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Abstract: Dynamic modelling has long been used to understand fundamental principles of
cell signalling and its dysregulation in cancer. More recently, these models have also been used
to understand the individual risks of cancer patients, and predict their survival probabilities.
However, the current methodologies for integrating tumour data and generating patient-specific
simulations suffer from the lack of general applicability; they only work for cell signalling models
in which only posttranslational protein modifications are considered, so that the total protein
concentrations are conserved. Here, we present novel, generally applicable method. The method
is based on a simple theoretical framework for modelling gene-regulation, and the indirect
estimation of patient-specific parameters from tumour data. Because our method does not
require time-invariance of the total-protein concentrations, it can be applied to models of any
nature, including the many cancer signalling models involving gene-regulation.
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1. INTRODUCTION

The dynamic states of cancer cell signalling are inti-
mately linked to cancer cell fate decisions and clinical
outcomes (Kolch et al., 2015; Fey et al., 2012). Recently,
multiple studies have shown that patient-specific differ-
ences in the dynamic behaviour of these signalling net-
works underlie individual pathogenetic changes and dis-
ease manifestation (Fey et al., 2015; Flanagan et al., 2015;
Lindner et al., 2013; Murphy et al., 2013). For example,
a dynamic model of the JNK pathway could predict the
survival probabilities of cancer patients in neuroblastoma,
a common childhood cancer (Fey et al., 2015). These
predictions were based on personalised simulations for over
700 patients, and revealed that a high amplitude, switch-
like JNK activation was associated with neuroblastoma
cell death, and better patient survival.

To generate the patient-specific simulations, the signalling
model was personalised by adjusting the total protein
concentration of each model component to the measured
values from the patient’s tumour sample. This approach
works for purely posttranslational signalling models in
which the total protein concentration of each gene is
conserved (constant), and the only dynamic changes arise
from the regulation of protein-protein interactions and
enzyme activities, for example by phosphorylation.

In fact, all the personalised models mentioned are based
on this simple principle of directly using the measured
mRNA or protein concentrations as static parameters in
the model (Fey et al., 2015; Flanagan et al., 2015; Lindner
et al., 2013; Murphy et al., 2013). Thus, all these per-
sonalised models are based on the assumption that the
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total protein concentrations of the modelled genes are con-
stant for all genes. Because only then do these measured
concentrations constitute static parameters in the model
that can readily be adjusted using the measured tumour
data. Unfortunately, this assumption is often violated and
prevents the application of this approach to systems in
which the protein levels themselves are regulated.

Regulation of gene expression on the level of mRNA and
total protein is quite common (Kolch et al., 2015; Nakakuki
et al., 2010). Examples that are particularly relevant for
cancer are regulation of the cell-cycle or the DNA-damage
response. In these systems, both mRNA and total protein
concentrations are regulated, and changing over time.
Moreover, these dynamic changes are critical aspects of
the systems behaviour. So far, the assumption of time-
invariant total protein levels has hampered personalised
modelling of these important processes. Thus, there is an
urgent need for novel model-personalisation methodologies
that are generally applicable.

Here we propose such a methodology.

In contrast to the current approach, the here proposed
methodology does not require that the total-protein con-
centrations are constant. Instead, we propose a theoretical
framework in which the patient-specific mRNA and total
protein concentrations arise naturally from patient-specific
mRNA synthesis parameters. Rather than time-invariant
parameters, the mRNA and total protein concentrations
are now dynamic states described by ordinary differential
equations. This framework allows us to personalise mod-
els of any nature, involving signalling, gene-regulation or
both, by indirectly estimating the patient-specific synthe-
sis parameters.
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The current manuscript is organised as follows. First, we
will present a simple, yet generally applicable theoretical
framework for the personalised modelling of gene expres-
sion. Second, we show how the patient-specific parameters
can be estimated from expression data measured in the
patients’ tumour samples. Third, we illustrate the method-
ology by testing it on simulated data from a p53 DNA-
damage response model.

