being II 

I 
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selected inversely proportional to its distance from the 

centroid of its cluster, d(xi, x̄k). This serves as a proxy 

for using a policy’s contribution to the model likelihood 

(see Section 3.4) as a weight for its probability of 

selection. 

1.3.5 Modified centroid selection 

If the clusters are arranged (1,2 ..,k,…G) in ascending 

order of total size, S1 ≤ S2 ≤ … ≤ Sk ≤ … ≤ SG, then the 

location vector of the representative policy from cluster 

k, xk
*, is equal to xi where i is the object in cluster k that 

minimizes d(xi , x̄k – Ak-1), where A0 = 0 and Ak = xk
* – 

(x̄k – Ak-1). This method reduces the prevalence of trends 

whereby the representative objects selected are 

consistently above or below the theoretical cluster 

centroids for certain location variables. 

Figure 1 shows an illustrative data set consisting of 20 

objects of varying size, which have just two location 

variables, generically titled x and y. These could be, for 

example, Opening Reserve and Premium for liabilities; 

or Book\Par Ratio and Yield to Maturity for assets. The 

20 observations are ultimately compressed into four 

representative policies. This method of data 

compression was developed by Freedman and Reynolds 

(2008) using a non-parametric, hierarchical 

agglomerative algorithm to cluster the data. This paper 

is primarily concerned with the formation of Figure 

1(b), the method by which the data are partitioned into 

clusters. The benefits of alternative non-parametric and 

model-based clustering methods are explored. The 

formation of Figure 1(c), the method by which 

representative policies are derived from clusters, was 

considered in Section 1.3. 

 

 

Figure 1: Illustrative data compression by clustering: (a) 

depicts 20 observations of varying size with two 

location variables, x and y; (b) shows the observations 

being partitioned into clusters by some method; (c) 

presents the representative policy for each cluster, 

scaled up to the size of all observations in the cluster. 

x 

x 

x 

y 

y 

y 
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2. DATA 

Milliman have provided a data set of 110,000 variable 

annuity policies on which to test various clustering 

methods. New results can be compared to those 

obtained by the current method at five levels of 

compression: from the full set of 110,000 policies to 

5000, 2500, 1000, 250 and 50 representative policies. 

The size variable used is Account Value In Force and 

policies are clustered according to a series of location 

variables. Optionally, certain location variables can 

have subjective weights placed on them. This is done 

when the quality of fit for these variables is felt to be of 

more importance than others. Variables with larger 

weights will be more influential when clustering. 

Milliman pursues this option and consistency with their 

original approach to using weightings is maintained. 

The location values and their accompanying weights are 

detailed below. 

Initial Values (each weight 1) 

GMDB (Guaranteed Minimum Death Benefit) Ratchet1, 

Rollup2 and Rop Face Value In Force3 (3 variables) 

GMIB (Guaranteed Minimum Income Benefit) Ratchet 

and Rollup Face Value In Force (2 variables) 

GMAB (Guaranteed Minimum Accumulation Benefit) 

Rop Face Value In Force 

Account Value In Force by Fund (7 variables) 

General Account Value In Force 

                                                           
1 Ratchet – one means by which benefit bases for variable annuity policyholders 

can grow. “Ratchet” generally means that a policyholder’s benefit base will 

reset to the maximum of the current value or a set of previous values (as money 

grows in equity/bond funds).  The frequency of these “resets” is specified in 

policyholder contracts. 

2Rollup – another means by which benefit bases for variable annuity 

policyholders can grow. “Rollup” generally implies that a policyholder’s benefit 

base will grow at a specified rate of interest until a specified time or 

policyholder action, again specified in the policyholder contract. 

  
3 ROP – stands for “return of premium”, a standard guarantee in variable 

annuity contracts where the policyholder is generally guaranteed a benefit base 

equivalent to the initial premium he/she paid. 

 

Present Values (for 5 calibration scenarios each) 

Net Revenue (weight 4) 

Commission (weight 2) 

Revenue Sharing (weight 2) 

Policy Maintenance Expenses (weight 2) 

M&E (Mortality & Expense) Fee Income (weight 3) 

Net GMDB Costs (weight 3) 

Net GMIB Costs (weight 3) 

Net GMAB Costs (weight 3) 

This gives an overall total of 54 location variables. 

The present values of the location variables are 

calculated for each of five calibration scenarios 

representing the 2.5%, 20%, 50%, 80% and 97.5% 

levels of the aggregate average “wealth ratios” across a 

set of 1000 stochastic scenarios. The aggregate average 

wealth ratio is calculated based on the value of $1 

invested at the start of the projection (in various funds, 

based on the starting allocation), and left to accumulate 

for 20 years. It provides a useful summary measure of 

the overall fund position and is therefore preferable to 

using any individual location variable. The precise 

percentiles used (2.5%, 20%, 50%, 80% and 97.5%) are 

somewhat arbitrary and it is recognized that the path of 

the development of the indexes, and not just their final 

average values, will have a substantial impact on 

results. However, the process does ultimately select a 

wide range of calibration scenarios that provide a fairly 

even spread across good, bad and moderate outcomes at 

which the clustered portfolio can be calibrated. 

Ultimately these are used to efficiently calculate the 

distribution of present values across the full underlying 

range of 1000 scenarios (or larger if so desired).4  

                                                           
4 1000 economic scenarios was the maximum number available for the purposes 

of the analysis in this paper. However the methods detailed have also been 

tested and shown to work well across 4000 scenarios in a related piece of 

research using clustering for mixed actuarial data in conjunction with Aegon 

See http://mathsci.ucd.ie//docserve?id=146 and use PIN = 6317 for full details. 



5 
 

1000 stochastic modelling scenarios has been deemed 

industry standard for a long time for applications of this 

nature. It is possible that the distribution of results from 

the selected 1000 scenarios is on average (or in the tail) 

“too high” or “too low” such that, if a set of 10,000 

were used, calculated reserves would rise/drop 

modestly. However it is very likely that the effect of 

moving from 1000 to 10,000 scenarios would be similar 

for both the seriatim model and any reasonable 

compressed model. Hence it is deemed a sufficiently 

large number by Milliman and many other practitioners 

for testing and developing cell compression methods. 

 

3. METHODOLOGY 

3.1 Scaling the Variables 

The location variables used are based on dollar amounts 

of various initial and present values. Prior to clustering, 

they are scaled as follows: 

1) The values are unitized - each policy is divided by its 

size so that values are expressed in per-dollar amounts. 

2) The variables are standardized - the values for each 

variable are divided by the size-weighted standard 

deviation of that variable.  

3) Finally, if weights are being used, the values for each 

variable are then multiplied by the appropriate weight. 

 

3.2 Current Method: Milliman's Non-

parametric Clustering 

A variety of non-parametric clustering algorithms exist. 

The one developed and currently used by Freedman and 

Reynolds (2008), which is tailored to suit weighted 

data, proceeds as follows, using the size and location 

variables described: 

1) The dissimilarity dij (Euclidean distance) between 

every pair of policies is calculated (Equation I). 

2) The "importance" of each policy, defined as its size 

wi multiplied by the dissimilarity with its nearest 

neighbour, is calculated. Following the notation set out 

in Equations I and II, the importance of policy i, Ii, can 

be expressed as: 

          j' = argminj(dij)       Ii = wi dij'           III 

3) The least important policy, i*, is identified and 

mapped away to its nearest neighbour, i'. The nearest 

neighbour policy retains its original location while its 

size is updated to the sum of its original size and the 

size of i*: 

i* = argmini(Ii)       xi' = xi'         wi' = wi' + wi*        IV 

4) The importance values are recalculated for all 

observations and the overall process is repeated until 

the desired level of compression is reached. 

Figure 2 shows how policies iteratively get mapped 

away to their nearest neighbours for the illustrative data. 

The numbers refer to the order in which the mappings 

occur. The less "important" policies (smaller and closer 

to their nearest neighbour) are mapped away first. 

 

Figure 2: Milliman's clustering method applied to the 

illustrative data from Figure 1. 

x 

y 
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3.3 Alternative Non-parametric Clustering 

Methods 

3.3.1 Ward’s Minimum Variance Hierarchical 

Clustering 

Milliman's method is a form of hierarchical clustering 

(Johnson, 1967) i.e. it begins by treating all 

observations as single clusters and then iteratively 

merges pairs of similar clusters. Specifically, Milliman's 

method uses the sizes of policies to define "importance" 

and at each step merges the “least important” cluster 

with its nearest neighbour.  

 

In Ward's minimum variance method for hierarchical 

clustering (Ward, 1963) the pair of clusters to be 

merged at each step is the pair that will lead to the 

smallest increase in total within-cluster variance. 

For G clusters, each comprising of Nk objects with p 

variables, k = 1,2,3…G, total within-cluster variance is 

given by: 

 

     ∑ {𝐺
𝑘=1  ∑ [

𝑁𝑘
𝑖=1 ∑

1

𝑁𝑘

𝑝
𝑗=1  (xij - x̄kj)2 ]}  V 

where x̄kj is the mean value of the jth variable in the kth 

cluster. The hclust.vector function in the fastcluster R 

package (Müllner, 2013) implements this method 

efficiently for large data sets. Ward's minimum variance 

method produces compact, spherical clusters, the latter 

property meaning that it is equivalent to the EII model-

based method for a mixture of Gaussian distributions, if 

weights are not attached to the observations (see 

Section 3.3.3). 

 

3.3.2 K-medoids Clustering 

K-medoids clustering, or partitioning-around-medoids 

(Van der Laan et al., 2003), is an algorithm for 

partitioning data into a fixed number of clusters, k. 

Given some initial partition, the medoid, or the actual 

observation from the data set closest to the centroid, of 

each cluster is identified and objects are reassigned to 

the cluster whose centroid is closest. This process is 

repeated until no more observations are moved. Clusters 

will be similarly sized, linearly separable and 

approximately spherical. It is preferable to the better-

known k-means method in this context because it 

centres the clusters around actual objects from the data 

set rather than the locations of the theoretical means. 

 

Typically when clustering, all objects in the data set are 

treated equally. Ackerman et al. (2012) discusses how a 

number of algorithms can be adapted to deal with 

weighted data. The standard software in R for k-

medoids, namely the function ‘pam’ in the package 

cluster (Maechler, et al., 2015), does not deal with 

weighted data. New R functions have therefore been 

written to apply these clustering algorithms using the 

size-weighted mean location of the cluster in place of 

the pure centroid. The use of the FNN (Fast Nearest 

Neighbours) R package (Beygelzimer et al., 2013) in 

these functions ensures that they are efficient when 

dealing with large data sets. 

 

Typically, when k is small, a moderate number of 

random starting values are used and the solution with 

the smallest within-cluster variance is selected. This is 

not practical when k is large as the number of possible 

starting values is too great. Instead, a hierarchical 

method such as Ward's or Milliman's should be used to 

obtain an initial partition. 

 

3.3.3 Model-based Clustering 

In model-based clustering (Fraley and Raftery, 2002) 

the data within each cluster are assumed to follow a 

multivariate normal distribution. Model-based 

clustering techniques have been widely used and have 

shown promising results in many applications involving 

complex data, including medical diagnosis (De la Cruz-

Mesía,et al., 2008), gene expression microarray data 

(Mar and McLachlan, 2003), imaging (Neumann et al., 

2008) and food science (Murphy et al., 2010). Their 

introduction into the actuarial sphere could potentially 
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yield significant modelling advances. Briefly, the data 

(x1,…, xn), are assumed to be generated by a mixture 

model with density 

∏ {𝑛
𝑖=1 ∑ [𝐺

𝑘=1  τk fk(xi|ϴk)]}  VI 

where τk is the probability that observation or policy xi 

belongs to cluster k and fk(xi|ϴk) is a probability 

distribution with parameters ϴk. In this application, as is 

most often the case, fk is the density of a multivariate 

normal distribution so each cluster is parameterized by 

a mean vector µk and a covariance matrix Σk: 

fk(xi|µk, Σk) = |2π Σk|-0.5 exp{-0.5(xi-µk)’Σk
-1(xi-µk)}   VII                 

The covariance matrix Σk can be parameterized through 

eigenvalue decomposition by Σk = λk Dk Ak D’k such that 

λk controls the volume, Dk the orientation and Ak the 

shape of the kth cluster (Banfield and Raftery, 1993). λk 

and Ak are not identified separately, hence λk is defined 

as the first eigenvalue of Σk. 

