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Abstract. This paper presents an evolutionary approach to solving Su-
doku puzzles. Sudoku is an interesting problem because it is a challeng-
ing logical puzzle that has previously only been solved by computers
using various brute force methods, but it is also an abstract form of a
timetabling problem, and is scalably difficult. A different take on the
problem, motivated by the desire to be able to generalise it, is presented.
The GAuGE system was applied to the problem, and the results obtained
show that its mapping process is well suited for this class of problems.

1 Introduction

The GAuGE system (Genetic Algorithms using Grammatical Evolution) [14]
is a genetic algorithm that uses a position independent representation of fixed-
length genotype strings which, through a mapping process, generate fixed-length
phenotype strings, which are neither under- nor over-specified. By position inde-
pendent it is meant that each phenotypic variable is encoded into the genotype
string along with an associated phenotypic position; that leads to a simultaneous
evolution of both the structure and the contents of the genotype strings.

This simultaneous evolution has the potential to learn linear relationships (or
dependencies) between variables; as the structure of genotype strings can adapt,
more important (or salient) variables can be grouped together, boosting the ex-
change capability of the crossover operator. Due to its specific mapping process,
GAuGE also allows phenotypic variables to exchange places, thus searching the
space of permutations of such variables in the phenotype strings. Although not
always a desirable effect, certain problem domains possess characteristics that
make this permutation search a welcome feature [14, 9].

The Sudoku puzzle seems to require that characteristic. The game is com-
posed of a n × n board, and the objective is to fill it with numbers, following a
set of simple constraints (see Section 3). Although there exist many algorithms
that solve these puzzles in a matter of seconds, in this work a different problem
is solved: a sequence of instructions is evolved and applied to the board, and a
fitness reward is given back. The objective is therefore to provide a sequence of
instructions that solves the puzzle, and that is human-readable; to that effect,
a number of logical instructions are available to the algorithm, which mimic the
way a human solves this kind of puzzle. Moreover, Sudoku is analogous to many



scheduling and timetabling problems, and a system that can not only provide a
timetable, but also the logical steps used in deriving it can be a powerful tool.

The results obtained show that GAuGE is able to solve this problem, if a
sufficient function set is available. Also, a fair degree of temporal saliency clearly
helps the system to restructure individuals at the genotypic level, leading to the
discovery of better individuals as evolution progresses.

This paper is structured as follows: Section 2 presents the GAuGE system,
and Section 3 presents the Sudoku game. Section 4 presents the practical issues
of the experiments performed, and Section 5 analyses the results obtained.

2 GAuGE

The GAuGE system shares many of the biologically inspired features of Gram-
matical Evolution (GE) [13], the main ones being a genotype-to-phenotype map-
ping process, a functional dependency between genes, and the use of degeneracy.

In GE, a population of binary strings is evolved. When an evaluation is
required, these are first converted into integer strings, and the integers are then
used to choose productions from a given grammar, creating a phenotype string.

In GAuGE, a similar process is employed. When a binary string is to be
evaluated, it is first converted into an integer string; these integers are then
interpreted as a sequence of (position, value) pairs, to create a phenotype string.

In GE, there is a functional dependency between each gene and all the genes
that precede it. This is because the grammar production chosen by a given gene
affects the context of the following genes; as a result, the set of productions
available for each gene is dependent on the context created by previous choices.

A similar effect is observed in GAuGE, regarding each position specification
at the genotypic level. The phenotypic position corresponding to that specifi-
cation affects the context of the following specifications, as the set of available
positions in the phenotype string changes; as a result, each specification is de-
pendent on the context created by previous specifications.

Finally, the use of degenerate code plays an important role in GE: by using
the mod operator to map an integer to a choice of productions from a grammar
rule, neutral mutations can take place, creating a many-to-one mapping between
the search and solution spaces, and introducing variety at the genotypic level.