2. A MODELLING FRAMEWORK FOR
PERSONALISED GENE EXPRESSION

Although often considered separately, the posttransla-
tional and gene-regulatory levels of cell signalling are in-
trinsically linked (Fig. 1). On the one hand, signalling
on the protein level affects the gene-regulatory level, for
instance by triggering mRNA synthesis trough the activa-
tion of transcription factors. On the other hand, the gene-
regulatory level affects the signalling level by controlling
the expression of the proteins that mediate and process
the signals.

2.1 Combined modelling of gene-requlation and signalling

Mathematically, we can think of signalling as a system
consisting of two layers, linked by feedback (Fig. 1). Each
layer consists of a set of ordinary differential equations.
The signalling layer has the concentrations of all post-
translational protein forms as states, and takes the vector
of mRNA concentrations as input. Vice versa, the gene-
regulatory layer has the mRNA concentrations as states
and takes the vector of protein concentrations as input.

Formally, we have the following system

%y = f(yap) + B diag(ktransl)x (13)
d .
ax =p+9(y, k) — diag(krgeq), (1b)

where z € R™ and y € R™ are vectors of mRNA and
protein concentrations, respectively. f(y,p) and g(y, k)
are functions describing posttranslational modifications
and gene-regulatory effects, respectively. Note that f(y,p)
should contain a degradation term, i.e. f(y,p) = f(y,p) —
diag(kpgeg)y. B € R™*™ is a matrix containing m different
unit vectors e; € R™, indicating the subset of unmodified
proteins y; that are translated (synthesised) from their
corresponding mRNA templates. diagkirgng € R™*™
and diag krqeq € R™*™ are diagonal matrices containing
the protein-translation and mRNA-degradation rate con-
stants. p € R™ is a vector of patient-specific parameters.

Remark on the notation. In the following, and for simplic-
ity of presentation, we often do not explicitly denote the
dependency of f and g on the kinetic parameters p and k.
That is, when referring to f and g we mean the functions

[y f(y,p) and g : y — g(y, p), respectively.
2.2 Rationale and assumptions behind the approach

The method is based on linking the measured patient-
specific gene-expression differences on the systems level
to parameter changes in the model on individual gene
level. Because we want the patient-specific parameters to

y = f(yvp) + Bdiag(kt'ransl) €T

Protein level

& =p+g(y k) — diag(krgeq)
mRNA level

Fig. 1. The dynamic system used for combined modelling
of posttranslational and gene-regulatory networks: y
describes the protein level, and & the mRNA level.

be identifiable, we assume that the basal mRNA-synthesis
rate for each gene varies between patients, but all other
parameters do not.

Assumption 1. The observed gene-expression differences in
tumour samples are caused by patient-specific differences
of the basal mRNA-synthesis rates.

Although some other parameters, most notably mRNA-
degradation and protein-translation rate constants, might
also vary between patients, we only estimate the patient-
specific mRNA-synthesis rates. All other kinetic parame-
ters not directly relating to gene expression — such as cat-
alytic rate constants and binding affinities — are presumed
not to vary between patients.

Remark on wviolating Assumption 1. Although it is a
theoretical requirement for formulating the methodology,
violating Assumption 1 has limited practical consequences.
As we will see later in Sec. 4.3, accurate, albeit less precise
simulation results can be obtained even when the rates of
mRNA-degradation and protein-translation for each gene
differ between patients.

3. ESTIMATING THE PATIENT-SPECIFIC
PARAMETERS

Our aim is to estimate the patient specific parameter p
from gene expression measurements of the patients’ tu-
mours. Such tumour data are usually obtained from tissue
samples collected in biopsies or surgery, and would usually
reflect the homeostatic, unperturbed state of the patient’s
tumour. Thus, these tumour data would correspond to the
unstimulated steady-state of our model (1).

Assumption 2. Measured gene expression values from tu-
mour samples reflect basal (unstimulated) steady-state
values.

This is a fair assumption considering that most tu-
mour data are collected prior to pharmacological treat-
ment (de Gramont et al., 2015; Juty et al., 2015).