Different levels of constraint can be placed on how the 

covariance structures are allowed to vary between 

clusters by keeping any or all of Λ, D and A fixed for all 

clusters. This leads to the standard model-based 

clustering notation for models, where cluster behavior is 

encapsulated using a three letter convention, the letters 

respectively denoting the volume, shape and orientation 

of the clusters. Figure 3 depicts some of the model types 

available with different covariance constraints, while 

Celeux and Govaert (1995) provide a detailed 

description of all 14 available model types. 

In the most complex and flexible model, VVV, each 

cluster has a unique size, shape and orientation, while in 

the simplest model, EII, all the clusters are constrained 

to have equal volume and to be spherical in shape. K-

means clustering and Ward’s minimum variance 

method can be viewed as originating from the 

application of different estimation methods for the EII 

model-based clustering approach. 5  Figure 4 shows a 

VVV clustering solution fitted to the illustrative data 

set. In this illustrative example, the four clusters 

identified by the nonparametric method and the model-

based method are the same. However, as the size and 

complexity of the data set increases this will not 

generally be the case. 

 

 

Figure 3: Model types: the letters respectively denote 

the volume, shape and orientation of clusters. Fixed 

                                                           
5 Under the k-means approach, observations are assigned to the cluster whose 

mean is closest in squared Euclidean distance, cluster means are then 

recalculated, and the process repeated until no observations change cluster 

membership. Since the arithmetic mean of observations in a cluster is the least 

squares estimate of the true cluster mean, this approach is minimizing the total 

within cluster sum of squares at each step. In turn this is equivalent to applying 

Ward’s minimum variance approach. If the k-means algorithm achieves the 

global minimum within-cluster variance and not just a locally optimal partition, 

the cluster membership (and corresponding parameter estimates) will be the 

same as if the EM algorithm is used to fit the EII model-based clustering 

approach and arrives at the maximum likelihood estimates of the cluster means 

(in fact Friedman (1989) refers to the EII model as the nearest-means classifier). 

However k-means requires an initial partition (usually random) of observations 

into the desired number of clusters and different initializations can produce 

different clustering solutions at convergence. This is not the case with Ward’s 

method, which will always produce the same partition at convergence. 
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values across clusters (E), varying values across clusters 

(V) and set equal to the identity matrix (I) are possible. 

 

Figure 4: Model-based clustering applied to the 

illustrative data from Figure 1.  

 

In most applications, the Bayesian Information 

Criterion (BIC) is used to identify the most suitable 

model type (Fraley and Raftery, 2002): 

BIC = 2 log p(X|�̂�k, Mk) - νk log(n)  VIII                          

where νk is the number of independent model 

parameters, ϴk, to be estimated in model Mk, X is the 

data and n is the number of observations. 

The BIC favours simpler models and penalizes better-

fitting models for using too many parameters. In this 

application, the partitioning of the data is all that 

ultimately matters so there is no theoretical 

disadvantage to having too complex a model. Large 

data sets will, by definition, admit more complex 

models (Fayyad and Smyth, 1995). Therefore the best 

fitting model will, in theory, be the most flexible, VVV. 

However, it will be shown in the following sections that 

the computational cost of fitting complex models can be 

prohibitive when there are large numbers of clusters and 

variables and that some constraints can be beneficial 

when clustering for data compression. 

Often, in clustering problems, there is interest in the 

number of clusters, G, present in the data set and in the 

distinctions between the groups. In this case, however, 

the level of compression is specified in advance and 

there is no concern as to whether, for example, a 999 or 

1001-cluster solution has a better fit than 1000. Instead, 

the data are forcibly partitioned into a pre-specified 

number of groups. 

3.4 The EM Algorithm and Weighted Data 

The model parameters are estimated by the EM 

algorithm (Dempster et al., 1977; McLachlan and 

Krishnan, 1997), wherein each iteration consists of a 

Maximization (M) step and an Expectation (E) step. In 

the M-step, the parameters µk, Σk and τk are estimated 

by maximum likelihood from the data given the 

conditional probabilities, zik, that object i belongs to 

cluster k. In the E-step, the (N x G) Z matrix of 

conditional probabilities, given the parameters, is 

calculated. The two steps are repeated iteratively until 

convergence in the log-likelihood or the parameters is 

reached. 

The likelihood function, L and the complete data 

likelihood function, Lc, for the finite mixture of normal 

distributions are specified as  

L = ∏ ∑ (𝐺
𝑘=1

𝑛
𝑖=1 τk f(xi|µk, Σk))               IX 

            Lc = ∏ ∏ (𝐺
𝑘=1

𝑛
𝑖=1 τk f(xi|µk, Σk))             X 

Taking natural logarithms, the log-likelihood function l 

and the complete log-likelihood function lc are then: 

l = ∑ 𝑙𝑜𝑔𝑛
𝑖=1  ∑ 𝜏𝐺

𝑘=1 k f(xi|µk, Σk)                  XI 

lc = ∑  ∑ 𝑧𝑖𝑘𝑙𝑜𝑔𝐺
𝑘=1

𝑛
𝑖=1 (τk f(xi|µk, Σk)  XII 

However, since our data are weighted, each policy has a 

size variable as well as location variables. This is to 

ensure that the cluster locations are influenced more by 

x 

y 

zik 
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larger policies than smaller ones. A method is described 

by Murphy and Scrucca (2012) whereby the 

contribution of each observation to the log-likelihood, 

and hence to model fit, has a weight. In this case the 

weighted log-likelihood lw and complete log-likelihood 

functions lc
w are defined as: 

lw = ∑ 𝑤𝑖𝑙𝑜𝑔𝑛
𝑖=1  ∑ 𝜏𝐺

𝑘=1 k f(xi|µk, Σk)  XIII 

lc
w = ∑  ∑ 𝑧𝑖𝑘𝑤𝑖𝑙𝑜𝑔𝐺

𝑘=1
𝑛
𝑖=1 (τk f(xi|µk, Σk)   XIV 

where wi is the size of policy i, scaled to ensure that 

max(wi) = 1. The me.weighted function in the R 

package Mclust (Fraley et al., 2012) performs model-

based clustering with the EM algorithm incorporating 

weights in this manner. 

3.4.1 Initialization of the EM Algorithm 

The EM algorithm has a linear rate of convergence, 

which can sometimes be very slow (Fraley et al., 2005) 

and can result in a solution that is only locally optimal 

(Lange and Zhou, 2010). Good starting values are 

required. Typically, these are obtained by hierarchical 

clustering. The hclust.vector function in the fastcluster 

package can again be used for this purpose. 

Alternatively Posse (2001) describes how minimum 

spanning trees can be used to obtain an initial partition 

for model-based hierarchical clustering in large 

datasets. However, neither of these methods accounts 

for the weighted nature of the data so the hierarchical 

clustering method of Freedman and Reynolds (2008), 

which takes the policy size into account, is preferred. 

This “Milliman method” corresponds to spherical 

clusters (the EII covariance structure in model-based 

clustering) in terms of cluster initialization. Despite this, 

it works well as an initialization method for fitting 

models that are not EII, as outlined in Sections 4.1, 

4.1.2.1, 4.1.2.3, and 4.1.3.  Sampling is often used to 

obtain an initial estimate of model parameters (Wehrens 

et al., 2004) but the large sample size required to 

initialize a set of parameters for thousands of clusters 

would defeat the purpose of that approach for this 

endeavour. 

 

3.4.2 Dealing with Large Numbers of Variables 

When clustering, policies are envisaged as having 

locations in high-dimensional space. In this case, with 

such a large number of location variables (54), the 

massive volume of space required can make it difficult 

to fit models to the data (Donoho, 2000). 

Figure 5 shows the correlation present between the 

location variables. Note that there are groups of 

variables that are strongly correlated - this represents 

correlation between initial values and values across the 

five calibration scenarios of certain variables. This is a 

weighted correlation matrix, i.e. the contribution of 

each policy to the covariance matrix is weighted by its 

size. 

There is a large number of variables and many of them 

are strongly correlated with each other, which may pose 

a challenge in applying model-based clustering. A 

dimension reduction step such as principal component 

analysis (Pearson, 1901; Jolliffe, 2002), factor analysis 

(Spearman, 1904; Harman, 1960) or variable clustering 

(Sanche and Lonergan, 2006) can be applied. These 

techniques allow us to re-express multivariate data that 

has a large amount, p, of observed variables in terms of 

a much smaller amount, q, of underlying or latent 

variables. As long as objects that are dissimilar 

according to the p variables are equivalently dissimilar 

according to the q variables then it is sufficient to 

cluster the data according to the q variables. 

3.4.2.1 PRINCIPAL COMPONENTS ANALYSIS 

Principal component analysis (PCA) involves a spectral 

decomposition of the correlation matrix (with our size-

weighted data, the weighted correlation matrix is used) 

into eigenvectors and eigenvalues. This produces a set 

of p orthogonal components, which are linear 

combinations of the original variables, presented in 
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decreasing order of percentage of variance in the data 

accounted for. The first q components are  retained such 

that the marginal benefit of having (q+1) components 

over q is sufficiently small. The PCA function in the 

FactoMineR R package ( Lê, et al., 2008; Husson et al., 

2014) can be used to perform PCA on weighted data. 

 

 

Fayyad and Smyth (1995) warn that "frequently the 

goals of a dimension reduction step are not aligned with 

the overall goals of the analysis, e.g. principal 

components analysis is a descriptive technique but it 

does not necessarily help with classification or cluster 

identification." Additionally, Chang (1983) derives the 

result that data projection using principal components 

does not necessarily produce the optimal model-based 

clustering structure for data generated from a mixture of 

multivariate normal distributions.  

Nevertheless, a moderate number of components, 

compared to the large number of original variables, can 

describe dissimilarities between objects well in practise 

(Ben-Hur and Guyon, 2003). For the motivating data 

considered, the strong correlation between the raw 

location variables enables dimension reduction without 

substantial loss of information. A dimension reduction 

step is desirable when implementing the model-based 

clustering methods as the quantity of highly correlated 

variables makes the parameter estimation 

computationally difficult. The relatively large number 

of clusters fitted for the purposes of actuarial data 

compression and the fact that the goal is the 

identification of representative policies, rather than the 

global clustering structure, also aids in insulating the 

process from substantial information loss. Furthermore, 

reducing the amount of variables makes it 

computationally easier to perform model-based 

clustering. If the use of PCA adversely affects the 

subsequent clustering compression in some 

applications, probabilistic PCA (Bellas et al., 2013) 

provides a potential remedy. 

 

Figure 6: Proportion of variance explained by principal 

components. 

 

Figure 6 shows the proportion of the total variance in 

the data that can be explained by various numbers of 

principal components. The choice of how many 

components to retain is subjective and is based on a 

trade-off between a loss of information (too few) and 

the computational cost of fitting more complex models 

(too many). While there is no clear kink in the curve, 

which would suggest an optimal cut-off point, it is 

Figure 5: Weighted correlation of location 

variables. 
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clear, for example, that using 9 principal components 

effectively means retaining 91.5% of the information in 

the data set; while using 15 retains 97.3%. Clustering is 

performed using both 9 and 15 principal components. 

While the principal components are uncorrelated with 

each other globally, there may be correlation within 

clusters. 

 

3.4.2.2 FACTOR ANALYSIS 

Factor analysis is a more elaborate statistical method for 

describing data with p variables in terms of q* 

underlying factors, where q*<p, that makes more 

assumptions than PCA (Harman, 1960). The p location 

variables are each modelled as linear combinations of 

q* factors, plus Gaussian error terms. The initial data 

are in the (n x p) location matrix (X-μ) where µ is the 

vector of the size-weighted means of the location 

variables. 

The orthogonal factor analysis model assumes that each 

factor f follows a zero-mean, unit-variance, Gaussian 

distribution. The (q* x p) factor loadings matrix Λ is 

calculated such that: 

X-µ = FΩ + ϵ                        XV 

Cov(X-µ, F) = Ω       XVI 

Cov(X-µ) = Cov(FΩ + ϵ) = Λ’Λ + ψ         XVII                       

where ϵ is a p-dimensional zero-mean Gaussian noise 

vector with diagonal covariance matrix ψ. 

