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 
Abstract— To reduce power consumption of wireless 

transmitters, the transmission power level of RF power 
amplifiers (PAs) may dynamically change according to 
real-time data traffic. This leads that the existing digital 
predistortion (DPD) techniques cannot be directly employed 
because they are mainly suitable for eliminating distortion 
induced by the PAs operated at a relatively stable condition, e.g., 
at a constant average power level. To resolve this problem, a 
power adaptive DPD is proposed in this paper. By accurately 
modeling the behavior change pattern of the PA with the input 
power adjustments and embedding it into the DPD model, the 
proposed DPD system is able to adjust its coefficients to adapt to 
the behavior variation of the PA induced by the power 
adjustments without real-time recalibration. A low complexity 
online coefficients updating method is also proposed to track 
the behavior change of the PA caused by other factors, such as 
bias shifting or temperature variation, during real-time 
operation. Measurements with a high power LDMOS Doherty 
PA have been used to validate the proposed approach. Results 
show that the proposed DPD and its coefficients updating 
approach can produce excellent performance with very low 
complexity compared to the conventional approaches. 

 
Index Terms—Average power, behavioral model, digital 

predistortion, dynamic power transmission, RF power 
amplifier.  
 

I. INTRODUCTION 

O simultaneously achieve high efficiency and high 
linearity, digital predistortion (DPD) techniques have 

been widely employed to compensate for the nonlinear 
distortion induced by radio frequency (RF) power amplifiers 
(PAs) in high power cellular base stations [1]. In the past 
years, many advanced DPD models [2]-[4] and related model 
extraction structures [5] [6] have been proposed. The existing 
DPD systems, however, are mainly suitable for the scenarios 
where the PAs are operated at relatively stable conditions. 
For instance, the average input power level of the PA does 
not change dramatically within a short time period.  

In the next generation of communication systems, the 
transmission power may frequently change with real-time 
traffic in order to minimize power consumption of the 
wireless system. For example, in the long term evolution 
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advanced (LTE-A) system, resource blocks (RBs) of the data 
frame to be transmitted may be assigned according to the 
incoming data traffic. This can lead to the dynamic changes 
of the PA input power level in a short time period, e.g., 
milliseconds [7]. Since the PA is a nonlinear device, power 
changes at the input can significantly affect its nonlinear 
behavior [8] [9]. To properly compensate for the distortion 
caused by the power change in a short time period, almost 
real-time recalibration of the DPD must be conducted if the 
existing DPD techniques are employed, which is often not 
feasible in practice.  

In [10], the average power within a long time window is 
included as long term memory terms in the model to 
eliminate the distortion induced by the PA in the transition 
process between two input power levels. In [11], the input 
power is employed as an index for the DPD look up table 
(LUT). Although these methods can eliminate distortion 
caused by power changes within a certain range, linearization 
of a PA under large dynamic power ranges, especially at 
steady-state stages, has not been addressed adequately. In 
[12], a power adaptive model was proposed to eliminate 
distortion at different power levels within a large power range 
without recalibration. This was achieved by embedding the 
PA behavior change with the input power adjustments into a 
conventional behavioral model structure. Due to the limited 
space, only the outline of the idea was presented in [12]. In 
this paper, a complete description of the approach, including 
problem statements, theoretical reasons, mathematical 
derivations and detailed descriptions for each single step of 
implementation, is provided to show how this approach can 
be applied in a real system when a PA is operated under 
various conditions. An efficient online coefficient updating 
technique is also presented to resolve the problem when the 
PA behavior changes in real-time operation, which further 
enhances the application of the proposed approach in practice. 
Extensive experimental results and comparisons with the 
technique proposed in [10] are also given.  

The rest of the paper is organized as follows. After giving 
the problem statement in Section II, the details of the 
proposed DPD model together with the coefficients 
extraction and interpolation are presented in Section III. 
Online coefficients updating is presented in Section IV. The 
experimental validation results are given in Section V with a 
conclusion in Section VI. 

II. PROBLEM STATEMENT 

A. Digital Predistortion 

Digital predistortion is a technique based on the principle 
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of nonlinear inversion. Let’s take a simple example as shown 
in Fig. 1. The gain of a PA is ideally flat in the small signal 
region and tends to decrease when the input power level 
increases. To compensate for the distortion caused by the 
gain compression, a linearization block, called the 
predistorter, can be inserted into the signal path to “predistort” 
the signal before it enters the PA. If the transfer function of 
the predistorter is the exact inverse of the PA, a linear 
amplification can be achieved at the final PA output.  

To make the predistortion system work, one of the most 
critical conditions is that the nonlinear transfer function of the 
predistorter must be correctly constructed. Although the 
input signal passes through the predistorter block before 
entering the PA, the input and the output of the PA must be 
captured and used to characterize the predistorter. In other 
words, the transfer function of the predistorter is decided by 
the PA characteristics, and it must be a one-to-one mapping. 
In a real application, the predistortion system is normally 
implemented in digital baseband and it normally includes two 
parts: a predistorter unit (DPD block) in the transmitter chain 
that predistorts the input signal in real-time and a model 
extraction unit in the feedback path that compares the 
captured PA output with the original input to extract the 
coefficients for the DPD model, as illustrated in Fig. 2. Since 
model extraction often takes some time to process, we must 
make sure that the behavior of the PA does not change during 
the model extraction. Otherwise the extracted DPD function 
will not be able to compensate for the nonlinear distortion 
induced by the PA and thus the linearization performance 
will deteriorate. This is not a vital issue in most existing 
communication systems, where the PAs are usually operated 
in a relatively stable condition and their behavior does not 
change significantly within a short time period.  