In GAuGE, this feature is also present, as a direct result of the mapping
process employed. It has also been shown that the explicit introduction of de-
generacy can reduce structural bias at the genotypic level [10].

2.1 Background

Many systems have been developed using similar techniques to the ones em-
ployed in GAuGE. Bagley [1] used fixed-length strings of (position, value) spec-
ifications, and an inversion operator to move those specifications around in the
chromosome strings; both Frantz [3] and Holland [7] extended some of that work,
and similar operators were later designed, with the same purpose [12].



The messy genetic algorithms [4, 5] are also based on the idea of a separate
encoding of the position and the value of each phenotypic variable. They dealt
with the problem of over-specification with a system of “first come, first served”
basis, whereas under-specification was dealt with the use of an evolved template.

More recently, Harik [6] applied the principles of functional dependency to
the Linkage Learning Genetic Algorithm, in which a chromosome is expressed
as a circular list of genes, with the functionality of a gene being dependent on a
chosen interpretation point, and the genes between that point and itself.

2.2 GAuGE Mapping

A formal description of the mapping process can be found elsewhere [10]; in
this work, a practical approach is presented. As an example, consider a simple
problem composed of four phenotypic variables (ℓ = 4), ranging between the
values 0 and 7. The length of each individual depends on a chosen position field
size (pfs) and a value field size (vfs). As there are four variables, a value of
pfs = 2 has been chosen, as that is the minimum number of bits required to
encode four positions; for the value fields, a value of vfs = 4 has been chosen, to
introduce degeneracy (the minimum value required for vfs is 3). The required
length for each binary string is therefore L = (pfs+ vfs)× ℓ = (2+4)× 4 = 24.

For example, take the following individual as an example genotype string:

001001101101110100010010

By using the pfs and vfs parameters, an integer string is created:

(0, 9), (2, 13), (3, 4), (1, 2)

These values are then interpreted as a sequence of (position, value) pairs: for each
one, the position is mapped to the number of positions available in the phenotype
string, and the value is mapped to the range of the phenotypic variables (8).
For the first pair, the position becomes (0 mod ℓ) = (0 mod 4) = 0, as at this
stage no positions have been specified yet; the value becomes (9 mod 8) = 1.
The phenotype string can thus begin to be constructed, by placing value 1 into
position 0 (that is, the first available position in the phenotype string):

1,?,?,?

The second pair is decoded in the same way: the position becomes (2 mod 3) = 1
(as there are now only 3 positions available in the phenotype string), and the
value becomes (13 mod 8 = 5). The value 5 can then be placed into position 1
(the second currently available position in the phenotype string):

1,?,5,?

The third pair is processed in the same way: position = (3 mod 2) = 1, and
value = (4 mod 8) = 4, so value 4 is placed in the second available position:

1,?,5,4

Finally, after processing the last pair, the phenotype string becomes:

1,2,5,4
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Fig. 1. Example Sudoku boards. The referencing system used is shown on the left, an
example board in the middle, and its solution in the right.

3 Sudoku

The Sudoku game is a logic-based placement puzzle. It originated in the United
States in 1979, under the name Number Place; in 1984, it was slightly changed in
Japan, and quickly gained popularity. In November 2004, the British newspaper
“The Times” first published a Sudoku puzzle; since then, many newspapers
followed suit, and its popularity in the western world has increased immensely.

Traditionally, the puzzle consists of a 9 × 9 grid, made up of 3 × 3 blocks,
for a total of 81 cells (Fig. 1, left). The objective of the puzzle is to place the
numbers 1 through 9 in each cell, such that the following rule set holds:

1. Each row must contain the numbers 1 through 9 only once;
2. Each column must contain the numbers 1 through 9 only once;
3. Each block must contain the numbers 1 through 9 only once.

Each puzzle comes with a set of numbers already placed (called givens). It
is considered well-formed if it has only one solution, and it can be solved using
logic (that is, no guessing is required to place any of the numbers). Fig. 1 shows
an example of a well-formed Sudoku puzzle, along with its (only) solution.