The value ωjk in the matrix Ω is the loading of the kth  

observed variable on the jth  unobserved factor. There is 

no unique solution for Ω. The varimax factor rotation 

(Kaiser, 1958) is used to ensure that the solution is 

easily interpretable in the sense that each variable can 

be represented by one or two factors. To perform cluster 

analysis, X is replaced by the (n x q*) matrix of factor 

scores F. Figure 7 depicts Ω, with 15 factors, in terms 

of their correlation with the original 54 location 

variables. This shows, for example, that the second 

factor represents commission across the five calibration 

scenarios and, similarly, the third factor represents the 

maintenance expenses variables. 

 

Figure 7: Interpretation of factors. 

 

Factor scores are calculated for each observation or 

policy such that each one can be expressed in terms of 

q* factors in place of the p original location variables. 

Clustering is then performed using 9 and 15 factors and 

the results are compared to those obtained by clustering 

with the same numbers of principal components. While 

PCA is a distribution-free descriptive technique, factor 

analysis assumes that the location variables are caused 

by unobservable factors. Brown (2009, p. 26-30) 

recommends using factor analysis when theoretical 

ideas about relationships between variables exist and 

suggests that PCA should be used if the goal of the 

researcher is to explore patterns in their data. In this 

case it is known, for example, that the present value of 

commission in one calibration scenario has a strong 

relationship with the present value of commission in the 

other four scenarios, suggesting that the factor analysis 

approach is valid. 

3.4.2.3 VARIABLE CLUSTERING 

Variable clustering (Sanche and Lonergan, 2006) is an 

alternative dimension-reduction technique used by 
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actuaries. It is more appropriate for reducing thousands 

of location variables and is not used here. 

 

3.4.3 Dealing with Large Numbers of Clusters 

The most widely used model-based clustering software 

is the R package Mclust. This was developed more for 

answering questions such as "does this moderately-

sized data set have four clusters, or five?" than for 

partitioning large data sets into thousands of clusters. 

Direct application of model-based clustering to large 

datasets with large numbers of clusters can be 

prohibitively expensive in terms of computer time and 

memory (Fraley et al., 2005). For example, a VVV 

solution with 5000 clusters and 15 location variables 

requires the estimation of hundreds of thousands of 

parameters. This is not computationally feasible, 

especially bearing in mind that the original aim of this 

application is to ease the computational burden of 

analysis. It will therefore be necessary to impose some 

of the model constraints on the covariance matrices, for 

example only considering EII (equal volume, spherical) 

solutions. 

The EM algorithm can be implemented directly for any 

model type for 50 clusters with appropriate starting 

values via laptop processing. With 250 clusters this is 

slow but possible. However, doing so for 1000 clusters 

or more, even for EII models, has massive 

computational requirements. A common remedy is to 

apply segmentation in advance of the data compression 

process. Alternatively, a novel adaptation of the model-

based method relying on resampling techniques can be 

used. These methods are detailed in Section 3.4.3.1 and  

3.4.3.2. 

3.4.3.1 SEGMENTATION 

Segmentation reduces the number of clusters that need 

to be fitted at a particular iteration. This means splitting 

the data into a small number of segments and clustering 

within each segment. Insurers will often need to 

segment by line of business, asset class or some other 

categorical variable for reporting purposes in any case. 

Alternatively, it is possible to identify a small number 

of clusters in the data set, by either a model-based or a 

non-parametric method, and to use these as an initial 

segmentation before proceeding to cluster within each 

segment. It is necessary to decide in advance how many 

clusters are in each segment. Generally it is sensible to 

maintain the same compression ratio, i.e. if compressing 

N policies to G clusters overall, and there are Si policies 

in segment i, then the aim is to have (Si x G/N) clusters 

in segment i. 

The idea is that policies from different segments should 

be unlikely to end up in the same clusters. In this way 

segmentation allows more flexible models to be fitted 

by easing the computational burden without 

compromising model fit. Any model-type constraints, 

e.g. that clusters must are equally shaped, only need to 

hold within segments. However, using a large amount 

of segments can separate similar policies that should 

otherwise be grouped together, leading to markedly 

worse fit. The effectiveness of segmentation therefore 

depends on the underlying distribution of the data. 

3.4.3.2 FEEDBACK SAMPLING 

Feedback sampling is a novel model-based method 

developed in this paper for partitioning objects in a data 

set into G clusters, where G can be large, without ever 

having to run an E-step or an M-step for the whole data 

set. It takes advantage of the size-weighted nature of the 

data, the ability to merge similar objects and the fact 

that there is ultimately no interest in the values of Σk or 

τk. It has parallels with the ideas of data-squashing 

(DuMouchel et al., 1999), particularly in a likelihood-

based context (Madigan et al., 2002). The process 

involves identifying G theoretical cluster centres, µk, 

through repeated sampling combined with model-based 

clustering. With this method, there is never a need to 

compute an (N x G) matrix of conditional probabilities 
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or a full set of parameters for all clusters. Feedback 

sampling can be implemented as follows: 

1) Take a random sample of 2500 observations from the 

data. 

2) Partition the sample into a moderate number of 

clusters (20-50) using weighted Mclust. BIC can be 

used to select the optimum model type and number of 

clusters G. 

3) Treat the resulting cluster centres as G individual 

objects, scaled up by the sums of the sizes of the objects 

in each cluster. 

4) Replace the sampled objects in the data set with these 

G scaled-up cluster centres, thus reducing the size of the 

data set by (2500-G). 

5) Repeat until the desired number of objects remains. 

6) Assign each original full data policy to the cluster 

whose centre is closest. Once the clusters are formed in 

this manner, selection of the representative policy for 

the cluster can proceed via the chosen selection method. 

In Step 1, pure random sampling is not used but rather 

objects are sampled with probability inversely 

proportional to their size. This ensures that any objects 

that escape the sampling are likely to be large enough to 

merit ending up as cluster centres. Wehrens et al. (2004) 

suggest that a sample size of 2500 is sufficient and that 

there is no marked advantage to using larger samples 

than this size. The final step, which is non-parametric, 

can again be implemented efficiently in R using the 

FNN package. This is equivalent to a single step in an 

iteration of k-medoids clustering. 

The range for the number of clusters fitted to each 

sample should include the sample size multiplied by the 

overall G/N compression ratio. If a specific number of 

final clusters is required, then it is necessary to fix G in 

the final iteration.  This method can be applied to non-

weighted data by initially assigning each object a 

weight of 1 and allowing them to be merged 

subsequently. 

4. RESULTS 

The aim of the application is to use cluster analysis to 

produce a compressed data set that replicates the 

behavior of the seriatim (full) data set as closely as 

possible. The representative policies produced by the 

cluster analysis will then be used to perform a series of 

stochastic simulations. Results obtained by various 

clustering methods at the five levels of compression are 

compared and contrasted. 

4.1 Assessing Clustering Methods: 

Weighted Sums of Squares 

Recall that, prior to scaling, the location variables are 

expressed in dollar amounts. The data are clustered 

based on scaled per-dollar values, so that policies within 

a cluster have, for example, similar present values of net 

revenue per dollar account value and will be merged. A 

policy's size, in dollars, affects its influence when 

clustering. Each cluster is ultimately reduced to a single 

representative policy, which takes the per-dollar 

location of the cluster's representative policy and the 

size of the sum of the sizes of all the policies in the 

cluster. 

Hence for each location variable, the sum totals of the 

dollar values for the N policies should be closely 

matched by the sum totals of the dollar values of the J 

representative policies. The goodness of fit of a 

clustering solution can be described by measuring how 

closely these values match. The weighted sum of 

squared errors for a clustering solution is a single-figure 

summary statistic defined as: 

WSS = ∑ 𝑤𝑘
𝑝
𝑘=1 {1-(∑ 𝑥𝑗𝑘

𝑐𝑜𝑚𝑝𝐽
𝑗=1 / ∑ 𝑥𝑖𝑘

𝑠𝑒𝑟𝑁
𝑖=1 )}2       XVIII 

where there are p variables, each with weight wk, xjk
comp 

is the dollar value of the kth variable for the jth 

representative policy in the compressed data set and 

xik
ser is the dollar value of the kth variable for the ith 
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policy in the seriatim data set. A lower value for the 

WSS indicates better fit. 

The WSS is used to check the appropriateness of the 

Milliman EII initialization method for model-based 

clustering with non-EII models. The Milliman method 

proved to perform very well. For a random sample of 

10,000 policies clustered into 50 representative policies, 

the WSS for the VVV model initialized using the 

Milliman method was 22.1 versus 76.0 for VVV 

hierarchical clustering initialization. The corresponding 

results were 5.1 versus 79.5 and 35.8 versus 54.3 for the 

VII and EII cases respectively. 

Section 4.1.1 compares the effectiveness of the different 

variable reduction techniques used. Section 4.1.2 

explores goodness-of-fit of the compressed data sets 

based on the within sample data used to perform the 

clustering. The compressed data sets are subsequently 

used to simulate present values of a number of variables 

across a range of out-of-sample scenarios. Section 4.1.3 

examines the accuracy of these simulations relative to 

those based on the seriatim data. 

4.1.1 Variable Reduction 

The computational costs of performing model-based 

clustering on a large data set with 54 variables can be 

prohibitive at some levels of compression. However, 

since many of the variables are highly correlated, a 

dimension reduction technique can be used. Therefore 

both principal component analysis (PCA) and factor 

analysis (FA) were used to express the data in terms of 

15 variables prior to clustering. With PCA, 15 

components accounts for 97.3% of the variation in the 

data. In Figure 8, the WSS is calculated for solutions 

with 300, 400, 500,  … 7,000 clusters based on Ward's 

minimum variance method for hierarchical clustering 

using the PCA data, the FA data and the full data. 

Results obtained using 9 instead of 15 principal 

components or using factor analysis were of much 

lower quality. However factor analysis may provide a 

useful alternative to PCA for alternative data sets. 

Figure 8 represents three key findings: firstly that using 

15 principal components is as good as using the full set 

of 54 location variables to cluster the data, while using 

the 15 factors obtained by orthogonal factor analysis is 

not. Figure 8 also shows that there is no substantial 

decrease in WSS as the number of clusters rises above 

3000. This suggests that when using clustering for data 

compression, 3000 clusters should provide a good 

representation of the full data set and substantially 

better representations cannot necessarily be obtained 

even by using 5000 clusters or more. In this sense, 

Figure 8 can be viewed as a tool to help practitioners 

select the “optimal” compression level, if one is to be 

chosen, where for this data set 3000 representative 

policies appears to strike a good balance between 

computational burden and ensuring that the compressed 

data set contains representative policies that give an 

accurate portrayal of the full data. Finally, while the 

WSS generally decreases as the number of clusters 

increases, it does not do so smoothly, particularly for 

smaller numbers of clusters. This is because part of the 

error measured by the WSS statistic, which is due to 

discrepancies between the theoretical cluster centres 

and the actual representative objects, is random. PCA 

variable reduction with 15 components is hence the 

preferred method employed in the remainder of the 

paper. 

4.1.2 Goodness of Fit Within Sample 

The goodness of fit of compressed data sets obtained by 

different clustering methods is measured according to 

the location variable totals at each level of compression.  

4.1.2.1 50 CLUSTERS 

When model-based clustering is performed a model 

type must be chosen. With 50 clusters it is possible to 

implement the EM algorithm directly for any model 

type. Milliman's method is used for initialization. Log-
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likelihood and BIC as well as WSS can be compared for 

each model type before deciding on the most suitable 

covariance structure. The log-likelihood is a measure of 

the probability of the data assuming that the data follow 

the Gaussian distributions in the models. Increased 

model complexity generally leads to higher log-

likelihood. So if two proposed models have a similar 

likelihood the BIC will favour the simpler model. The 

WSS is based on the aggregate squared distances 

between the locations of the representative objects and 

the theoretical cluster centres. 

 

 

Figure 8: WSS under Ward's minimum variance 

hierarchical clustering. 

 

While the WSS is a more relevant measure for a 

clustering solution in this particular application, it has a 

random element and should be treated as an indicative 

rather than a decisive measure. 