Put more formally, the goal is to estimate p from steady
state measurements of either x or y, based on the model
in (1) with given functions f, g and given kinetic parame-
ters p, ka ktTansl and k7'deg~

For the steady-state we have

0= f(y,p) + B diag(ktransi), (2a)

0= p+ g(ya k) - diag(deeg)-T- (2b)
The next step is to solve (2) for the patient-specific
parameters p. Two scenarios can be distinguished.
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3.1 Estimation based on mRNA measurements (x is
measured)

In the first scenario, all mRNA concentrations are mea-
sured. The following theorem provides the main result.

Theorem. Assume that the function f : y — f(y,p)
is injective, Then we can estimate the patient specific
parameters p from steady state measurements of .

Proof (by construction). Because f is injective, a left-
inverse of f with f**¥ o f = Id, exists. Thus, in steady-

state %y =0, it hold that

Y= finv (B diag(ktransl)xap)7 (3)
which means given steady-state measurements of xz, we
know the steady-state of y. Further, it follows from the

steady-state condition %x =0 of z, that

p= kzdegjx —go (B diag(ktranst)z)- (4)
O

Equation (4) is the analytical solution to the problem
in (2), and provides an explicit formula for estimating
the patient-specific parameters from steady-state mRNA
measurements.

3.2 Estimation based on protein measurements (y is
measured)

In the second scenario, the protein concentrations are
measured. The following theorem provides the main result.

Theorem. Assume non-zero translation rates for all genes,
i.e. all elements of ky.qns; are greater than zero. Then we
can estimate the patient-specific parameters from steady-
state measurements of y.

Proof. By definition B is composed of a subset of the unit
vectors, e.g. B = [e; e; ...]. It holds that BT B = I, which
means we can solve (2a) for x

xr = — diag71(ktransl)BTf(yvp)' (5)

To see this, note that right-multiplying (2a) with BT
gives 0 = BT f(y)+ BT B diag(k¢ranst ). After substitution
into (2b) we can solve for the patient-specific parameter

p = _k?deg diagil (ktransl)Bf(y7p) - g(ya k) (6)
O

Equation (6) is the analytical solution to the problem
in (2), and provides an explicit formula for estimating
the patient-specific parameters from steady-state protein
measurements.

4. EXAMPLE

To illustrate the proposed methodology, we applied it to
a simple toy model inspired by the p53 DNA damage
response system, using simulated data for testing. On
the gene-regulatory level, p53 induces the expression of
MDM?2, which in turn promotes the degradation of p53
(Fig. 2). On the posttranslational level, the phosphoryla-
tion of p53, for example induced by DNA damage, inhibits
pH3 degradation, thus stabilising p53 protein, resulting
in increased pb3 protein expression. Thus, this system

contains an interesting crosstalk between the posttransla-
tional level describing p53 phosphorylation and the gene-
regulatory level describing p53 expression. Indeed, this was
our rationale behind choosing this model. We wanted to
look at a system that contains a feedback loop involving
both transcriptional and post-translational events, as we
thought such a system would constitute the most difficult
challenge for model personalisation.

4.1 Equations of the example system

Our example system, based on a core model of the p53
DNA-damage response, is a prototypical example for a
signalling system that involves gene-regulation (Fig. 2).
Note that there are many other gene-regulatory systems
that follow similar regulatory patterns (Avraham and
Yarden, 2011), for example NF-xB (Perkins, 2012).

The model equations are

91 = —vi(y1) + va(ys) — p—1y2y1 + ke, (7a)
Yo = —p—aoy2 + k¢ 270, (7b)
U3 = +v1(y1) — v2(ys3) — pP-3ys, (7c)
1 = p1 — Krdeg, 171, (7d)

&o = p2 + k1 H(y1 + y3) — Krdeg 22, (7e)
where y1,¥2,y3 and z1.22 denote the protein and mRNA
concentrations of Y1,Y2,pY1 and X1, X2, respectively,
and with parameters described below, and functions

Y1
= t)———— 7t
v1(y1) = pru( )y1 +Km,1’ (7f)
_ Y3
va(y3) *P27y3 T Km,2’ (7g)

describing the rates of Y1 phosphorylation and dephos-
phorylation, respectively, and the Hill function