B. Dynamic Change of Power 

In the next generation of communication systems, e.g., 
LTE-A, the input power level of the PA may be adjusted 
according to real-time traffic. For instance, as shown in the 
Fig. 3 (a), the average power levels of the transmitted signal 
may change on a frame by frame basis. In this case, the PA is 
no longer operated under a time-invariant condition.  

From the modeling point of view, we can divide the 

transmission into two stages: (1) the transient stage: the 
period when the input power of the PA jumps from one level 
to another; (2) the steady-state stage: the period when the 
average input power level is fixed. Due to long term memory 
effects, especially thermal effects that often occur in the PA, 
power changes in the transition will degrade the linearity 
performance if DPD does not take into account these effects 
properly [10], while at the steady-state stage, even if the 
average transmission power level is fixed, the nonlinear 
behaviors of the PA at different power levels are also 
different. As shown in Fig. 3 (b), there are clear differences 
between the gain plots for a Doherty PA operated at different 
power levels. This is because multiple amplifiers/transistors 
are used inside the Doherty PA and each amplifier exhibits 
different behavior with different power levels. The overall 
transfer functions that map the total input to output are not the 
same when the PA is excited with different power levels of 
signals. This leads that, when the input power level changes, 
a different DPD function must be employed or the 
coefficients must be recalibrated if the same DPD function is 
used. Since the input power level can change very quickly, 
e.g., with the units of sub-frame (1.0 millisecond) in LTE-A, 
the nonlinear behavior of the PA can change very frequently. 
As mentioned earlier, model extraction consumes time and it 
is a feedback process. It is very difficult to extract the 
coefficients and apply to DPD in a frame by frame basis, even 
if the state-of-the-art digital processor is employed. Another 
solution to this problem would be to store the coefficients or 
DPD functions in advance using a look-up-table (LUT), but it 
will require very large storage on-chip if the power changes 
are in a wide dynamic range. 

C. Transient vs Steady-state Stages  

The problems at both the transient and the steady-state 

Fig. 1. Predistortion concept. 

( )x n ( )u n ( )u t ( )y t
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Fig. 2. Block diagram of a DPD system. 

(a) 

(b) 
Fig. 3. A Doherty PA with dynamic power transmission: (a) truncated 
LTE-A signal sub-frames with power changes; (b) gain plots of the PA.
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stages must be resolved for DPD when a PA is operated with 
dynamic power transmission. In [10], the average input 
power over a finite time window is built into the DPD model 
for modeling the long term memory effects during the 
transition, which can effectively prevent the performance 
degradation during this stage, but the problem at the 
steady-state stage has not been addressed adequately in the 
literature. 

If we consider the linearity requirements of the 
communication standards, the problem at the steady-state 
stage needs to be resolved more urgently comparing to that at 
the transient stage. The reasons are as follows. In practical 
applications, the change of the PA input power level only 
occurs in the duration of time units of data sub-frames. In 
other words, the power only changes within a certain length 
of time intervals. Because of uncertainties in the transition, in 
communication standards, guard periods or preambles are 
usually inserted in the data frame. In the beginning or the end 
of the data frame, the transmission power level is usually set 
to very low and that part of the signal does not carry user data 
information. This means that, although we have to guarantee 
the distortion does not cause significant surge in the output 
spectrum, reasonably low distortion generated in this 
transient period would not have significant impact on the 
overall system performance. This is why communication 
standards usually do not put stringent requirements for this 
period [13]. On the other hand, significant time constant 
mainly occurs in GaN PAs. There have been considerable 
amount of efforts made to resolve this long term memory 
issue at the device level in the last couple of years and this 
issue has been gradually improved. The problem at the 
transient stage thus may be eased in the near future. 
Furthermore, the approach proposed in [10] has already 
largely addressed this issue.  

At the steady-state stage, the user information data are 
carried by the transmitted signal. Any dynamic change of the 
PA behavior during this period directly affects the quality of 
the information data and thus stringent linearity requirements 
are often imposed during this period [13]. These dynamic 
changes are mainly resulted from long term memory effects 
in the PA and the impact of these memory effects becomes 
more severe in Doherty PAs. While the Doherty PAs will 
continue dominant the cellular base station market, this 
dynamic power transmission issue cannot be simply avoided. 
Although the method in [10] can also be employed at the 
steady-state stage to compensate for these nonlinearity 
changes, its performance is limited because only a first-order 
approximation is used in that model. More accurate models 
or approaches must be developed to resolve this issue in order 
to satisfy the stringent linearity requirements in future 
communication systems. In this paper, we mainly focus on 
finding a solution for characterizing and compensating the 
nonlinear behavior changes at the steady-state stage when a 
PA is operated with dynamic power transmission.  