Figure 9 shows how the different model types score 

according to the three criteria. The non-parametric 

methods -- Ward's, Milliman's, k-means and k-medoids 

-- are not probabilistic and therefore do not have a log-

likelihood or BIC. Most of the model-based clustering 

solutions outperform the non-parametric methods 

according to WSS at this level of compression. This 

demonstrates that the Milliman method of initialization 

(corresponding to an EII model) performs well even 

when applied to non-EII model-based approaches: the 

best WSS results of 3.56 and 3.89 belong to the EEI and 

EEV models respectively. 

The interesting finding is that models with equal 

volume (EEI, EEV, EVI and EII) all do better according 

to WSS than according to BIC or log-likelihood. This 

appears to be because, if clusters are of varying size, 

there is a possibility of having some very large clusters. 

These are more likely to have a larger distance between 

their mean locations and the nearest actual policy, 

which contributes a higher error to the WSS when 

policy nearest centroid selection is used, as is the case 

here. The equal volume constraint ensures that no 

representative policies are likely to be too far away 

from their cluster centres and is therefore useful when 

clustering for data compression with policy nearest 

centroid as the representative policy selection strategy. 

Table A1 shows all location variable totals for a variety 

of 50-cluster models as percentages of the seriatim 

values. 

Most of the model-based methods outperformed the 

non-parametric methods at this level. Figure 10 

compares the best clustering solution according to 

WSS, which is the EEI (equal volume, equal shape and 

parallel with the axes) model-based solution, with 

Milliman's method, according to the location variable 

totals. The y-axis measures the sum of each variable’s 

values for the compressed data representative policies 

as a percentage of its sum across all policies in the full 

(seriatim) data set. So, for example, if the portfolio total 

net revenue in one of the calibration scenarios is $200m 

according to the seriatim data, and $202m according to 

a compressed data set, the graph shows 101% for that 

variable for the clustering method used to produce that 
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compressed data set. In such a graph an optimal 

solution would produce a flat line at 100% while a spike 

means that a particular variable is not well represented 

by the cluster-compressed data set. 

As was remarked for Figure 8, information captured in 

the form of Figure 10 can also be used as a guide for 

practitioners seeking an optimal compression level for a 

data set. If the user has an a priori acceptable upper 

limit on the percentage variation in variable totals in the 

seriatim versus the compressed data set, they can 

establish how many representative policies are needed 

before the threshold is satisfied. So, for example, 

comparing Figure 10 and Figure 11 we see that if a 

maximum 25% disparity in variable totals between 

seriatim and compressed data set is permitted, then 50 

clusters (representative policies) does not suffice but 

250 clusters (or above) does suffice, for this data set.  

4.1.2.2 250 CLUSTERS 

With 250 clusters, Ward's method resulted in the lowest 

WSS. Only the simplest model-based method, EII, 

could be fitted directly for this data. More complex 

types such as EEV were fitted using segmentation. 

Where segmentation is used, the data are split into four 

roughly equally-sized segments according to the 

categorical variable IB Reinsurance Treaty. Model-

based clustering is then used to partition to each 

segment. Table A2 shows all location variable totals for 

a variety of 250-cluster models as percentages of the 

seriatim values. 

At this level of compression, the non-parametric 

approaches (Ward, k-means and k-medoids) outperform 

the model-based clustering approaches, the best of 

which still outperforms Milliman's method (see Figure 

11). The segmentation approach performed particularly 

poorly. It appears that policies that ought to have been 

clustered together were artificially kept apart by the 

segmentation. This has important ramifications for 

insurers, many of whom frequently assume that such 

categorical variables give good policy separation. 

 

Figure 9: Scaled values of (a) Log-likelihood (b) BIC 

(c) WSS for the different model-types.   
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Figure 10: The best model-based method versus Ward 

and Milliman's methods, 50-clusters. 

 

4.1.2.3 1000 CLUSTERS 

With 1000 clusters it is not possible to perform model-

based clustering directly via laptop processing. Model-

based solutions were obtained using a high-power 

computer for two model types: EII and EEV. At this 

level, feedback sampling is implemented as an indirect 

approach to model-based clustering. Table A3 shows all 

location variable totals for a variety of 1000 cluster 

models as percentages of the seriatim values. 

The best solution at this level is the one obtained by 

model-based clustering using feedback sampling (see 

Figure 12). The EII solution fitted directly with a high-

powered computer is as good as the EEV solution fitted 

with the segmentation constraints. Both achieve low 

WSS values of 0.87 under the Milliman initialization 

method, again pointing to its suitability for use in 

preceding both the EII model to which it maps directly, 

but also covariance structures. Interestingly, the EEV 

solution fitted directly is not as good as either of these. 

Segmentation improves fit by removing the equal 

volume and shape constraints between different 

segments but also worsens fit by preventing policies 

from different segments from being clustered together. 

It appears that, as the number of clusters increases, so 

too does the number of constraints that can be included. 

It is possible that the EEV solution obtained by the 

high-powered computer is only locally optimal and that 

a better solution may be obtained using different 

starting values. 

 

Figure 11: The best non-parametric and model-based 

methods versus Milliman's, 250 clusters. 

 

 

Figure 12: The best non-parametric and model-based 

methods versus Milliman's, 1000 clusters. 
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4.1.2.4 2500 CLUSTERS 

For 2500 clusters and above, EII was the only model-

based method that could be implemented directly. 

Ward's method is the best according to WSS, while the 

EII partition, obtained by a high-powered computer 

using feedback sampling, is better than the remaining 

non-parametric methods (see Figure 13). Table A4 

shows all location variable totals for a variety of 2500-

cluster models as percentages of the seriatim values. 

 

4.1.2.5 5000 CLUSTERS 

At this level of compression Ward's method is the best 

according to WSS, while feedback sampling with the 

model-based approach outperforms the other non-

parametric methods (see Figure 14). Table A5 shows all 

location variable totals for a variety of 5000-cluster 

models as percentages of the seriatim values. 

 

 

Figure 13: The best non-parametric and model-based 

methods versus Milliman's, 2500 clusters. 

 

Figure 14: The best non-parametric and model-based 

methods versus Milliman's, 5000 clusters. 

 

4.1.3 Goodness of Fit Out of Sample 

Tables A1-A5 and Figures 10-14 measure the goodness 

of fit of a clustering solution relative to the location 

variables used to fit it. However, the critical test of the 

quality of a clustering method is how well the resulting 

compressed data set performs over a wide range of 

stochastic scenarios, distinct from those used to produce 

the representative policies. In this case, the present 

values of nine variables (net revenue, commission, 

revenue sharing, policy maintenance expenses, M&E 

fee income, net GMDB costs, net GMIB costs, net 

GMAB costs and Worst Surplus) at the end of a twenty-

year period are calculated for each of 1000 scenarios. 

The distributions of these present values of each 

variable according to the synthesised representative 

policies can be compared with the distributions 

according to the seriatim data for each clustering 

technique for each variable. 

These present values have been acquired from the 

seriatim data set, which contains 110,000 policies, and 

from compressed data sets, formed using Milliman's 

and Ward's clustering methods. In Sections 4.1.3.3 and 

4.1.3.4 the distributions of the present values of two of 

the variables are examined in detail. Full sets of results 
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for Kolmogorov-Smirnov (KS) p-values, test statistics 

and scaled sum of squared differences (SSSD) can be 

found in Tables A6-A8. These metrics are documented 

in Sections 4.1.3.1 and 4.1.3.2. Notably, for 50 clusters 

where a variety of model-based covariance structures 

were tested, EEI and EEV outperformed EII for 5 of the 

9 variables and matched it for the other 4 according to 

KS; and outperformed EII for 8 of the 9 variables 

according to the SSSD. Again it seems there is no 

negative implication for goodness of fit using the 

model-based approach with covariance structures 

different from the EII structure implied by Milliman’s 

method, which was used for initialization purposes. 

 

4.1.3.1 KOLMOGOROV-SMIRNOV TEST 

 The two-sample Kolmogorov-Smirnov test compares 

the distributions of data from two samples. The null 

hypothesis is that both come from the same probability 

distribution. In this case the first sample will be the 

present values of a particular variable in the 1000 

scenarios according to the seriatim data and the second 

sample the same values according to a compressed data 

set formed by some clustering technique. 

A high p-value indicates that the two samples come 

from the same distribution, and hence the compressed 

data set is a good representation of the seriatim data for 

that variable. If the p-value is low the null hypothesis is 

rejected and the conclusion is that the compressed data 

set is a poor representation of the seriatim data for that 

variable. The Kolmogorov-Smirnov test makes no 

assumptions about the data other than that observations 

in each sample are independently identically distributed 

from some continuous distribution, that is to say that the 

1000 scenarios are independent. The test statistic 

quantifies the maximum absolute difference between 

the two empirical sample cumulative distribution 

functions (CDFs) over the range of values in the 

samples. It is sensitive to both the shape and location of 

the CDFs and so is useful for comparing distributions. 

4.1.3.2 SCALED SUM OF SQUARED DIFFERENCES 

A Scaled Sum of Squares (SSS) statistic is produced for 

each variable j for each compressed data set formed by 

clustering method m. The SSS is calculated using 

                                  𝑇𝑠𝑗
𝑚 =  ∑ 𝑥𝑠𝑖𝑗

𝑚𝑁
𝑖=1              XIX 

where 𝑥𝑠𝑖𝑗
𝑚  is the present value, in dollars, of variable j 

for representative policy i according to model m, in 

scenario s. It follows that: 

          𝑆𝑆𝑆𝑗
𝑚 =  ∑ (𝑇𝑠𝑗

𝑚 − 𝑇𝑠𝑗
𝑠𝑒𝑟𝑖𝑎𝑡𝑖𝑚)1000

𝑠=1
2
                XX 

The scenarios are ordered from lowest to highest for 

each variable. Note that this order is not necessarily 

constant between variables or models. The interest lies 

in the differences between the model and seriatim in the 

ultimate distribution of present values across the 1000 

scenarios rather than on a scenario-by-scenario basis. 

Next these SSS values are scaled so that the standard 

deviation for each variable is one, producing the 

SSS results in Table A8. This allows the calculation 

of the "Total" column, a single-figure summary for each 

clustering method: 

                        𝑆𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑆𝑆𝑗
𝑚𝑝

𝑗=1             XXI 

Since the statistics are based on the sum of squared 

differences between the modelled values and the 

seriatim values, the better-performing methods are those 

with lower SSS statistics. It can be seen that model-

based clustering performs best across all variables for 

50 and 5000 clusters respectively (the latter employing 

feedback sampling). Ward’s method is optimal at 250 

clusters and k-medoids has the lowest SSS for 1000 and 

2500 clusters. 

 

4.1.3.3 M&E FEE INCOME 

Kolmogorov-Smirnov tests were performed to compare 

each of the compressed data sets to the seriatim values. 
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Table 1: Kolmogorov-Smirnov p-values for present 

value of M&E fee income. 

 

 
 

 

The higher p-values for Ward's method (see Table 1) 

indicate that it has resulted in a better fit than 

Milliman's method for this variable when compressing 

to 250 clusters. Model-based and k-medoids methods 

perform well for larger numbers of clusters. Figure 15 

shows the distribution of the present value of this 

variable across the 1000 scenarios for the seriatim data 

and for the approximations based on Ward's and 

Milliman's methods with 250 clusters. Figure 15(b) 

shows the full distribution while Figures 15(a) and 

15(c) focus on the tails. Figures 16 and 17 depict the 

equivalent information for models using 2500 and 5000 

clusters respectively. 

The cluster compressed data based on Ward's and 

model-based methods are generally closer to seriatim 

than Milliman's for this variable. Sections 4.1.3.4 – 

4.1.3.5 contain similar analysis for further variables. 

4.1.3.4 MAINTENANCE EXPENSES 

For the policy maintenance expenses variable, the p-

value from the Kolmogorov-Smirnov test is almost zero 

in all but two of the fitted models (see Table 2). While 

this implies that most of these models poorly represent 

this variable, the p-value is based on a test statistic that 

can still be examined to give an indication of relative 

goodness of fit. A lower value of the test statistic 

indicates better fit, meaning that Ward's method 

provides a better representation of this variable than 

Milliman's, particularly in the 2500 and 250-cluster 

solutions (see Table 3). The model-based approach 

based on feedback sampling is optimal for 1000 and 

5000 cluster solutions. 