Y
H(y) Ky
describing the Y1 mediated induction of X2 synthesis.
u(t) denotes a possibly time-dependent input signal, which
we can interpret as the activity of the upstream kinase
catalysing the phosphorylation of Y'1. Constants p; and ps
are patient specific parameters that, for the purposes of our
simulation tests, are randomly chosen from a lognormal
distribution (denoted In V') with mean y = 1 and standard
deviation o = 0.33. All other, nonrandom parameters are

n

(7h)

kt,l = 10, k‘t’g =10 (8&)
pP-1 = 5, P—2o = 57 pP—3 = 0.57 (8b)
kl = 57 krdeg71 = 17 krdeg,2 = 1; (80)
pP1 = 1007 Km,l = 1, Kh = 2, (Sd)
P2 = 10, Km,2 = 1, n = 2. (86)

What makes this system particularly interesting is the link
between the gene-expression and posttranslational levels,
in which the phosphorylation of Y1 regulates the expres-
sion of the total Y'1 protein concentration [Y1]totar = y1 +
ys. This link is established by a condition on the parameter
values p_1 > p_s which makes the degradation of Y1
in the unphosphorylated form y; much faster than the
degradation of the phosphorylated form ys.

Figure 3 shows the behaviour of the model with the
nominal patient-specific parameters p; = 1, po = 1 in
response to a unit step input at ¢ = 10, that is v = 0 for
t < 10, and u = 1 for ¢ > 10.
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Fig. 2. The example system used to illustrate the proposed
methodology: p53 protein (Y1) upregulates synthesis
of MDM2 mRNA (X2) (blue), MDM2 protein (Y2)
promotes p53 protein-degradation (red). X1 - p53
mRNA. Horizontal arrows - synthesis, degradation;
curved arrows - phosphorylation, dephosphorylation;
dashed arrows - regulatory influences.
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Fig. 3. Behaviour of the model depicted in Fig. 2 in
response to a unit step input for the average patient,
ie. p1 = 1,p2 = 1. See (8) for all other parameters.

4.2 Applying the proposed methodology

This sections illustrates the application of the proposed
methodology to the example system in Fig. 2.

According to the theoretical requirements of the method-
ology, we presume that the mRNA levels z = [zy, 5|7
are measured in the basal, unstimulated steady state, for
which it holds that u =0, and ;1 = ... =y3 =0.

We can easily verify that the example system is of the form
in (1), where y = [y1, ¥2, y3]T, and

—v1(y1) +v2(ys) — p—192y1 10
fly) = —p_2y2 ,B=101
v1(y1) — v2(y3) — p—3ys3 00

and ktrunsl - [kt,la kt,Q], Tr = [331, QI‘Q}T

Further, we can verify that f is injective for u = 0, and the
inverse "V exists. To see this, we solve the steady state
equations for 7a—c as follows. From (7b) we obtain

= 2. 9a
P—22 ()

From (7f) follows with u = 0 that v; = 0, and therewith
from (7c) that the only possible steady-state for pY'1 is

Ys = Oa (9b)

Real responses  Simulated responses

10
8
=]
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2
T 4
=

2

0

10 15 2010 15 20
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Fig. 4. Patient specific simulations of the model for the
output [Y1liotar = y1 + y3. Left: Sample of the
artificially generated data (py1, p2 ~ InA). Right:
Corresponding simulated responses after estimating
the patient-specific parameters from basal (v = 0),
noisy steady-state measurements as given in (10).

because v; is the only term producing ys. Finally, using
ys = 0 in (7g) gives vo = 0, which when substituted
into (7a) gives 0 = —p_1yay1 + k¢,121. Substituting (9a)
and solving for y; yields
_ kapom
kt,1 b—1 72 ’
This proves, by construction, that f in our example is
invertible for u = 0. In fact, (9) is the explicit solution of
the general form given in (3).