III. POWER ADAPTIVE DPD  

To avoid the recalibration and reduce the system 
complexity, we propose a power adaptive approach as 
discussed below. 

A. Model Structure of Power Adaptive DPD 

In existing systems, most DPD models are simplified from 
the Volterra series. Without loss of generality, we take the 
1st-order truncated dynamic deviation deduction (DDR) 
based Volterra model [4] as example. The DPD function can 
be expressed as:  
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where ( )x n and  are the input and output of the DPD, 

respectively. c2p+1,j(j=1, 2) is the DPD complex coefficient. 
(·)* represents the complex conjugate operation and |·| returns 
the magnitude. P is the order of nonlinearity and M represents 
the memory length. In a real system, the data are normally 
processed in blocks and thus we can express the DPD model 
in the following matrix form: 
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To simplify the expression, (2) can be rewritten in the 
following compact form: 

 1 1,N LN L U X C  (3) 

where U is the output vector, X is the regression matrix 
containing all of the linear and nonlinear terms constructed 

from ( )x n . The coefficients vector C includes all of the 

required coefficients c2p+1,j (j=1, 2). N and L are the length of 
input signal and the number of the coefficients, respectively. 

As discussed earlier, the change of input power levels can 
lead to the PA behavior variation, which requires changes of 
the corresponding DPD. To facilitate the following 
derivation, we assume the input power level of the PA is 
arranged in a descend order and represented by PLr, where r 
(r = 1, …, R) is the index of the power level, and PL1>PL2>… 
> PLR. To identify the changes of the DPD at different power 
levels, we can use the DPD at the highest power level PL1 as 
the reference. One way to represent the difference from the 
reference is to add a delta term. For instance, the output of the 
DPD at PLr can be expressed as, 

 ( ) ( )ˆ , U U Ur r  (4) 

where Û is the reference output, namely, the output at PL1, 
while ∆U(r) is the delta value that can compensate for the 
behavior change of the PA at particular power levels. ∆U(r) 
can be constructed by using another nonlinear function. In 
this work, to avoid changing the model structure, we propose 
to use the same function that is used for the reference to 
model changes of the system. In other words, Û and ∆U(r) use 
the exact same model but the corresponding coefficient 
values are different. In this case, the different outputs at 

( )u n
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different power levels can be represented by different sets of 
coefficients. For instance, the DPD coefficients at PLr, which 
is labeled as C(r), can be expressed as following: 

 ( ) ( )ˆ , C C Cr r  (5) 

where Ĉ is the coefficients vector at the reference power level, 
while ∆C(r) represents the difference from the reference. C(r) 
and Ĉ contains the exact same number of coefficient terms. If 
we extend this to multiple power levels, we can treat Ĉ as the 
“static” coefficients vector that does not change during 
dynamic power transmission while ∆C(r) is the “dynamic” 
part that changes with the behavior variations of the PA. To 
identify the dynamic changes at different power levels, the 
coefficient values in ∆C(r) need to be linked to the signal 
changes, e.g., input power adjustments, to track the behavior 
variations of the PA. Ideally, ∆C(r) should be extracted at 
each different power level separately. This however, will 
significantly increase the system complexity. 

From Fig. 3, we can see that the gain of the PA changes 
when the PA is operated at different power levels but the 
overall nonlinear behavior of the PA still follows a similar 
pattern. This means that if we model the PA behavior at one 
power level as the reference, the changes from the reference 
are relatively small. It indicates that the coefficient values in 
∆C(r) are relatively small compared to those in Ĉ. Therefore, 
to reduce the system complexity, it is reasonable to extract a 
common set of dynamic coefficients, ∆C, and then use some 
tuning factors to scale the values to different power levels. 
This results that ∆C(r) can be expressed as: 
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where ∆cp,i(m) (p=1, …, P, m=0, …, M and i=1, 2) is the 
common dynamic coefficient while αp,i

(r)(m) is the scaling 
factor. Ideally, αp,i

(r)(m) should be linked to each power level 
and extracted for each individual coefficient but that again 
will require significant efforts and increase the system 
complexity. As mentioned earlier, in a real system, the 
coefficients changes are relatively small and these changes 
can be summarized into two categories: average gain 
variation and nonlinear memory effects. In this work, we 

introduce two scaling factors: linear scaling and nonlinear 
scaling that are directly related to the input power levels of 
the PA. The linear scaling factor αln

(r) can be employed to 
adjust all the linear coefficients. For the nonlinear 
coefficients, we assume that all the nonlinear coefficients can 
be tuned by the same nonlinear scaling factor αnln

(r). It means 
that we make the following assumptions: 
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Thus, (6) can be simplified to 
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where ∆Cln and ∆Cnln stand for the linear and nonlinear 
coefficients vector, respectively. Substituting (8) into (5), the 
coefficients equation can be rewritten as:  
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The coefficients structure is illustrated in Fig. 4, where we 
can see that the final DPD coefficients include two parts: the 
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Fig. 4. Model coefficients structure. 
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reference Ĉ and the dynamic part ∆C(r). The linear part of 
∆C(r) is scaled by the linear scaling factor αln

(r) while the 
nonlinear part is scaled by the nonlinear scaling factor αnln

(r). 
Combining (3) and (9), we can obtain the complete power 
adaptive DPD model as  
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Since the model is linear-in-parameters, the scaling 
operation to the dynamic coefficients can be factored into the 
model terms, resulting: 
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where Xln
(r) and Xnln

(r) are the linear and nonlinear model 
terms corresponding to ∆Cln and ∆Cnln. In this model, the 
DPD function at PLr is characterized as the additive 
combination of the reference, the linear and nonlinear 
differences from it, as illustrated in Fig. 5.  