 

Figure 15: Present value M&E fee income for seriatim 

and 250 cluster models. 

Number of Clusters 5000 2500 1000 250

Milliman KS p-value 0.24 0.24 0.31 0.01

Ward KS p-value 1.00 0.98 0.29 0.98

Model-based KS p-value 1.00 1.00 0.89 0.06

K-Medoids KS p-value N/A 0.95 0.97 N/A
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Figure 16: Present value M&E fee income for seriatim 

and 2500-cluster models. 

 

Figure 17: Present value M&E fee income for seriatim 

and 5000-cluster models.  
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Table 2: Kolmogorov-Smirnov p-values for present 

value of policy maintenance expenses. 

 

 

Table 3: Kolmogorov-Smirnov test statistics for present 

value of policy maintenance expenses. 

 

The distributions of the present values of this variable 

are plotted in Figures 18-20 for the 250, 2500 and 5000-

cluster models respectively. Again, figure (b) in each 

case shows the full distributions while figures (a) and 

(c) show the tails. Ward's and model-based methods 

respectively are closer to the seriatim outcome than 

Milliman's method for policy maintenance expenses, 

apart from in the lower tail. 

 

4.1.3.5 NET REVENUE 

Net revenue is regarded as the most important variable 

for this data set (partly evidenced in it holding the 

largest variable weighting as set out by Milliman in 

Section 2.) Consequently it is analysed both through the 

prism of clustering methodology, as for the previous 

variables, but also representative policy selection 

method. 

 

 

 

Figure 18: Present value policy maintenance expenses 

for seriatim and 250 cluster models. 

Number of Clusters 5000 2500 1000 250

Milliman KS p-value <0.001 <0.001 <0.001 <0.001

Ward KS p-value <0.001 0.02 <0.001 0.79

Model-based KS p-value <0.001 <0.001 0.34 <0.001

K-Medoids KS p-value N/A 0.03 <0.001 N/A

Number of Clusters 5000 2500 1000 250

Milliman KS statistic 0.11 0.12 0.12 0.12

Ward KS statistic 0.11 0.07 0.19 0.03

Model-based KS statistic 0.08 0.10 0.04 0.13

K-Medoids KS statistic N/A 0.06 0.11 N/A
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Figure 19: Present value policy maintenance expenses 

for seriatim and 2500-cluster models. 

 

Figure 20: Present value policy maintenance expenses 

for seriatim and 5000-cluster models. 
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Table 4: Kolmogorov-Smirnov test statistics for present 

value of net revenue. 

 

 

Figure 21 and Table 4 illustrate strongly that the 

optimal compression technique and the quality of 

compression can vary markedly according to the 

number of clusters/representative policies required. For 

5000 representative policies Milliman’s approach and 

the model-based approach are tied for accuracy 

according to the KS statistic, since both experience their 

single biggest departure from the seriatim in the lower 

tail. However over the full range of scenarios the 

model-based approach (implemented via feedback 

sampling) is superior. For 2500 clusters k-medoids 

provides the most accurate set of representative 

policies. At the 1000 cluster level of compression k-

medoids is again the optimal approach, by a very 

narrow margin versus the model-based method, both of 

which are substantially more accurate than the Milliman 

methods (though Ward is best for compression to 250 

clusters).       

 

Figure 22 illustrates the present value of net revenue 

across 1000 economic scenarios for 1000 clusters, 

where the clusters are identified using k-medoids and 

the representative policy is chosen via all potential 

methods outlined in Section 1.3. The default approach 

of using the policy nearest the centroid (denoted 

“Centroid”) is the best-performing selection method for 

the k-medoids approach for this variable and 

compression level (KS statistic = 0.056). However it is 

closely followed by the random selection method with 

weights proportional to policy size (“RandSize”, KS 

statistic = 0.059) and random selection using weights 

proportional to distance from centroid (“RandLoc”, KS 

statistic = 0.087); and to a lesser extent by complete 

random selection (“Random”, KS statistic = 0.162). 

Hence it is reassuring to observe that, if there is a 

concern as to the potential underestimation of variance 

by the policy nearest centroid selection method, random 

selection of representative policy using one of the three 

available sets of weights provides a viable alternative 

that can still provide a high quality compression. 

It is interesting to note that the modified centroid 

approach (“ModCent”, KS statistic = 0.325) performs 

poorly in conjunction with the k-medoids approach for 

Net Revenue. This is generally true across location 

variables when the modified centroid approach to 

representative policy selection is combined with 

nonparametric approaches to clustering. Conversely the 

modified centroid approach generally works well in 

conjunction with model-based clustering. Consider for 

example Net Revenue at 5000 clusters, where model-

based clustering with feedback ties Milliman as the 

optimal compression method: a further reduction in the 

KS statistic from 0.116 to 0.073 can be achieved by 

moving from the policy nearest centroid to the modified 

centroid selection method. At the other end of the 

compression spectrum, at 250 clusters, where the Ward 

approach (equivalent to model-based clustering with EII 

covariance for unweighted data) is optimal, the KS 

statistic can be reduced from 0.125 to 0.107 by 

switching to the modified centroid representative policy 

selection approach. 

4.1.4 CTE70 

The CTE (conditional tail expectation) 70 is a summary 

figure often used by actuaries to represent the average 

present value across the worst 30% of scenarios. It is 

defined as such to mirror a key reserving requirement 

set by industry regulators (Junus and Motiwalla, 2009). 

Here the CTE70 for the worst present value of the end 

of year surpluses through to the end of year 20 is 

considered. This type of tail analysis - only considering 

Number of Clusters 5000 2500 1000 250 

Milliman KS statistic 0.116 0.133 0.289 0.296 

Ward KS statistic 0.163 0.115 0.354 0.125 

Model-based KS statistic 0.116 0.183 0.076 0.267 

K-Medoids KS statistic N/A 0.111 0.056 N/A 
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the worst case scenarios - is important as it drives 

reserves for this type of product. 

For each scenario, the present value of surplus for the 

portfolio is calculated at the end of each of the next 20 

years. The worst of these is taken for that scenario. The 

CTE70 is the average of these worst present values 

across the 300 worst scenarios. With this product, initial 

surplus is always zero and in about 80% of scenarios 

surplus is never negative so the worst present value of 

surplus is actually zero in all but about 200 of the 1000 

scenarios. Hence the average of 300 scenarios contains 

approximately 100 zero values.  

The Alternative results in Table 5 are model-based for 

50 and 250 clusters, k-medoids for 1000 and 2500 

clusters and  model-based with feedback sampling for 

5000 clusters. These methods generally perform well, 

yielding results that are close to but not quite as good as 

Milliman's method according to the CTE70 metric, 

except for the 1000 cluster case in which k-medoids 

clustering outperforms the Milliman method. This is 

despite the methods having better quality of fit overall 

across all variables. All Alternative results use the 

policy nearest centroid as the representative policy for 

each cluster, in accordance with the Milliman approach. 

The Alternative* results in Table 5 allow both the 

method of clustering and the means of selecting a 

representative policy to vary: policy nearest centroid, 

random selection, random selection with weights based 

on size, random selection with weights based on 

distance from centroid and the modified centroid 

approaches are all considered (see Section 1.3). 

Table 5: CTE70 results for worst present value of 

surplus. 

 

 

 

 

Figure 21: Present value of net revenue for (a) 1000, (b) 

2500 and (c) 5000-cluster models.  

Seriatim Milliman Alternative Alternative*

5000 clusters 100.0% 99.3% 98.7% 98.7%

2500 clusters 100.0% 99.2% 99.4% 99.4%

1000 clusters 100.0% 98.6% 97.7% 100.3%

250 clusters 100.0% 97.9% 97.8% 97.8%

50 clusters 100.0% 95.2% 105.7% 105.7%

(a) 

(b) 

(c) 
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Despite this, the default selection method of policy 

nearest centroid prevails at all compression levels 

except 1000 clusters for CTE, where a slightly better 

result for the K-medoids model can be obtained by 

selecting representative policies randomly within 

clusters using weights proportional to policy size (and 

generally performs well for CTE70 for other 

compression levels). This suggests that selecting the 

representative policy using the standard policy nearest 

centroid approach is a robust approach for optimizing 

the critical CTE metric and, by extension, for the 

application as a whole. Should one wish to avoid this 

type of representative policy, random selection with 

weights proportional to policy size appears to provide a 

good alternative.  

The CTE70 results can also act as a useful tool for 

practitioners seeking to identify an “optimal” number of 

representative policies for a given data set. For 

example, for this data set there is an improvement in 

accuracy of CTE70 results as the number of 

representative policies increases to 2500, but little to be 

gained from increasing to 5000 policies, according to 

this metric. This out of sample result (across all 

scenarios as opposed to only the calibration scenarios) 

tallies with the in-sample interpretation of the optimal 

number of representative policies gleaned using the 

Weighted Sum of Squares metric in Figure 8. 

 

5. CONCLUSIONS 

A large number of clustering algorithms exist. The most 

appropriate one depends on the nature of the data, the 

purpose of the clustering and the level of compression. 

Within sample, the model-based, k-medoids and Ward 

methods proposed have outperformed Milliman's 

clustering method at all five levels of compression 

tested, according to the location variable totals for the 

sample data set. When the clustering methods are 

compared across stochastic simulations out of sample, 

the method with the lower Weighted Sum of Squares 

has generally produced representative policies with 

superior accuracy over the full range of variables, as 

expected. To this end, model-based, Ward and k-

medoid clustering show great promise as alternative 

clustering compression methodologies for stochastic 

simulations. In terms of the quality of fit of compressed 

data points for the Worst Surplus variable that informs 

the CTE70 metric, the existing Milliman methodology 

is generally most precise for the data set tested, though 

by a small margin in some cases. 

When the number of clusters is very small or very large, 

model-based clustering appears to generally outperform 

the non-parametric methods. An advantage of the 

model-based method is that the clusters identified are 

Gaussian, i.e. symmetric and bell-shaped, and are 

therefore better represented, on average, by single 

policies near their centroids than clusters obtained by 

nonparametric methods, which may be skewed, heavy-

tailed or otherwise irregularly shaped. Compact clusters 

with low variance that have real objects close to their 

centroids are usually ideal. These may not exist in a 

data set when a small number of clusters are sought. In 

Figure 22: Present value of net revenue for 1000 clusters 

using k-medoids with a variety of representative policy 

selection methods. 
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this situation a model-based approach with the equal 

volume constraint appears best for partitioning the data. 

Although large data sets, in theory, admit much more 

complex models, it is not computationally practical to 

directly perform unconstrained model-based clustering 

with large numbers of clusters and variables. Spherical 

model constraints such as EII can be suitable when 

partitioning data into large numbers of clusters. Indeed, 

the equal volume constraint appears essential. Feedback 

sampling is an alternative way of using the model-based 

approach indirectly to obtain a good partition even for 

extremely large data sets with large numbers of clusters. 

Segmentation can be used to good effect to fit flexible 

models if the distribution of the data so permits. 

However, for moderate to large numbers of clusters, 

non-parametric methods such as k-medoids and Ward's 

method seem to be effective and are easy to implement. 

The results obtained by Ward's minimum variance 

hierarchical clustering method and k-medoids were 

generally good at most compression levels for the 

variable annuities data. Both of these non-parametric 

clustering algorithms can be implemented efficiently in 

R. It is useful to perform a dimension reduction step 

prior to clustering if there are many location variables, 

particularly if some of the variables are strongly 

correlated. Principal component analysis proved to be 

more suitable than orthogonal factor analysis for this 

actuarial application. The alternative representative 

policy selection methods based on randomness and 

randomness using weights based on policy size or 

distance from the centroid show promise if it is 

desirable not to use the default policy nearest centroid 

method, but the latter does perform well in general. 

 

 

 

 

6. FURTHER WORK 

6.1 Ward's method for Weighted Data 

Ward's minimum variance method performs well in this 

application. Since each cluster is ultimately represented 

by a single object, in the optimal solution objects within 

clusters are as close as possible to the representative 

object. By minimizing the variance in each cluster, the 

algorithm minimizes the loss of information in the data 

compression. 