Although numbers have traditionally been used, any set of symbols can be
used in Sudoku (such as letters, shapes or colours). Also, although the 9× 9 size
grid is the most common, other variants exist, such as 16 × 16 and 25 × 25.

There are clear parallels between Sudoku and scheduling problems, such as
timetabling. Each row can be viewed as a time slot, each column a room and
each number a course. All courses must be scheduled in each room exactly once
per day, and no class can be scheduled in two different rooms at the same time.

3.1 Solving Sudoku with computers

The problem of solving Sudoku puzzles on n2 × n2 boards of n × n blocks is
known to be NP-complete [20]; this gives an indication of why solving Sudoku
puzzles can be difficult. However, due to the finite size of the puzzle, it can be
solved by a deterministic finite automaton that knows the entire game tree [19].
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Fig. 2. Applying slice and dice to place number 9 in block 2. Starting with the left
board, slice finds a 9 in the third row, so 9 cannot be placed anywhere else in that
row (relevant cells are marked with an X in the second board). Dice finds a 9 in the
fifth column, so 9 cannot be placed anywhere else in that column (third board). This
results in only one cell being available to place 9 in block 2 (last board).

A different approach is to base each number-placing action purely on logic.
This technique is limited to well-formed puzzles, but has the advantage of pro-
ducing a list of logical actions, which can be easily reproduced by a human. Most
Sudoku software packages tend to use a mix of logic and brute force computation.

3.2 Logical Operations

There are many logical operations that can be used when solving Sudoku puzzles;
below are some of the most common (and simpler) techniques:

Last Remaining. This is a simple logic operation, that can be applied to any
kind of region (row, column or block). It simply checks if that region has already
eight numbers placed, in which case it places the remaining one.

Slice and Dice. This is a combination of two operations, slice and dice [17],
and can be applied when trying to place number n in block b. Slice looks for n in
each row passing through b; if it contains n, then the three cells intersecting with
b cannot contain n. Dice works with columns instead. If, after applying slice and
dice, only one cell is available, then it must contain n. Fig. 2 shows an example.

Column Fill. This technique tries to place number n in column c. It looks for
n in all rows and blocks passing through c; if a row or block contain n, then
the cell(s) corresponding to the intersection of that region and column c cannot
contain n. If after checking all rows and blocks there is only one cell available in
column c, then that cell must contain n. Fig. 3 shows an example.

Row Fill. This technique tries to place the number n in row r, and works in
the same way as Column Fill, but going through all the columns instead.
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Fig. 3. Applying Column Fill to place number 9 in column 6. By searching through
all rows in the left board for the number 9, a set of cells can be marked as being
unsuitable to receive that number (second board); then looking through blocks 2, 5
and 8 (the blocks that intersect column 6) another unsuitable cell is discovered (third
board); finally, only one cell is available in column 6, so it must contain 9 (last board).
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Fig. 4. Applying Raising Numbers to place number 4 in block 4. By analysing the left
board, there are four empty cells in block 4, and the numbers 2, 4, 6 and 8 are missing.
Through Slice and Dice operations, the set of possible numbers for each of the empty
cells can be deduced: the leftmost empty cell can receive the numbers {2, 6}, the center
top cell can receive {4, 6, 8}, the rightmost one {2, 4, 6}, and the bottom center {4}.
Since this last cell can only receive the number 4, it is placed there (right board).

Raising Numbers. This technique tries to place the number n in block b, by
checking each empty cell in b to see if n is the only number that can be placed
in that cell; Fig. 4 shows an example.

Sometimes different operations can be used to place the same number in the
same cell; other times only a specific one will do. Note also that often an opera-
tion can only be applied if a previous one has placed a specific number. In other
words, there are many logical sequences when using these logical operations.