This model brings three advantages: (i) PA distortion at 
different power levels is characterized as a dynamic 
nonlinear function instead of a set of independent ones, 
which reduces the system complexity. (ii) The corresponding 
scaling factors αln

(r) and αnln
(r) can be evaluated in advance, 

and only two sets of coefficients, Ĉ and ∆C, need to be 
extracted in model extraction. (iii) Both the reference and the 
dynamic changing part are characterized by using the same 
model. There are no model structure changes in the system, 
which simplifies the system operation. 

To accurately characterize the behavior change patterns of 
the PA, αln

(r) and αnln
(r) must be chosen correctly. In this work, 

we propose the following approach to define them: 
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where θr and φr are employed to evaluate the linearity and 
nonlinearity of the PA, and θ1 and φ1 are the references. To 
quantify the linear changes, the linear level evaluation θr can 
be obtained by using the best linear approximation [14]. In a 
system with memory, such as a PA, the transfer function of 
its best linear approximation in the time domain can be 
expressed by using a finite impulse response. This leads that 
θr is not a single value but a vector. Since the memory part of 
the coefficient values are relatively small compared to the 
static linear gain, to simplify the process, in this work, we use 
a time domain average gain to calculate θr instead of the best 
linear approximation. For the quantification of nonlinearity, a 
method called Measurements of Nonlinearity (MoN) 
[14]-[18] can be deployed. The principle of MoN is to 
quantify the nonlinear degree of a system by calculating the 
distance from its best linear approximation, therefore the 
numerical value of MoN only contains the “pure” 
nonlinearity. The linear approximation of the PA inverse 
transfer function is obtained through the calculation of θr 
while its nonlinearity evaluation based on MoN can be 
obtained by calculating the normalized l2-based distance 
from its linear approximation, which can be expressed as: 
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After obtaining θr and φr, the linear and nonlinear levels are 
quantified and the required scaling factors αln

(r) and αnln
(r) can 

be generated from (12). 

B. Model Extraction 

To accurately extract the coefficients vector [Ĉ ∆C], the 
input and output data measured from the PA at multiple 
power levels are required. To cover a large dynamic range, 
ideally, all possible power levels should be included. In 
practice, it is not possible because the complexity of model 
extraction will increase dramatically if a large number of 
datasets are included. In this work, we propose to select only 
limited sets of power levels for the model extraction and a 
coefficients interpolation approach will be introduced in the 
next sub-section to obtain the DPD coefficients for all the 
other required power levels.  

The block diagram of model extraction is shown in Fig. 6. 
The input and output data at different power levels are 
captured first. The scaling factors αln

(r) and αnln
(r) are then 

calculated independently for different power levels. Since the 
same model is used for all the power levels, we can simply 
put all data into one matrix. Using the pth-order inverse or 
indirect leaning, we can swap the input and output data to 
construct the DPD model, namely, the output of the PA is 
used at the input of the DPD function while the original PA 
input is used as the expected output. The DPD matrix can 
then be constructed as,  

 

(1) (1) (1) (1)(1) (1)

(2) (2) (2) (2)(2) (2)

( ) ( ) ( ) ( ) ( ) ( )

 

 ˆ ,
          

 

ln ln nln nln

ln ln nln nln

R R R R R R
ln ln nln nln

 

 

 

    
    
          
    
         

Y YX Y

Y YX Y
C ΔC

X Y Y Y

  
 (14) 

where X(r) is the original PA input while the regression matrix 
Y(r) can be formed by using the output data, which include 
two parts: (i) the normal terms as those in the conventional 
DPD model; (ii) the same set of terms, but the linear terms are 
scaled by αln

(r) and the nonlinear terms are scaled by αnln
(r), 

where Yln
(r) and Ynln

(r) are the linear and nonlinear model 
terms in Y(r), respectively.  

Since the output is in linear relationship with the 

 

 (1)y n

 (2)y n

 ( )Ry n

( ) ( )&r r
ln nln 

 1 ( )x n

  ( )Rx n

 2 ( )x n

Fig. 6. Model extraction. 
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coefficients, the least squares (LS) algorithm can be 
employed: 

 

(1)

(2)
-1H H

( )

ˆ
= ,

 

 
 

            
  

X

XC
Y Y Y

ΔC

X


R

 (15) 

where 

 

(1) (1) (1) (1) (1)

(2) (2) (2) (2) (2)

( ) ( ) ( ) ( ) ( )

.

ln ln nln nln

ln ln nln nln

R R R R R
ln ln nln nln

 
 

 

 
 
 
 
 
 

Y Y Y

Y Y Y
Y

Y Y Y

  
 (16) 

Since the regression matrix includes all data at different 
driven levels, the condition number of the regression matrix 
can be large which may cause difficulties in the matrix 
inversion. To avoid this issue, the 1-bit ridge regression 
method in [19] can be employed. Usually, the model 
extraction process needs to be conducted in several iterations 
to achieve the best linearization performance. 