(7 (9c)

4.8 Simulation results

Next, we generated some artificial data upon which our
methodology can be tested. To that end, we simulated
the model (7) with different patient-specific parameters
p1 and ps sampled from the lognormal distribution with
mean g = 1 and standard deviation o = 0.33. The steady-
state prior to stimulation (for v = 0) was used to generate
the artificial data by adding 10% measurement noise

Ti,measured = Li,simulated * €i, (10)
where ¢; are a random numbers from a lognormal distri-
bution with mean p = 1 and standard deviation o = 0.1.

To further test the method’s robustness with respect
to violating Assumption 1, we also generated a set of
artificial data in which in addition to the mRNA-synthesis
rates p1, p2 ~ In N, the mRNA-degradation and protein-
translation rates were also varied, i.e. Krgeg,1, Frdeg,2 ~
InN and k1, ki o ~ In N, respectively.

In the following sections, we used these artificial data to as-
sess the accuracy and precision of both i) the personalised
parameter estimates and ii) the dynamic responses arising
from these estimates. To analyse the dynamic responses
we used an unit step input, and focussed on the total
Y1 protein concentration [Y1]iotar = w1 + y3 and the
phosphorylated Y1 concentration [pY'1] = y3 as outputs.

Correct model, perfect measurements  First, we con-
firmed that the method is accurate when the conditions are
perfect. That is when no assumptions are violated (only
p1, p2 are patient-specific), and no measurement noise is
present. In this ideal scenario, the methodology recovers
the patient-specific parameters perfectly (Tab. 1).
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Fig. 5. Correlation between the real and estimated patient-
specific parameter values. Test 2: Correct model, noisy
measurements.

Correlation between real and simulated responses
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Fig. 6. Correlation between the real and estimated dy-
namic responses for the system output [pY'1l] = ys.
Test 2: Correct model, noisy measurements.

Correct model, noisy measurements A more realistic
scenario is when the patient data are corrupted with
measurement noise. In this case, we observed a good
correlation between the real and estimated patient-specific
parameters with about 90% and 53% of the variability
explained for p; and pa, respectively (Fig. 5). Accordingly,
the simulated protein levels in response to a unit step input
also correlated well with the real response (Fig. 6).

Incomplete model, perfect measurements Next we as-
sessed what happens when Assumption 1 is violated, and
the real system contains additional patient-specific param-
eters, but no measurement noise. Specifically, we used vari-
ations in the mRNA-degradation constants krgeg,1, Krdeg,1
and the protein-translation parameters k; i,k ; in addi-
tion to pi, po for generating the patient-specific data. Ba-
sically, this means that the model used for re-engineering
the patient-specific differences (1) is incomplete: Because
our methodology keeps the degradation and translation
parameters constant, all patient specific differences will
be mapped onto p; and ps. Naturally, this impacted on
the patient-specific parameter estimates(Fig. 7), which are
now less correlated with the real values (20 — 50% of
variation explained). In contrast, the simulated dynamic
responses correlated well with the real responses. About
38% of the variability in the steady state response was
explained by the simulations (Fig. 8).

The fact that the response predictions of the output were
more precise than some parameter estimates, is explained
as follows. The algorithm maps all patient-specific differ-
ences onto p; and po, even the differences arising from

p1 p2
2.
5 R=0.70 R=0.46
2 . .-, .
B .. S
w 1.5 3 B :
£ ") ..
s 1 .. ’
L LV AL Co Aot
0.5 ;o w
0
0 1 2 0 1 2
Real p1 Real p2

Fig. 7. Correlation between the real and estimated patient-
specific parameter values. Test 3: Incomplete model,
perfect measurements (see main text, and Tab. 1).

Correlation between real and simulated responses
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= |
% ol 3 e
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> Xaq < XX
T 1 3 % at t=20 |1
(0] § * .
o Cx x x  att=12
*«
O " " "
0 1 2 3

Simulated y3=[pY1]

Fig. 8. Correlation between the real and estimated dy-
namic responses for the systems output [pY'1] = ys.
Test 3: Incomplete model, perfect measurements.

krdeq and k. Because they include these differences, the
patient-specific parameter estimates are more variable. In
contrast, the estimated mRNA concentrations are precise,
because (4) guaranties that the modelled mRNA values
match the measured values ,,ode Tmeasured- Lhis
means that for predicting the dynamic responses, the
precision of the state-estimates is more important than
the precision of the parameter-estimates.