When Ward's method has been applied here, all objects 

have been treated equally and the weighted nature of the 

data has been ignored. This is because adapting this 

method to account for weighted data is not possible 

with the available software. Ward's method, as 

implemented, minimizes total within-cluster variance: 

                      ∑ ∑ ∑
1

𝑛𝑘

𝑝
𝑗=1

𝑁𝑘
𝑖=1

𝐺
𝑘=1 (xij - x̄kj)2              XXII 

But, in order to account for policy size, the aim should 

instead be to minimize the total within-cluster size-

weighted variance:  

∑ ∑ ∑
1

𝑛𝑘
 𝑝

𝑗=1

𝑁𝑘
𝑖=1

𝐺
𝑘=1  wi(xij - x̄kjw)2 / ∑ 𝑤𝑖

𝑛𝑘
𝑖=1       XXIII 

where wi is the size of policy i and x̄kj
w is the weighted 

mean value of variable j for the objects in cluster k. 

Performing Ward's minimum variance hierarchical 

clustering in this manner would be likely to lead to 

further gains in quality of the compressed data points. 

6.2 Variable Weights 

Prior to clustering, each variable was assigned a weight. 

When analysing the compressed data sets, it is apparent 

that some variables are more accurately represented 

than others. When clustering for a specific purpose, e.g. 

for the calculation of the CTE70, which focuses only on 

the worst-case scenarios, that purpose should be 

reflected in the variable weights. 
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A technique such as boosting (Bauer and Kohavi, 

2009), which is used in classification algorithms, can be 

used to optimize the variable weights. After an initial 

clustering solution is obtained, the worst-fitting 

variables can be identified. These can then be given 

larger weights and the clustering performed again until 

all variables appear sufficiently well represented. 

6.3 Bayesian Model Averaging 

It is possible to obtain partitions from a variety of 

clustering methods. If, for one level of compression, a 

number of solutions are obtained and it is not clear that 

one is the best (according to BIC, log-likelihood, WSS 

or any other measure), Bayesian Model Averaging 

(BMA) may be used to take an average across several 

viable solutions (Hoeting et al., 2009). To do this, 

consider a partition in terms of the Z matrix where zik is 

the probability that object i belongs to cluster k. Each 

object xi will be assigned to the cluster for which it has 

the highest probability of membership. If there are M 

viable solutions, Z1… ZM, then ZBMA is a weighted 

average of Z1… ZM. The BIC associated with Za, 

a=1…M,  is used to calculate its corresponding weight, 

which is proportional to exp(BICa/2). 
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APPENDIX A: ADDITIONAL RESULTS 

Table A1: Location variable totals for 50 clusters. 

   Weight   Milliman   Ward   EEI   EEV   VVV   K-medoids  

    GMDB Ratchet  1 106.2% 97.7% 93.3% 96.1% 90.3% 100.4% 

      GMDB Rollup  1 105.6% 133.6% 120.1% 95.3% 98.6% 121.7% 

      GMDB ROP  1 77.5% 28.2% 86.8% 99.7% 100.0% 86.0% 

      GMIB Ratchet  1 101.7% 109.5% 100.4% 101.8% 100.0% 105.8% 

      GMIB Rollup  1 100.8% 108.3% 99.8% 100.2% 100.9% 103.9% 

      GMAB ROP  1 136.1% 104.1% 105.9% 91.5% 87.6% 103.6% 

      Separate Acct 1  1 89.2% 97.8% 97.0% 92.7% 87.7% 88.2% 

      Separate Acct 2  1 104.6% 96.0% 100.7% 96.4% 101.2% 101.3% 

      Separate Acct 3  1 107.0% 102.9% 104.0% 107.4% 107.4% 104.1% 

      Separate Acct 4  1 96.8% 90.5% 91.1% 96.1% 98.8% 98.3% 

      Separate Acct 5  1 93.4% 78.0% 96.8% 92.5% 100.2% 94.1% 

      Separate Acct 6  1 110.6% 105.2% 110.1% 113.2% 110.7% 109.5% 

      Separate Acct 7  1 86.8% 98.2% 86.1% 91.6% 90.8% 92.4% 

      General Acct  1 111.4% 113.5% 100.0% 107.4% 100.6% 100.1% 

      Net Revenue 1  4 108.4% 111.6% 107.2% 100.0% 100.3% 108.0% 

      Commissions 1  2 101.7% 102.8% 99.4% 103.1% 96.8% 105.8% 

      Revenue Sharing 1  2 100.9% 103.3% 100.0% 102.6% 101.3% 100.5% 

      Maintenance Expense 1  2 92.5% 111.7% 99.8% 100.5% 105.7% 98.9% 

M & E Income 1 3 99.2% 97.6% 99.1% 99.4% 96.7% 100.4% 

      Net GMAB Cost 1  3 155.9% 121.6% 117.6% 114.8% 97.7% 130.3% 

      Net GMDB Cost 1  3 93.7% 121.3% 111.8% 93.2% 96.9% 126.5% 

      Net GMIB Cost 1  3 102.8% 105.2% 100.0% 95.8% 91.8% 106.7% 

      Net Revenue 2  4 139.7% 119.8% 118.7% 100.2% 94.8% 125.4% 

      Commissions 2  2 102.0% 95.2% 100.3% 99.9% 96.4% 104.4% 

      Revenue Sharing 2  2 103.0% 103.7% 102.3% 105.1% 105.4% 101.8% 

      Maintenance Expense 2  2 93.7% 110.5% 100.8% 101.4% 106.0% 99.5% 

M & E Income 2 3 101.2% 97.7% 100.9% 101.4% 100.9% 101.5% 

      Net GMAB Cost 2  3 135.9% 111.1% 114.8% 105.2% 99.0% 113.9% 

      Net GMDB Cost 2  3 98.8% 123.3% 106.2% 102.1% 92.3% 115.2% 

      Net GMIB Cost 2  3 98.8% 108.6% 102.3% 100.5% 107.1% 100.8% 

      Net Revenue 3  4 131.0% 127.3% 118.6% 106.0% 95.6% 126.8% 

      Commissions 3  2 102.1% 97.6% 98.9% 100.3% 97.1% 104.6% 

      Revenue Sharing 3  2 103.5% 103.7% 102.2% 105.2% 104.8% 102.0% 

      Maintenance Expense 3  2 93.9% 110.7% 100.8% 101.2% 105.9% 99.5% 

M & E Income 3 3 101.7% 97.7% 100.8% 101.5% 100.2% 101.6% 

      Net GMAB Cost 3  3 132.3% 113.4% 116.2% 108.1% 99.4% 108.1% 

      Net GMDB Cost 3  3 96.2% 119.0% 110.1% 95.1% 96.1% 102.9% 

      Net GMIB Cost 3  3 97.7% 105.1% 99.6% 99.1% 107.6% 99.8% 

      Net Revenue 4  4 110.6% 109.7% 106.3% 103.2% 102.6% 110.2% 

      Commissions 4  2 103.2% 102.8% 100.4% 102.2% 97.4% 106.1% 

      Revenue Sharing 4  2 101.9% 103.6% 100.8% 103.0% 102.7% 101.0% 

      Maintenance Expense 4  2 92.6% 111.6% 100.0% 100.4% 106.0% 99.0% 

M & E Income 4 3 100.3% 98.0% 99.8% 99.6% 98.0% 100.8% 

      Net GMAB Cost 4  3 109.3% 92.4% 98.0% 62.1% 55.7% 104.3% 

      Net GMDB Cost 4  3 86.0% 92.4% 101.1% 84.2% 128.1% 136.3% 

      Net GMIB Cost 4  3 85.4% 122.2% 103.9% 104.1% 89.9% 73.5% 

      Net Revenue 5  4 110.1% 109.7% 104.9% 100.0% 102.3% 107.8% 

      Commissions 5  2 102.1% 104.0% 100.1% 103.5% 98.1% 105.9% 

      Revenue Sharing 5  2 101.2% 102.7% 100.6% 102.9% 101.6% 100.6% 

      Maintenance Expense 5  2 92.6% 111.5% 100.1% 100.6% 105.7% 98.7% 

M & E Income 5 3 99.3% 96.9% 99.5% 99.4% 96.9% 100.2% 

      Net GMAB Cost 5  3 24.3% 118.1% 127.0% 59.3% 46.6% 58.7% 

      Net GMDB Cost 5  3 97.7% 164.4% 82.7% 83.3% 151.0% 159.9% 

      Net GMIB Cost 5  3 100.2% 92.5% 84.1% 91.4% 94.7% 102.8% 

  WSS    15.48 10.05 3.56 3.89 8.03 11.27 
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Table A2: Location variable totals for 250 clusters 

 

   Weight   Milliman   Ward   EII   EEV   K-medoids  

   GMDB Ratchet  1 98.9% 100.7% 101.4% 99.8% 101.3% 

    GMDB Rollup  1 92.4% 104.3% 114.8% 101.4% 107.4% 

    GMDB ROP  1 106.6% 88.7% 93.9% 88.1% 94.3% 

    GMIB Ratchet  1 100.6% 107.4% 103.8% 100.3% 103.2% 

    GMIB Rollup  1 100.6% 105.9% 102.7% 100.6% 102.7% 

    GMAB ROP  1 94.3% 92.9% 99.2% 99.3% 103.1% 

    Separate Acct 1  1 106.1% 90.0% 93.0% 87.4% 93.4% 

    Separate Acct 2  1 99.1% 102.0% 101.4% 99.3% 101.0% 

    Separate Acct 3  1 95.6% 103.4% 104.5% 103.6% 104.9% 

    Separate Acct 4  1 108.0% 95.4% 93.5% 84.4% 88.5% 

    Separate Acct 5  1 102.6% 96.4% 98.5% 98.1% 97.4% 

    Separate Acct 6  1 90.4% 109.7% 111.6% 109.3% 109.4% 

    Separate Acct 7  1 111.3% 94.0% 91.2% 101.6% 93.9% 

    General Acct  1 98.8% 99.2% 100.3% 102.1% 102.6% 

    Net Revenue 1  4 78.8% 103.5% 102.2% 103.1% 103.6% 

    Commissions 1  2 99.1% 103.6% 105.1% 97.4% 102.0% 

    Revenue Sharing 1  2 98.9% 99.6% 99.6% 101.3% 100.0% 

    Maintenance Expense 1  2 98.2% 106.5% 99.5% 98.8% 102.4% 

M & E Income 1  3 98.9% 100.2% 99.7% 98.9% 99.7% 

    Net GMAB Cost 1  3 90.4% 105.7% 113.8% 116.8% 102.6% 

    Net GMDB Cost 1  3 100.4% 102.1% 101.9% 103.8% 104.3% 

    Net GMIB Cost 1  3 100.7% 102.4% 99.8% 105.7% 102.7% 

    Net Revenue 2  4 81.4% 113.6% 115.1% 90.2% 112.1% 

    Commissions 2  2 98.7% 103.3% 104.2% 93.8% 101.0% 

    Revenue Sharing 2  2 98.3% 100.8% 100.9% 103.8% 101.0% 

    Maintenance Expense 2  2 98.2% 105.8% 100.0% 100.3% 102.3% 

M & E Income 2 3 98.5% 101.1% 100.8% 101.2% 100.6% 

    Net GMAB Cost 2  3 89.6% 104.0% 108.4% 101.1% 107.9% 

    Net GMDB Cost 2  3 99.1% 113.2% 106.3% 103.4% 102.6% 

    Net GMIB Cost 2  3 102.1% 100.9% 99.8% 106.2% 101.0% 

    Net Revenue 3  4 92.8% 115.7% 114.7% 99.9% 112.6% 

    Commissions 3  2 99.4% 102.9% 104.3% 95.1% 101.3% 

    Revenue Sharing 3  2 99.9% 100.8% 100.9% 103.2% 101.3% 

    Maintenance Expense 3  2 98.5% 105.8% 99.9% 100.0% 102.3% 

M & E Income 3 3 99.9% 101.1% 100.7% 100.6% 100.7% 

    Net GMAB Cost 3  3 84.3% 102.7% 106.1% 100.2% 108.9% 

    Net GMDB Cost 3  3 93.8% 102.1% 105.6% 98.5% 102.6% 

    Net GMIB Cost 3  3 124.6% 99.9% 98.2% 104.1% 98.9% 

    Net Revenue 4  4 94.4% 104.3% 103.6% 104.4% 104.6% 

    Commissions 4  2 98.9% 104.1% 105.2% 96.7% 101.9% 

    Revenue Sharing 4  2 99.6% 100.3% 100.0% 101.3% 100.3% 

    Maintenance Expense 4  2 98.3% 106.5% 99.6% 98.8% 102.4% 

M & E Income 4 3 99.6% 100.8% 100.0% 98.8% 99.9% 

    Net GMAB Cost 4  3 121.9% 96.9% 93.5% 92.8% 99.0% 

    Net GMDB Cost 4  3 84.4% 93.9% 94.3% 116.7% 104.2% 

    Net GMIB Cost 4  3 97.4% 103.9% 90.7% 75.7% 82.3% 

    Net Revenue 5  4 95.4% 102.1% 101.9% 103.7% 103.8% 

    Commissions 5  2 99.6% 103.9% 105.6% 99.0% 102.4% 

    Revenue Sharing 5  2 100.2% 99.9% 100.2% 101.3% 100.5% 

    Maintenance Expense 5  2 98.4% 106.2% 99.7% 98.8% 102.4% 

M & E Income 5 3 100.1% 100.3% 100.1% 98.8% 100.0% 

    Net GMAB Cost 5  3 102.8% 100.0% 71.1% 100.4% 102.3% 

    Net GMDB Cost 5  3 93.5% 99.1% 103.8% 150.7% 113.9% 

    Net GMIB Cost 5  3 98.5% 101.7% 96.1% 97.9% 103.8% 

WSS   3.19 1.19 2.12 3.85 1.29 
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Table A3: Location variable totals for 1000 clusters. 