C. Coefficients Interpolation 

Since the model extraction can only cover a limited 
number of operating power levels, an interpolation approach 
is required to obtain the DPD coefficients for the power 
levels that are not included in the model extraction process. 
To accomplish this task, we set PL1 and PLR to the maximum 
and the minimum power level, respectively, and divide the 
entire input power range uniformly as following: 

 1
1 .

1
R

r r

PL PL
PL PL

R


 


 (17) 

For the power levels which are selected in the model 
extraction process, the corresponding scaling factors can be 
calculated and the coefficients at these power levels can be 
made available immediately. For instance, the DPD 
coefficients for PLr can be obtained by using (9). The task 
now is to estimate the coefficients vector C(r,k) for the power 
level PLr,k, which is not in the model extraction. Let’s assume 
PLr,k is located between PLr and PLr-1 (PLr<PLr,k<PLr-1) and 
the PA behavior change is consistent with the input power 
levels. Since C(r) is constructed from linear and nonlinear 
tuning factors as in (9), the interpolation formula could be 
conducted by using the same tuning factors with a weighting 

function, which is expressed as 
 

 
 
 

( , ) ( , ) ( 1) ( , ) ( )

( , ) ( , ) ( 1) ( , ) ( )

1   
, 2,3,...

1

r k r k r r k r
ln ln ln

r k r k r r k r
nln nln nln

w w
r R

w w

  

  





    
  

 (18) 

In practical systems, the changes of the PA behavior often 
follow a nonlinear pattern. For instance, higher input power 
levels may lead to more severe nonlinearities in a Class-AB 
or a Doherty PA. Thus, in the high power region, the 
coefficients values at the middle power level should be made 
closer to the ones at the higher power level rather than that at 
the lower side. While, in the low power region, PA 

 ( , )r kx n

 ( )rx n  ( )ry n

 ( , )r ky n

( , )r kw

( , )1 r kw

 ( 1)rx n  ( 1)ry n

Fig. 7. DPD coefficients interpolation. 

Fig. 8. Example values of scaling factors. 
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Fig. 9. Block diagram of the complete power adaptive DPD system.
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nonlinearity becomes milder, the coefficients at the middle 
power level can be interpolated more evenly. The weighting 
factor w(r,k) is thus designed to reflect this pattern. Here we 
take the following function as an example: 

 

22

, 1( , )

1

= 1-  .r k rr k

r

PL PL
w

PL




  
     

 (19) 

The interpolation process is illustrated in Fig. 7. The 
weighting factor w(r,k) is calculated first, the tuning factors 
can be then interpolated and finally the corresponding 
coefficients can be obtained. Fig. 8 shows an example of the 
coefficients scaling factor values used for a Doherty PA 
excited with a 20 MHz LTE signal. The power levels of the 
baseband signal were normalized with the peak values from 
1.0 to 0.4 with 0.1 as the step size, leading to the 
corresponding changes of the PA output power from 47.1 
dBm to 39.2 dBm. The scaling factors at the power levels of 
1.0, 0.8, 0.6 and 0.4 were calculated from the measured data 
while the ones at other power levels were interpolated with 
the proposed approach. From the plot, we can clearly see that 
the interpolated scaling factors at high power levels, e.g., at 
46.3 dBm, are closer to the ones at 47.1 dBm while at the 
lower power levels, e.g., at 41.3 dBm, the scaling factors are 
interpolated more evenly. One may note that (19) is only one 
example. Different types of nonlinear functions can be used 
and they should properly reflect the characteristics of the PA 
in the system. 

D.  The Complete System Structure 

From the analysis above, the structure of the complete 
power adaptive DPD system can be constructed as the block 
diagram shown in Fig. 9. Before the system operation, the 
input and output of the PA operated at selected power levels 
are captured and used to calculate the corresponding tuning 
factors and extract the model coefficients [Ĉ ∆C]. During the 
online system operation, the power level of the input signal, 
e.g., PLr,k , is first employed to calculate the weighting factor 
according to (19). Then the required tuning factor αln

(r,k) and 
αnln

(r,k) are generated and fed into the DPD block to multiply 
with the elements of the dynamic coefficients ∆C. The 
adjusted ∆C is then combined with Ĉ to generate the 
coefficients vector C(r,k) to be used in the DPD block.  

In this new system, although the number of coefficients 
that needs to be extracted is doubled as that of the 
conventional DPD, the two sets of DPD coefficients can be 
combined together after the model extraction to form the 
DPD vector as shown in (9). Therefore, there is no change 
required for implementing the DPD block. In other words, the 
same hardware resource is used and the only difference is that 
the coefficients values are updated according to the input 
power levels on operation. This leads to a significant 
reduction on system implementation complexity. 