Incomplete model, noisy measurements  Finally, we also
analysed the worst case scenario, in which both the model
and the measurements contain errors. The results were not
markedly different from the ones obtained for noise-free
measurements (Fig. 9). Despite the fact that the patient-
specific estimates were not very precise (especially for
p2 with a correlation coefficient of only R = 0.42), the
output predictions were precise, with the simulated pY1
responses explaining 48% of the variability present in the
real responses (Fig. 9).

5. CONCLUSIONS

This paper proposes a generally applicable methodology
for personalising models of cancer signalling. The advan-
tage of using such personalised dynamic models over static
biomarkers, has already been demonstrated in several case
studies (Fey et al., 2015; Flanagan et al., 2015; Murphy
et al., 2013; Lindner et al., 2013). In contrast to pre-
vious approaches, the here proposed methodology is not
restricted to models in which the total protein concentra-
tions are time-invariant parameters.
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Table 1. Overview of the performed simulation tests (n = 1,000 patients, 95%CI for R < 0.1).

Simulation test setup,

Test results (R? values)

Test no.  Description errors were included for Parameters  Responses

krd&g ktransl Tmeasured P1 P2 [Yl]total [le]
Test 1 Correct model, perfect measurement - - - 1 1 1 1
Test 2 Correct model, noisy measurement - - v 090 0.86 0.87 0.87
Test 3 Incomplete model, perfect measurement v v - 0.49 0.21 0.38 0.38
Test 4 Incomplete model, noisy measurement v v v 0.46 0.18 0.35 0.35

Correlation between real and simulated responses

X

31 R=0.59 .
— . x*
;Q- 2 XX
= y < X
© 1 W X o - att=20 |
i EIE < att=12
0" : :
0 1 2 3

Simulated y3=[pY1]

Fig. 9. Correlation between the real and estimated dy-
namic responses for the systems output [pY'1] = ys.
Test 4: Incomplete model, noisy measurements.

The mathematical framework underlying the methodology
is based on two central biological principles: 1) mRNA
serves as template for protein synthesis; 2) individual,
cell-type specific differences arise from changes in gene
expression.

Elaborating on the latter, a basic assumption in our
approach is that the individual gene expression patterns
arise from patient-specific differences in the basal gene
expression rate parameters. Importantly, our approach
is robust with respect to violating this assumption: The
methodology can still be applied when other, unmodelled
patient-specific differences are present.

Another, relatively weak assumption in framework is
that all non-patient-specific parameters in the model are
known. These parameters would usually be provided by
the model, ideally as a result from constructing and cali-
brating the model using data from cell-culture experiments
and parameter estimation. Literature reported values are
also often used in these models, although care has to be
taken for adopting parameter values out of context. In any
case, measurements of mRNA and protein half-lives do
exist for many genes (Schwanhéusser et al., 2011).

The validity of i) the approach and ii) the personalised
model could be tested experimentally by measuring i)
the synthesis and degradation parameters for example in
pulse-chase experiments (Larance and Lamond, 2015), and
ii) the dynamic responses in time-course experiments. This
would i) test the assumption of patient-specific synthesis
parameters, and ii) (in-)validate the predicted dynamic
responses. Both experiments would require live cancer-
cells from patients. Isolating live cancer-cells from tumour-
samples can be technically challenging but the resulting
cells are easy to assay. Tumour explants (little pieces of
live tumour tissue) are easier to keep alive in the lab, but
also contain non-cancerous cells and not all biochemical
assays can be applied.

In conclusion, our methodology makes the personalised
modelling of dynamic cell-signalling possible. In conjunc-
tion with tumour data (TCGA database, Tomczak et al.,
2015)), it should be used to test the predictive and prog-
nostic utility of the many signalling models constructed to
date (BioModels database, Juty et al., 2015).
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