3.3 Blind Sudoku

In this work, a variation of the original Sudoku puzzle is solved, which is termed
Blind Sudoku. All the same rules and constraints of the original puzzle still apply;
the difference lies in the way in which it is solved. A sequence of logic instructions



is applied to a puzzle, and a measure of goodness is returned to the algorithm; in
other words, the puzzle is never available to the algorithm, neither is a measure
of goodness for each individual logic instruction. Once a sequence of instructions
has been evaluated, the puzzle is reset to its original composition.

This way of solving Sudoku puzzles is not dissimilar to the Santa Fe Ant Trail
problem [8], in which a sequence of instructions is given to an ant in a toroidal
grid world, and the number of food objects caught by the ant is returned as the
fitness measure.

Objective Function. As the number of cells in a 9×9 Sudoku board is always
81, that is used as the size of a sequence of instructions; this allows that sequence
to be applied to any puzzle, regardless of the number of givens. The fitness of a
sequence of instructions is simply the sum of the fitness of all its instructions;
the fitness of each single instruction is

fi =
{

k × (82 − i) if successful
coverage − 9 if unsuccessful

where k is a constant, and coverage is a measure of how many cells were ruled
out when unsuccessfully trying to place a number in a region (the X marks)1.
If the puzzle is completed before using up all the instructions, all remaining
instructions are considered neutral, and their fitness is fi = 0.

The fitness function heavily rewards successful instructions, and punishes
unsuccessful ones. A linear decreasing reward is also applied to each success-
ful instruction: the earlier it is executed, the bigger the reward. This temporal
saliency is regulated by the k parameter; the higher its value, the higher the
reward (in these experiments, a value of k = 81 was used).

This problem has interesting characteristics, and can be compared to a class
of scheduling problems. There is a clear temporal dependency between each
phenotypic variable, as certain instructions can only be successful if a set of
numbers has been placed before their execution. The negative score applied to
unsuccessful instructions can be seen as an effort factor.

The GAuGE system seems adequate to solving this kind of problem. It allows
for successful instructions, which have already been discovered, to change their
phenotypic location (by mutating their position specification at the genotypic
level), allowing them to be moved to the start of the phenotype string, thus
possibly maximising their contribution to the fitness of the set of instructions.

4 Experiments

4.1 Practical Issues

In these experiments, GAuGE was used to evolve sequences of 81 instructions,
from the set {SliceDice, RowFill, ColFill, RaisingNumbers}. If an instruction is
1 Note that the Raising Numbers technique does not mark any cells as unsuitable,

and thus if it is unsuccessful its fitness is always −9; this is judged to be fair, as it
is a slightly more expensive technique then all others.



successful, the LastRemaining instruction is tried on the corresponding region
(as it is a fast instruction), and if successful the remaining number is placed.

Also, the logic instructions are mapped onto the original board. For example,
if the algorithm tries to execute the instruction SliceDice(2,8) (place number 8 in
block 2 using SliceDice) on the board from Fig. 1, that instruction is translated to
SliceDice(2,9), as 8 already exists in block 2. This is only applied to the original
board: if a subsequent instruction is also SliceDice(2,8), then it is considered
unsuccessful, as number 9 has already been successfully placed in block 2.

The test set for these experiments consisted of puzzles taken from Carol
Vorderman’s How to do Sudoku [17] (pp. 178–187). These were taken from the
“Difficult” section, and the first ten puzzles were picked (#111 to #120).

4.2 GAuGE Encoding

As there are 81 instructions in each sequence, the pfs parameter (size of position
fields) needs to be at least 7 (as 27 = 128). In these experiments, degeneracy is
used to soften the biases of the mod operator [10], so the value chosen is pfs = 8.

The vfs parameter is more complex. Each variable encodes three choices:
1. which instruction to use (out of 4 instructions);
2. which region to apply it to (out of 9 regions, be it blocks, rows or columns);
3. which number to attempt to place (out of 9 numbers).