IV. ONLINE COEFFICIENTS UPDATING 

In the previous section, we mainly focus on the PA 
behavior variations caused by the input power changes. In 
those cases, we assume the PA is a time invariant system 
apart from the excitation signals. In other words, the PA 
behavior keeps the same if it is operated at the same input 
power level. Therefore once the coefficients are extracted, 
there is no further update required. In a real operation, the PA 

behavior may change due to other factors, e.g., temperature 
variation, bias drifting or aging. Unlike the input power 
adjustments, this type of changes usually cannot be predicted 
in advance. To maintain the linearization level, the DPD 
coefficients must be occasionally updated online. 

In conventional DPD systems, recalibration can be 
conducted by re-running the model extraction based on the 
current transmitted signals. In the power adaptive system, 
however, re-running the model extraction requires that the 
signals at certain fixed power levels must be captured in order 
to accurately extract the coefficients, as described in Section 
III. This is usually not feasible during the real-time 
transmission since it may take a long period to gather all the 
signals at the required power levels. The transmission quality 
during the waiting period may be thus significantly affected. 
To mitigate this problem, we propose to characterize the PA 
behavior change from the signal gathered at the current 
transmission level and then apply it to other power levels so 
that the performance deterioration during the waiting period 
can be avoided or reduced.  

Let’s assume the PA transfer function is changed at the 
power level PLr during the real-time operation. To recalibrate 
the DPD coefficients at this power level, the data sets can be 
simply captured to construct the following PA inverse model: 

 ( ) ( ) ( )r r r
new new newX Y C , (20) 

where Xnew
(r) and Ynew

(r) are the new PA input vector and the 
model regression matrix, respectively. A normal LS 
algorithm can be operated to obtain the new coefficients at 
PLr, labeled as Cnew

(r). By comparing Cnew
(r) and the original 

coefficients, the PA behavior change at this power level, can 
then be obtained by  

 ( ) ( ) ( )r r r
new new  C C C . (21) 

In the power adaptive DPD, the PA behavior variation is 
characterized by multiplying the dynamic coefficients ∆C 

( )rC

 

( )rC

,

,

ˆ &
new ln

new nln

 
  

  

C
C

C

ˆ ˆ C C

 
 

( )
,

( )
,

j
ln ln new ln

j
nln nln new nln





   
 
    

C C

C C

Fig. 10. Online coefficients updating. 
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with the scaling factors [αln
(r) αnln

(r)]. Theoretically speaking, 
if the PA behavior is affected by other factors, the Ĉ, ∆C and 
[αln

(r) αnln
(r)] should all be different from the original values. 

However, in practical systems, the PA change level during 
the online calibration is relatively small compared to the 
original nonlinearity. Hence, we can assume the linear and 
nonlinear change patterns [αln

(r) αnln
(r)] remain the same and 

the variation can be characterized by changing the 
coefficients only. ∆Cnew

(r) can thus be decomposed as 

 
( )

,( )

( )
,

ˆ ,
r

ln new lnr
new r

nln new nln





 
     

  

C
C C

C
 (22) 

where ∆Ĉ stands for the change of the reference coefficients 
Ĉ. ∆Cnew,ln and ∆Cnew,nln represent the change of the linear and 
nonlinear dynamic coefficients, respectively. To obtain the 
values for those decomposed coefficients, we can use the 
modified model extraction. First, according to (20) and (21), 
the change of the PA inverse model can be expressed as: 

 ( ) ( ) ( ) ( ) ( ) ( )r r r r r r
new new new new new    X X Y C Y C . (23) 

Then, by substituting (22) to (23), we have: 

 ,( ) ( ) ( ) ( ) ( ) ( )
, ,

,

ˆ .
new lnr r r r r r

new new ln ln new nln nln new

new nln

 
 

          

C
X Y C Y Y

C
(24) 

The equation above is linear-in-parameters and the LS 
method can then be employed to extract ∆Ĉ, ∆Cnew,ln and 
∆Cnew,nln.  

Since the scaling factors [αln
(r) αnln

(r)] are assumed the same, 
∆Ĉ, ∆Cnew,ln and ∆Cnew,nln can be immediately applied to the 
other power levels, PLj, to conduct the coefficients updating, 
i.e.,  

 

( ) ( )
,( )

( ) ( )
,

ˆ ˆ ,

                                                    1,2,..., .

j j
ln ln ln new lnj

new j j
nln nln nln new nln

j R

 

 

   
   

    


C C
C C C

C C  (25)  

The block diagram of the coefficients updating process is 
shown in Fig. 10. Since there is only one set of data required 
during this model extraction, the coefficients updating 
process can be very fast. This is very important because there 
is often no waiting time allowed during the real-time 
operation and updating the coefficients in time is essential in 
order to avoid distortion surge and ensure smooth transition.  

In real-time operation, it is not necessary to wait for signals 
at the highest power level, but to achieve good performance, 
it prefers to capture the data at relatively higher power levels 

for model extraction because generally nonlinearity changes 
at those power levels are more severe in the PA. Overall, it is 
worth mentioning that this online updating is only an interim 
approach for avoiding sudden surge of distortion during the 
transmission when the behavior of the PA changes. In order 
to obtain the optimized linearization level, the model should 
be fully re-calibrated by using the approach proposed in 
Section III when the data sets of all required power levels are 
available.  