 

   Weight   Milliman   Ward   Feedback   EII   EEV   K-Medoids  

  GMDB Ratchet  1 100.8% 101.8% 98.9% 101.6% 98.5% 100.6% 

    GMDB Rollup  1 105.9% 104.9% 106.3% 106.7% 101.8% 105.5% 

    GMDB ROP  1 96.4% 96.5% 92.8% 94.9% 95.9% 97.3% 

    GMIB Ratchet  1 100.2% 100.8% 102.6% 102.2% 100.0% 101.3% 

    GMIB Rollup  1 99.6% 100.3% 101.9% 101.9% 99.6% 100.8% 

    GMAB ROP  1 100.0% 98.8% 102.8% 98.6% 101.6% 99.5% 

    Separate Acct 1  1 94.4% 94.2% 95.2% 96.5% 92.8% 93.8% 

    Separate Acct 2  1 101.0% 102.0% 100.3% 100.8% 102.6% 99.2% 

    Separate Acct 3  1 105.2% 106.1% 104.7% 104.5% 102.7% 104.4% 

    Separate Acct 4  1 95.3% 95.2% 95.2% 95.3% 92.8% 92.8% 

    Separate Acct 5  1 98.4% 97.7% 98.8% 97.7% 101.0% 98.9% 

    Separate Acct 6  1 107.6% 108.8% 108.5% 108.5% 106.4% 107.1% 

    Separate Acct 7  1 92.8% 92.2% 91.7% 91.9% 95.2% 95.0% 

    General Acct  1 100.4% 100.5% 102.3% 100.7% 101.8% 100.7% 

    Net Revenue 1  4 102.7% 101.3% 102.3% 101.7% 101.4% 101.8% 

    Commissions 1  2 100.9% 102.0% 100.4% 101.4% 102.0% 101.2% 

    Revenue Sharing 1  2 99.9% 99.9% 99.8% 100.2% 100.7% 100.0% 

    Maintenance Expense 1  2 106.2% 99.1% 97.2% 101.9% 100.5% 102.6% 

M&E Income 1  3 99.8% 99.5% 99.6% 99.7% 99.4% 99.9% 

    Net GMAB Cost 1  3 102.7% 101.6% 102.3% 115.0% 106.0% 107.7% 

    Net GMDB Cost 1  3 108.3% 100.7% 103.6% 105.1% 99.4% 103.6% 

    Net GMIB Cost 1  3 101.8% 103.7% 103.1% 104.1% 100.5% 102.1% 

    Net Revenue 2  4 111.2% 104.0% 106.3% 105.7% 98.0% 106.7% 

    Commissions 2  2 101.5% 102.4% 101.7% 101.7% 100.0% 101.3% 

    Revenue Sharing 2  2 101.0% 101.0% 101.2% 101.1% 102.4% 100.8% 

    Maintenance Expense 2  2 105.5% 99.7% 98.2% 101.9% 101.0% 102.5% 

M&E Income 2  3 100.9% 100.6% 101.1% 100.7% 101.3% 100.7% 

    Net GMAB Cost 2  3 101.8% 102.8% 105.2% 107.5% 101.0% 102.3% 

    Net GMDB Cost 2  3 98.1% 101.7% 101.9% 99.8% 100.7% 100.0% 

    Net GMIB Cost 2  3 99.7% 99.9% 101.4% 100.4% 102.3% 100.2% 

    Net Revenue 3  4 111.3% 105.7% 106.8% 105.6% 103.5% 107.0% 

    Commissions 3  2 101.7% 103.0% 101.6% 101.9% 100.8% 101.4% 

    Revenue Sharing 3  2 101.1% 101.4% 101.2% 101.4% 102.0% 100.9% 

    Maintenance Expense 3  2 105.7% 99.7% 98.1% 102.0% 100.7% 102.5% 

    M&E Income 3 3 101.1% 101.0% 101.1% 100.9% 100.8% 100.8% 

    Net GMAB Cost 3  3 101.5% 102.1% 104.8% 106.9% 101.5% 101.8% 

    Net GMDB Cost 3  3 95.7% 95.6% 101.4% 96.8% 95.0% 98.1% 

    Net GMIB Cost 3  3 98.8% 98.9% 99.8% 99.7% 100.4% 99.1% 

    Net Revenue 4  4 104.3% 102.0% 102.6% 102.5% 101.9% 102.9% 

    Commissions 4  2 101.0% 102.3% 100.9% 101.6% 101.7% 101.2% 

    Revenue Sharing 4  2 100.1% 100.2% 100.2% 100.5% 101.1% 100.2% 

    Maintenance Expense 4  2 106.0% 99.2% 97.4% 101.8% 100.4% 102.6% 

M&E Income 4  3 100.1% 99.9% 100.0% 100.0% 99.9% 100.1% 

    Net GMAB Cost 4  3 104.1% 97.5% 99.0% 99.7% 93.8% 101.4% 

    Net GMDB Cost 4  3 114.2% 102.3% 104.8% 107.0% 94.7% 107.9% 

    Net GMIB Cost 4  3 74.8% 73.5% 93.8% 83.7% 91.9% 83.8% 

    Net Revenue 5  4 103.1% 101.2% 102.0% 101.0% 101.3% 101.4% 

    Commissions 5  2 101.2% 102.5% 101.0% 101.9% 102.4% 101.4% 

    Revenue Sharing 5  2 100.3% 100.3% 100.3% 100.6% 100.7% 100.3% 

    Maintenance Expense 5  2 105.9% 99.2% 97.4% 101.9% 100.5% 102.6% 

M&E Income 5  3 100.1% 99.9% 99.9% 100.1% 99.4% 100.1% 

    Net GMAB Cost 5  3 91.1% 91.2% 107.9% 94.3% 74.2% 93.5% 

    Net GMDB Cost 5  3 122.5% 97.7% 96.9% 105.8% 102.9% 106.3% 

    Net GMIB Cost 5  3 102.1% 106.6% 101.9% 104.5% 96.6% 101.8% 

   WSS    1.96 0.94 0.42 0.87 0.87 0.67 
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Table A4: Location variable totals for 2500 clusters. 

 

   Weight   Milliman   Ward   EII   Feedback   K-medoids  

  GMDB Ratchet  1 100.2% 102.5% 102.6% 100.6% 100.5% 

    GMDB Rollup  1 103.7% 103.1% 104.6% 104.8% 103.8% 

    GMDB ROP  1 99.1% 96.4% 97.8% 97.0% 99.2% 

    GMIB Ratchet  1 100.0% 101.5% 101.5% 101.2% 100.9% 

    GMIB Rollup  1 99.6% 100.9% 101.2% 101.0% 100.6% 

    GMAB ROP  1 100.9% 99.7% 99.5% 98.0% 100.5% 

    Separate Acct 1  1 97.2% 95.8% 96.2% 96.5% 96.8% 

    Separate Acct 2  1 100.7% 101.4% 100.1% 99.8% 100.0% 

    Separate Acct 3  1 104.0% 105.1% 103.8% 103.5% 102.7% 

    Separate Acct 4  1 95.8% 95.0% 95.4% 94.1% 94.5% 

    Separate Acct 5  1 98.8% 99.2% 99.1% 100.0% 99.0% 

    Separate Acct 6  1 105.4% 108.6% 106.4% 105.9% 105.5% 

    Separate Acct 7  1 94.5% 91.7% 93.6% 93.7% 96.2% 

    General Acct  1 100.2% 100.4% 100.1% 100.7% 100.3% 

    Net Revenue 1  4 102.2% 100.5% 101.1% 101.6% 101.6% 

    Commissions 1  2 100.5% 100.2% 100.1% 100.7% 100.5% 

    Revenue Sharing 1  2 100.0% 100.0% 100.0% 100.0% 100.1% 

    Maintenance Expense 1  2 111.5% 98.5% 105.4% 97.0% 108.3% 

M & E Income 1 3 99.8% 99.7% 99.9% 99.7% 100.0% 

    Net GMAB Cost 1  3 104.7% 103.5% 103.4% 105.9% 104.5% 

    Net GMDB Cost 1  3 104.6% 101.1% 104.5% 103.6% 102.9% 

    Net GMIB Cost 1  3 101.5% 101.5% 101.9% 102.7% 101.7% 

    Net Revenue 2  4 110.7% 100.1% 105.9% 103.9% 107.0% 

    Commissions 2  2 101.1% 101.0% 101.0% 101.1% 100.9% 

    Revenue Sharing 2  2 100.7% 101.0% 100.7% 100.7% 100.6% 

    Maintenance Expense 2  2 109.9% 98.8% 104.8% 97.7% 107.2% 

M & E Income 2 3 100.5% 100.6% 100.6% 100.5% 100.5% 

    Net GMAB Cost 2  3 101.8% 101.1% 101.8% 104.4% 101.5% 

    Net GMDB Cost 2  3 98.3% 101.3% 100.8% 101.1% 100.6% 

    Net GMIB Cost 2  3 99.7% 100.9% 100.5% 100.5% 100.2% 

    Net Revenue 3  4 109.4% 100.2% 105.3% 104.5% 106.8% 

    Commissions 3  2 101.4% 101.2% 101.1% 101.2% 101.1% 

    Revenue Sharing 3  2 100.9% 101.4% 100.9% 100.9% 100.7% 

    Maintenance Expense 3  2 110.1% 98.9% 104.9% 97.7% 107.3% 

M & E Income 3 3 100.8% 100.9% 100.8% 100.6% 100.6% 

    Net GMAB Cost 3  3 101.4% 100.4% 101.9% 103.8% 100.7% 

    Net GMDB Cost 3  3 97.8% 98.5% 98.5% 97.0% 99.4% 

    Net GMIB Cost 3  3 99.2% 100.2% 100.0% 99.8% 99.5% 

    Net Revenue 4  4 103.5% 100.5% 101.6% 101.9% 102.4% 

    Commissions 4  2 100.6% 100.6% 100.4% 101.0% 100.6% 

    Revenue Sharing 4  2 100.1% 100.4% 100.2% 100.2% 100.2% 

    Maintenance Expense 4  2 111.1% 98.5% 105.2% 97.1% 108.1% 

M & E Income 4 3 99.9% 100.0% 100.1% 99.9% 100.1% 

    Net GMAB Cost 4  3 98.8% 99.3% 92.0% 92.6% 98.2% 

    Net GMDB Cost 4  3 106.7% 102.2% 107.4% 103.0% 105.9% 

    Net GMIB Cost 4  3 86.1% 96.4% 96.3% 90.6% 91.3% 

    Net Revenue 5  4 102.5% 99.8% 101.0% 100.8% 101.4% 

    Commissions 5  2 100.8% 100.7% 100.4% 101.0% 100.8% 

    Revenue Sharing 5  2 100.2% 100.5% 100.3% 100.3% 100.4% 

    Maintenance Expense 5  2 111.1% 98.5% 105.2% 97.2% 108.0% 

M & E Income 5 3 100.0% 100.1% 100.1% 100.0% 100.2% 

    Net GMAB Cost 5  3 96.4% 90.8% 94.6% 95.7% 95.4% 

    Net GMDB Cost 5  3 105.2% 95.2% 103.5% 110.3% 96.5% 

    Net GMIB Cost 5  3 101.3% 101.0% 103.1% 101.2% 100.6% 

  WSS    0.92 0.17 0.39 0.44 0.47 
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Table A5: Location variable totals for 5000 clusters. 