To encode an instruction, 2 bits are sufficient. To encode a region and a
number, the minimum number of bits is 4 (24 = 16); as with the pfs parameter,
degeneracy is used, and 5 bits are used for each of these encodings, so vfs =
2 + 5 + 5 = 12. This means that the length of each GAuGE string is:

L = (pfs + vfs) × ℓ = (8 + 12) × 81 = 1620 bits

4.3 Parameters

Table 1 shows the parameters used in these experiments. The mutation proba-
bilities are in a per-bit basis; the following rough formulae were used to set those
probabilities, to limit mutation events on each field to 1 per individual:

Pmut(pos) =
1

(8 × ℓ)
=

1
648

≈ 0.0015 Pmut(val) =
1

(12 × ℓ)
=

1
972

≈ 0.001

As a replacement strategy the Minimal Generation Gap model (MGG) [15]
was used; previous tests, both published [11] and not, suggest that it is appro-
priate for GAuGE, as it maintains diversity at the early stages of evolution, and
also keeps the population from stagnation at the later stages. It works as follows:
1. Two random parents are selected from the population;
2. The crossover operator is applied;
3. The two generated offspring are mutated and evaluated;
4. The best of the four individuals (both parents and offspring) is selected to

replace the first parent in the population;
5. A roulette wheel is used to select another individual from all four to replace

the second parent in the population.



Table 1. Experimental setup

Replacement strategy: MGG
Crossover operator: 1-point
Problem length (ℓ): 81

Population size (N): 100
Max. number of generations: 800

Position field size (pfs): 8 bits
Value field size (vfs): 12 bits
Crossover probability: 0.5

Position field mutation probability: 0.0015
Value field mutation probability: 0.001

Table 2. Results obtained for all puzzles. For each one, the average numbers placed
(over the total missing numbers) are shown, along with the average generation at which
those placements were achieved, and the number of successful runs (out of 30)

Puzzle #111 #112 #113 #114 #115 #116 #117 #118 #119 #120
Avg. placements 53/53 51/51 53/53 53/53 51/51 21/53 13/53 54/54 51/51 51/51
Avg. generation 238 181 166 210 123 55 14 301 188 135
Successful runs 30 30 30 30 30 0 0 30 30 30

5 Analysis

5.1 Results

Table 2 shows the results obtained in all puzzles; all runs for each puzzle (apart
from puzzles #116 and #117) were successful. The average number of gener-
ations required to complete a puzzle can be seen as a rough measure of its
difficulty: notice how for puzzle #118, which required 54 numbers to be placed,
a higher number of generations were required for all runs to be successful.

Puzzles #116 and #117 were never solved. Close analysis of these puzzles
showed that the function set available to the system was not sufficient to solve
them: a brute force search with the available logical functions was performed,
and a result could not be reached. Also, the maximum amount of numbers placed
for each puzzle with the brute force search method was 21 and 13 respectively,
which were the results obtained with GAuGE.

5.2 Sample run and solution

Figure 5 shows results from a sample run (puzzle #111, first run). It illustrates
a behaviour observed in all runs: as evolution progresses, the phenotypic strings
are rearranged, with successful instructions being placed at the start, due to fit-
ness pressure, and through GAuGE’s flexible genotypic representation. As these
instructions are forced towards the left side, more instructions are discovered in
the right side, which are then moved to the left as well.