V.  EXPERIMENTAL MEASUREMENTS 

To validate the proposed DPD model and its coefficients 
updating approach, we tested a high power LDMOS Doherty 
PA operated at 2.14 GHz based on the test bench designed in   
[20], as shown in Fig. 11. On the transmitter side, the 
baseband signal is generated in a PC and sent to a baseband 
board for digital signal processing. An RF board then 
converts the baseband signal into the analog domain and 
up-converts it to the operated RF frequency. The signal is 
then sent to a driver and finally fed into the main PA. On the 
receiver side, the feedback loop is used to capture the PA 
output signal and down-convert it to baseband and then send 
it to PC for model extraction and DPD generation.  

A. Power Adaptive DPD Validation 

In this part, the performance of the proposed DPD model is 
tested. To reflect the power adjustments during the dynamic 
power transmission, a normalized scaling factor from 1 to 0.4 
with step size 0.1 was applied to the baseband signal before 
transmission, corresponding to the changes of the average RF 
output power from 47.1 dBm to 39.2 dBm. The datasets at 
scaled levels 1, 0.8, 0.6 and 0.4 were captured for the model 
extraction, while data at all other power levels were 
employed for the DPD validation. All the datasets for model 
extraction are normalized by the highest amplitude at 47.1 
dBm. During the test, 5,000 signal points were used for 
model extraction while the entire 32,000 samples were tested 
for cross validation at each power level.  

The tests were conducted in four scenarios: 1) without 
DPD; 2) the fixed coefficients DPD that linearizes the PA at 
different driven levels by using a common set of coefficients 
which was extracted from putting signals at different levels 
into one matrix; 3) the proposed power adaptive DPD; and 4) 
the reference DPD that can be considered as an ideal case, 
which employed a set of coefficients extracted at the same 
power level as that of the validation. The 2nd order DDR 
model [21] combined with piecewise decomposed method   
[22] and power adaptive approach was employed in this work. 
The nonlinear order and the memory length were set to [7, 7] 
and [3, 3], respectively. The piecewise decomposition 
threshold was set to 0.5.  

The normalized power spectral density (PSD) of the PA 
output at four power levels are plotted in Fig. 12. Two power 
levels are selected from the ones for model extraction, i.e., 
47.1 dBm and 42.9 dBm, while another two power levels are 
obtained from the interpolation for validation purpose, i.e., 
46.3 dBm and 41.5 dBm. The normalized mean square errors 
(NMSE) values and adjacent channel power ratio (ACPR) 
values are given in Fig. 13 and Fig. 14 for all the power levels, 
respectively. Due to the inherent nonlinear nature, the PA 
under test is sensitive to the variation of its input power level. 

Fig. 11. DPD measurement platform. 
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Therefore, if we compensate the distortion induced by the PA 
at different driven levels by using only one set of DPD 
coefficients, the performance will deteriorate and 

considerable nonlinear residuals will remain, especially at the 
high driven levels. This can be easily identified by checking 
the NMSE and ACPR values of the fixed coefficients DPD 
results in Fig. 13 and Fig. 14, respectively. At high power 
levels, e.g., 47.1 dBm, the ACPR is only about -48 dBc. 
However, by employing the power adaptive DPD, the 
distortion of the PA at each power level can be effectively 
compensated, achieving almost the same ACPR and NMSE 
performance as that achieved by employing the reference 
DPD. This concludes that the power adaptive DPD is capable 
of accurately characterizing the behavior change pattern of 

(a) 

(b) 

(c) 

(d) 
Fig. 12. The normalized PSD at different RF output power levels: (a). 
47.1 dBm (in model extraction), (b) 46.3 dBm (with coefficients 
interpolation), (c) 42.9 dBm (in model extraction), (d) 41.5 dBm (with 
coefficients interpolation). 
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Fig. 13. NMSE values at different RF output power levels. 

(a) 

(b) 
Fig. 14. ACPR values at different RF output power levels: (a) -20 
MHz; (b) +20 MHz.
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TABLE I 
COMPARISONS OF THE COEFFICIENT NUMBERS  

Scenario 
 

No. of Coeff.  
Model Extraction 

No. of Coeff.  
DPD Block 

Reference DPD 602=86×7 86 
Proposed DPD 172=86×2 86 

Fixed Coefficients DPD 86 86 
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the PA with the input power adjustments.  
Since the coefficients of the conventional DPD are 

obtained by the linear combination of [Ĉ ∆C] and the scaling 
factors αln

(r,k) and αnln
(r,k), the total number of coefficients does 

not increase with the number of the operation power levels 
which can be seen from TABLE I. In the reference DPD, each 
power level is treated independently, so that the number of 
coefficients is therefore increased to 602. While in the power 
adaptive DPD, the total number of coefficients is only 172, 
yielding significantly reduction of the system complexity. 
Meanwhile, because there is no new DPD model term added 
in the power adaptive model, the DPD signal generation 
complexity remains the same. In other words, the same 
number of coefficients, e.g., 86, is used in the predistortion 
block as that is used in the conventional DPD.  