 

   Weight   Milliman   Ward   Feedback   K-medoids  

GMDB Ratchet  1 100.2% 101.7% 100.7% 101.0% 

  GMDB Rollup  1 102.4% 103.0% 104.3% 102.4% 

  GMDB ROP  1 99.5% 98.3% 97.5% 99.3% 

  GMIB Ratchet  1 100.0% 100.8% 100.9% 100.4% 

  GMIB Rollup  1 99.6% 100.6% 100.5% 100.1% 

  GMAB ROP  1 100.4% 99.5% 99.5% 100.2% 

  Separate Acct 1  1 98.0% 97.2% 96.7% 98.2% 

  Separate Acct 2  1 100.2% 100.1% 100.2% 100.1% 

  Separate Acct 3  1 103.0% 102.8% 103.1% 102.2% 

  Separate Acct 4  1 97.5% 95.4% 95.4% 96.0% 

  Separate Acct 5  1 98.9% 99.1% 99.4% 98.7% 

  Separate Acct 6  1 103.9% 106.3% 104.7% 103.0% 

  Separate Acct 7  1 96.4% 94.4% 95.0% 97.6% 

  General Acct  1 100.2% 100.2% 100.6% 100.3% 

  Net Revenue 1  4 102.2% 100.6% 100.8% 101.4% 

  Commissions 1  2 100.3% 100.2% 100.5% 100.3% 

  Revenue Sharing 1  2 100.1% 100.1% 100.0% 100.1% 

  Maintenance Expense 1  2 114.6% 100.7% 98.5% 110.8% 

  M & E Income 1 3 99.8% 99.8% 99.8% 100.0% 

  Net GMAB Cost 1  3 103.8% 100.2% 102.1% 102.7% 

  Net GMDB Cost 1  3 104.2% 101.0% 103.2% 101.7% 

  Net GMIB Cost 1  3 101.6% 102.1% 101.2% 101.3% 

  Net Revenue 2  4 110.4% 102.3% 101.7% 107.2% 

  Commissions 2  2 100.7% 100.8% 100.7% 100.6% 

  Revenue Sharing 2  2 100.6% 100.7% 100.5% 100.5% 

  Maintenance Expense 2  2 112.4% 100.7% 98.8% 109.2% 

M & E Income 2 3 100.4% 100.5% 100.4% 100.4% 

  Net GMAB Cost 2  3 101.7% 100.4% 103.6% 101.7% 

  Net GMDB Cost 2  3 98.9% 100.4% 100.9% 100.1% 

  Net GMIB Cost 2  3 99.8% 100.2% 100.3% 100.1% 

  Net Revenue 3  4 109.0% 103.0% 102.3% 106.4% 

  Commissions 3  2 100.9% 101.0% 100.9% 100.7% 

  Revenue Sharing 3  2 100.8% 100.8% 100.7% 100.6% 

  Maintenance Expense 3  2 112.7% 100.7% 98.8% 109.4% 

  M & E Income 3 3 100.6% 100.6% 100.5% 100.5% 

  Net GMAB Cost 3  3 101.4% 100.4% 102.1% 101.4% 

  Net GMDB Cost 3  3 98.0% 97.6% 97.7% 99.5% 

  Net GMIB Cost 3  3 99.5% 99.8% 99.6% 99.7% 

  Net Revenue 4  4 103.3% 101.0% 100.9% 102.2% 

  Commissions 4  2 100.3% 100.4% 100.6% 100.3% 

  Revenue Sharing 4  2 100.2% 100.2% 100.1% 100.2% 

  Maintenance Expense 4  2 114.1% 100.6% 98.5% 110.4% 

  M & E Income 4 3 99.9% 100.0% 100.0% 100.0% 

  Net GMAB Cost 4  3 97.4% 98.8% 97.9% 99.0% 

  Net GMDB Cost 4  3 108.6% 102.7% 103.8% 103.2% 

  Net GMIB Cost 4  3 90.4% 92.0% 93.5% 94.8% 

  Net Revenue 5  4 102.6% 100.3% 100.4% 101.6% 

  Commissions 5  2 100.4% 100.6% 100.7% 100.4% 

  Revenue Sharing 5  2 100.3% 100.4% 100.2% 100.3% 

  Maintenance Expense 5  2 114.0% 100.6% 98.5% 110.3% 

  M& E Income 5 3 100.0% 100.1% 100.0% 100.1% 

  Net GMAB Cost 5  3 94.2% 100.7% 96.8% 97.3% 

  Net GMDB Cost 5  3 110.4% 97.0% 112.7% 97.5% 

  Net GMIB Cost 5  3 102.6% 102.4% 100.9% 100.7% 

   WSS    1.05 0.13 0.28 0.43 
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Table A6: Kolmogorov-Smirnov p-values for present value of all variables. 

Representative 
Policies Method Commission IMFProf MaintExp M&E GMAB GMDB GMIB Net Revenue Worst Surplus 

110000 Seriatim 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5000 Milliman 0.536 0.341 <0.001 0.241 0.020 1.000 0.288 <0.001 1.000 

5000 Ward 0.432 0.573 <0.001 1.000 0.007 0.500 0.685 <0.001 1.000 

5000 Feedback 0.997 0.936 0.003 1.000 0.370 0.648 0.888 <0.001 1.000 

2500 Milliman 0.400 0.288 0.000 0.241 0.794 0.988 0.181 <0.001 1.000 

2500 Ward 0.794 0.969 0.020 0.980 0.219 0.913 1.000 <0.001 1.000 

2500 Feedback 0.999 0.648 0.000 1.000 0.087 0.988 0.794 <0.001 1.000 

2500 K-medoids 1.000 1.000 0.033 0.954 0.007 0.685 0.888 <0.001 1.000 

1000 Milliman 0.794 0.219 <0.001 0.314 0.000 0.999 0.043 <0.001 1.000 

1000 Ward 0.828 0.029 <0.001 0.288 0.006 0.913 0.055 <0.001 1.000 

1000 Feedback 0.859 0.859 0.341 0.888 0.001 0.794 0.759 0.006 1.000 

1000 K-medoids 0.994 0.794 0.000 0.969 0.500 0.536 0.241 0.010 1.000 

250 Milliman 0.263 0.008 <0.001 0.013 0.007 0.043 0.001 <0.001 1.000 

250 Ward 0.011 0.500 0.794 0.980 <0.001 <0.001 0.936 <0.001 1.000 

250 EII 0.536 0.134 <0.001 0.062 0.370 0.000 0.314 <0.001 1.000 

50 Milliman <0.001 0.001 <0.001 0.002 <0.001 0.000 0.026 <0.001 1.000 

50 EEI 0.013 <0.001 <0.001 0.001 <0.001 0.001 0.003 <0.001 1.000 

50 EEV <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000 

50 EII <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.954 
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Table A7: Kolmogorov-Smirnov test statistics for present value of all variables. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Representative  
Policies Method Commission IMF Prof Maint Exp M&E GMAB GMDB GMIB Net Revenue Worst Surplus Total 

110000 Seriatim 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 

5000 Milliman 0.036 0.042 0.111 0.046 0.068 0.016 0.044 0.116 0.005 0.48 

5000 Ward 0.039 0.035 0.105 0.016 0.075 0.037 0.032 0.163 0.007 0.51 

5000 Feedback 0.018 0.024 0.081 0.014 0.041 0.033 0.026 0.116 0.008 0.36 

2500 Milliman 0.040 0.044 0.115 0.046 0.029 0.020 0.049 0.133 0.005 0.48 

2500 Ward 0.029 0.022 0.068 0.021 0.047 0.025 0.015 0.115 0.008 0.35 

2500 Feedback 0.017 0.033 0.098 0.016 0.056 0.020 0.029 0.183 0.007 0.46 

2500 K-medoids 0.016 0.013 0.064 0.023 0.075 0.032 0.026 0.111 0.005 0.37 

1000 Milliman 0.029 0.047 0.116 0.043 0.118 0.017 0.062 0.289 0.006 0.73 

1000 Ward 0.028 0.065 0.188 0.044 0.076 0.025 0.060 0.354 0.009 0.85 

1000 Feedback 0.027 0.027 0.042 0.026 0.087 0.029 0.030 0.076 0.010 0.35 

1000 K-medoids 0.019 0.029 0.108 0.022 0.037 0.036 0.046 0.073 0.009 0.38 

250 Milliman 0.045 0.074 0.116 0.071 0.075 0.062 0.085 0.296 0.008 0.83 

250 Ward 0.072 0.037 0.029 0.021 0.157 0.151 0.024 0.125 0.007 0.62 

250 EII 0.036 0.052 0.132 0.059 0.041 0.095 0.043 0.267 0.007 0.73 

50 Milliman 0.220 0.086 0.139 0.082 0.203 0.145 0.066 0.112 0.010 1.06 

50 EEI 0.071 0.103 0.171 0.088 0.255 0.087 0.080 0.243 0.015 1.11 

50 EEV 0.109 0.082 0.169 0.100 0.320 0.202 0.115 0.407 0.009 1.51 

50 EII 0.229 0.165 0.253 0.184 0.304 0.276 0.118 0.214 0.023 1.77 
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Table A8: Scaled sum of squared differences between model and seriatim values. 

 

Representative 
Policies Method Commission IMFProf MaintExp M&E GMAB GMDB GMIB Net Revenue Worst Surplus Total 

110000 Seriatim 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 

5000 Milliman 0.060 0.225 0.271 0.177 0.026 0.010 0.297 0.067 0.011 1.14 

5000 Ward 0.059 0.103 0.224 0.008 0.021 0.016 0.085 0.153 0.052 0.72 

5000 Feedback 0.009 0.037 0.110 0.006 0.054 0.012 0.061 0.030 0.115 0.43 

2500 Milliman 0.081 0.221 0.267 0.172 0.020 0.019 0.391 0.104 0.013 1.29 

2500 Ward 0.013 0.046 0.135 0.033 0.051 0.015 0.029 0.125 0.130 0.58 

2500 Feedback 0.010 0.105 0.180 0.008 0.054 0.004 0.087 0.205 0.098 0.75 

2500 K-medoids 0.005 0.008 0.068 0.028 0.033 0.011 0.063 0.025 0.031 0.27 

1000 Milliman 0.034 0.273 0.208 0.172 0.050 0.012 0.731 0.933 0.051 2.46 

1000 Ward 0.034 0.791 1.143 0.246 0.033 0.021 0.573 2.036 0.153 5.03 

1000 Feedback 0.016 0.045 0.015 0.023 0.083 0.011 0.089 0.055 0.348 0.69 

1000 K-medoids 0.010 0.077 0.194 0.016 0.022 0.034 0.277 0.024 0.097 0.75 

250 Milliman 0.133 0.761 0.193 0.502 0.057 0.151 1.163 1.204 0.091 4.25 

250 Ward 0.225 0.155 0.044 0.032 0.307 1.029 0.161 0.145 0.211 2.31 

250 EII 0.027 0.364 0.291 0.198 0.081 0.288 0.428 0.711 0.111 2.50 

50 Milliman 3.705 1.144 0.939 0.711 0.320 1.225 1.268 0.125 0.315 9.72 

50 EEI 0.167 2.189 0.619 1.107 2.112 0.361 1.684 0.358 0.922 9.52 

50 EEV 0.547 0.679 1.016 0.899 3.790 1.051 1.598 4.081 0.775 14.43 

50 EII 2.655 4.072 4.422 4.358 1.767 4.231 4.163 0.258 4.416 30.34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