000001100000100000000000000100010000000000010001000000110000000010000000000000000
100011100000110000011100000000000100000011001000000001010000000000000000000000000
110111000001110001100000000110110000000100010000001010000000000000000000000000000
111011010101011000011001001011000000101000001000000000000000000000000000000000000
110011100011110011110001001110100000100000000001010000000000010000000000000000001
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110111110110111111001100001110010100000101000110110010000100000000000010010010000
110111110111111101010101001100011000000111000110110010010100000101100000000000000
110111111111111101000101011000110000001110001111100001001000001001100000000000000
111111101111111101101101001001100010000101001100100101001000101010000000000000000
111111101111111101111101001100001000000100011111100100000100000011000000000000000
111111101111111101111101001000110001100000001111101000001100001000000000000000000
111111101111111101111101101000100001100000001111101000001100100000100000000000000
111111101111111101111111100100010000100100001011101000101001000000000000000000000
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111111101111111101111111001001100010110000110001100010101000000000000000000000000
111111101111111111011111011001000010100001111001010000101000000000000000000000000
111111101111111101111111011001000010100011011001100100000000000000000000000000000
111111111111111001111111011001000010110001011001100100000000000000000000000000000
111111111111111111011111001001000010110001011001100100000000000000000000000000000
111111111111111111111101010010010001110100101100100000100000000000000000000000000
111111111111111111111101100110011001001100011001000010000000000000000000000000000
111111111111111111111101100110101011101000100001000010000000000000000000000000000
111111111111111111111101101110001111001001000100000100000000000000000000000000000
111111111111111111111101101111110010100001000100000100000000000000000000000000000
111111111111111111111101101111110010100001110000000000000000000000000000000000000
111111111111111111111101101111110010100011100000000000000000000000000000000000000
111111111111111111111101101111111010000011100000000000000000000000000000000000000
111111111111111111111111011101111010000011100000000000000000000000000000000000000
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111111111111111111111111111111110010100001010000000000000000000000000000000000000
111111111111111111111111111111110010010011000000000000000000000000000000000000000
111111111111111111111111111111100011101000000000000000000000000000000000000000000

Fig. 5. Best individual found, every 20 generations (from sample run). Strings represent
sequences of instructions: a 0 signals an unsuccessful instruction, and a 1 a successful
one. As evolution progresses, successful instructions are moved towards the start, due to
GAuGE’s disassociation between position and value specifications, and fitness pressure.

Clearly, the scaled fitness measure used in these experiments, which highly
rewards individuals with successful instructions at the start of their instruction
sequence, is the major reason for the restructuring of individuals. However, this
would not be possible without a disassociation between position and value spec-
ifications at the genotypic level, which the GAuGE representation allows for.

Notice also how, after discovering a solution, evolution continues. This is
again due to the way the fitness function rewards earlier successful instructions.
This can also be seen in Figure 6, which shows graphs averaged across 30 runs
for puzzle #111: at generation 361, all runs have been successful, but best and
average fitness continue to grow until the maximum number of generations.

Figure 7 shows a sample solution for puzzle #111.

6 Conclusion

This paper presented an evolutionary approach to solving Sudoku puzzles. The
problem introduced, “Blind Sudoku”, is an interesting challenge to the field, and
the variety of Sudoku puzzles available (there are 6,670,903,752,021,072,936,960
different Sudoku grids [2]) allow for a high degree of difficulty ranges.
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the right the mean best and average fitness scores. Notice how around generation 350
all numbers have already been placed on all runs, but yet the fitness score continues
to raise, due to the nature of the fitness score used in the experiments.
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Fig. 7. Puzzle #111 and a sample solution found for it.

The characteristics of the problem make it easily translated to real-world
problems, such as timetabling, where variables exhibit a degree of temporal
saliency, and potential dependency. It has the added bonus that the solution is
not known in advance (and not required for the evaluation of solutions), so each
evolved solution is potentially unique.

The GAuGE system, when supplied with suitable logical instructions, is able
to solve the problem, and does so by producing a list of the logical steps taken.
This could be invaluable when tackling real world scheduling problems, as the list
of steps provides an audit trail, so the solutions produced are provably correct.

Future work will consider increasing the number of operators made available
to the system, to make it possible to solve more difficult puzzles, although this
will increase the search space. We will also examine real world scheduling prob-
lems with this system, which, particularly in the case of timetabling problems,
can be viewed as special cases of Sudoku.
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