B. Coefficients Updating Validation 

In this part, the performance of the coefficients updating 
approach of the power adaptive DPD was tested. To illustrate 
the PA behavior changes caused by other factors rather than 
power level changes during transmission, we shifted the drain 

(a) 

(b) 

(c) 

(d) 
Fig. 15. The normalized PSD with and without coefficients update: 
(a). 47.1 dBm, (b) 46.3 dBm, (c) 42.9 dBm, (d) 41.5 dBm, 
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Fig. 16. NMSE values with and without update.  

(a) 

(b) 
Fig. 17. ACPR values with and without update at different RF output 
power levels: (a) -20 MHz; (b) +20 MHz 
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supply bias from 28 V to 26 V which causes the change of the 
PA behavior. The dataset at the highest power level was 
employed to extract the updated coefficients. The PSDs with 
and without update are shown in Fig. 15. The NMSE and 
ACPR values are presented in Fig. 16 and Fig. 17, 
respectively. The power levels used for these figures are the 
same as the ones in Part A. 

Due to the change of bias, the transfer function of the PA is 
seriously affected, leading to the deterioration of the DPD 
performance which can be seen from the spectral regrowth at 
the PSDs and the increases of NMSE values. At higher driven 
levels, the PA transfer functions are more sensitive to the bias 
change, so the DPD performances drop more significantly. 
With the employment of the proposed approach, the regrowth 
of the nonlinear distortion can be effectively compensated 
and the ACPR and NMSE values can be significantly 
improved. At lower driven levels, e.g., 41.5 dBm, the PA is 
operated at almost linear region therefore it is not sensitive to 
the change of bias. Under this condition, the DPD 
performance with and without coefficients update both 
maintains at fine levels.  

C. Model Comparison  

As mentioned before, the proposed approach is developed 
to eliminate different nonlinearity for each steady-state stage 
so that the accuracy of the transmitted information can be 
guaranteed. In [10], a long term memory DPD is designed in 
order to compensate the nonlinear effects in the transient 
stage. This method can also be used at the steady-state stage. 
In order to compare this approach with the proposed one, a 10 
MHz LTE signal with two different power levels, as shown in 
Fig. 18 (a), was used to conduct the DPD measurements. The 
output power level at high and low power states were 46 dBm 
and 38 dBm, respectively. This test scenario is very similar to 
the one in [10].  

The basic DPD model employed here was the 2nd order 
DDR model (P=9, M=3). Three test cases were considered 
for this comparison: 1) the fixed coefficients method which 
used the coefficients extracted at high power level to linearize 
the entire signal sequence; 2) the method in [10], the 
coefficients were extracted from 30,000 points with a slide 
window length of 10,000 sampling points; 3) the proposed 
method, the coefficients were extracted from 15,000 points 
(7,500 points at the high level and 7,500 points at the low 
level). The final DPD measurements results are shown in Fig. 
18. 

For comparison, two slices of the error signals between the 
linearized output and the original baseband signals for the 
steady-state stage and the transient stage are provided in Fig. 
18 (a), where we can see that the model in [10] produces 
smaller errors in transition while larger errors at the 
steady-state stage compared to that with the proposed 
approach. To fully quantify the accuracy, the entire input 
signal sequence is decomposed into 99 sub-sections with 
3,000 points each and the NMSE for each section is 
calculated and given in Fig. 18 (b). Due to the PA behavior 
changes with the input power levels, using the fixed 
coefficients extracted at the high power level at the low 
power level cannot achieve fine linearization performance, 
which leads high NMSE values at the low power level as 
shown in the plot. The method in [10] is able to effectively 

compensate the distortion during the transient stage but a 
certain level of distortion still remains at the steady-state 
stage. With the proposed method, we can see that the 
performance can be significantly improved at the steady-state 
stage, with more than 3 dB NMSE improvements over the 
method in [10] during both the high and low power levels and 
the performance is close to the ideal case, as shown in Fig. 18   
(b). However, at the transient stage, there is a spur in the 
NMSE plot. Through this comparison, we can conclude that 
the method in [10] is better for compensating the nonlinearity 
at the transient stage while the proposed method has higher 
performance at the steady-state stage. Since these two 
methods aim at different types of PA nonlinearity during the 
dynamic power transmission, it is possible to combine them 
together to provide a complete solution. 

VI. CONCLUSION 

In this paper, a novel power adaptive digital predistortion 
technique has been proposed. By quantifying the linear and 
nonlinear changes of the PA behavior varying with the input 
power adjustments and deploying them to scale the DPD 
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coefficients, the dynamic distortion of the PA in the 
steady-state stage with multiple power levels can be 
effectively compensated without real-time recalibration. A 
simple online coefficient updating approach is also proposed 
to provide a fast and effective solution for occasional 
coefficients updating during real-time operation. 

This proposed approach does not require any changes on 
the model structures; only two sets of coefficients need to be 
extracted during model extraction while the number of 
coefficients that are used in the real-time DPD operation 
remains the same. Measurement results confirm that the 
nonlinear distortions of the PA at multiple operation power 
levels can be almost fully compensated by employing the 
power adaptive method. This approach provides a very 
promising solution for future transmitters with dynamic 
power transmissions. 
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