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Abstract—Existing approaches to time series classification can
be grouped into shape-based (numeric) and structure-based
(symbolic). Shape-based techniques use the raw numeric time
series with Euclidean or Dynamic Time Warping distance and a
1-Nearest Neighbor classifier. They are accurate, but computa-
tionally intensive. Structure-based methods discretize the raw
data into symbolic representations, then extract features for
classifiers. Recent symbolic methods have outperformed numeric
ones regarding both accuracy and efficiency. Most approaches
employ a bag-of-symbolic-words representation, but typically the
word-length is fixed across all time series, an issue identified as
a major weakness in the literature. Also, there are no prior
attempts to use efficient sequence learning techniques to go be-
yond single words, to features based on variable-length sequences
of words or symbols. We study an efficient linear classification
approach, SEQL, originally designed for classification of symbolic
sequences. SEQL learns discriminative subsequences from train-
ing data by exploiting the all-subsequence space using greedy
gradient descent. We explore different discretization approaches,
from none at all to increasing smoothing of the original data,
and study the effect of these transformations on the accuracy of
SEQL classifiers. We propose two adaptations of SEQL for time
series data, SAX-VSEQL, can deal with X-axis offsets by learning
variable-length symbolic words, and SAX-VFSEQL, can deal
with X-axis and Y-axis offsets, by learning fuzzy variable-length
symbolic words. Our models are linear classifiers in rich feature
spaces. Their predictions are based on the most discriminative
subsequences learned during training, and can be investigated
for interpreting the classification decision.

I. INTRODUCTION

Time series classification is a pervasive research problem,
with critical applications ranging from seizure detection for
human epilepsy [1] to classifying insect sounds for detecting
female mosquitoes [2].

There are many time series classification datasets, with the
UCR benchmark [3] being the most popular for comparing
methods. This benchmark has also attracted criticism for
skewing the research community into focusing on accuracy, at
the expense of computational efficiency [4]. Most time series
classification approaches fall into two groups: shape-based and
structure-based [5]. Shape-based methods use the raw numeric
time series and employ a 1-Nearest Neighbor (1NN) classifier
with a distance metric. The Euclidean distance (ED) and the
Dynamic Time Warping (DTW) distance are the most popular
metrics [6]. These approaches are accurate, but expensive,
as they have quadratic time complexity in the time series
length [4]. A lot of work has aimed to address this bottleneck,

most recently by proposing centroid-based approaches, such as
Dynamic Time Warping averaging [2]. This approach achieves
accuracy comparable to 1NN-DTW with less computational
cost, as only one centroid per class is needed during the testing
stage, but has an expensive training stage. Other work aims
to learn discriminative subsequences from raw numeric data
(aka shapelets) [7] using an optimization formulation that in-
volves searching for fixed-length time series subsequences that
best predict the target variable. This approach has promising
accuracy, but has a significant training time complexity of
O(N2n3), where N is the number of time series and n is
the length of time series [4].

Fig. 1. An example transformation from numeric time series to symbolic
sequence ffcbccbdad, by slicing the X-axis and the Y-axis.

Structure-based methods transform the raw numeric data
into discrete representations, the most popular among them
being the Symbolic Aggregate Approximation (SAX) [8]. The
key idea behind many symbolic representations is to smoothen
and compress the numeric data by first slicing the X-axis,
computing averages of the slices, then slicing the Y-axis to
map those averages to discrete symbols. Figure 1 shows an
example of converting a numeric time series to a symbolic
sequence, by slicing and mapping values on the X-axis and
Y-axis.

The work of [9] proposes a variant of SAX approximation
to produce distinct SAX-words with tf.idf weights (aka SAX-
VSM) and builds a tf.idf centroid prototype for each class. This
centroid-based approach was shown to produce results that
are more accurate than the state-of-the-art, with an expensive



training stage and a fast classification stage. An advantage of
this approach is that it allows interpreting the classification
decision, as it ranks the best SAX-words per class based on
their tf.idf weight. A weakness of this method is that the SAX-
word length is fixed across all time series, which may reduce
the power of this representation. Another drawback of this
approach is that it requires an intensive parameter optimization
for selecting the best SAX transformation during training.
Another recent approach, 1NN BOSS VS [4], employs a
Symbolic Fourier Approximation (SFA) instead of SAX, and
uses a vector space of SFA-words and class centroids for
classification. This approach is shown to be comparable in
accuracy with SAX-VSM, in particular for large-scale datasets,
and it is faster as it has less parameters to optimize for the SFA
representation. Nevertheless, it is harder to interpret and use
the SFA-words compared to SAX-words, since the symbolic
characters at each position have different meanings and cannot
be directly compared.

Our contribution. We propose a new approach for
structure-based time series classification based on an efficient
sequence classifier, SEQL, designed to work on very long
discrete sequences with large alphabets [10], [11]. SEQL
learns the best discriminative subsequences1 from training data
by exploiting the all-subsequence space using greedy gradient
descent. We explore different discretization approaches,
from none at all (raw data) to increasing smoothing and
compression of the original data, and study the effect of these
transformations on the accuracy and efficiency of training
and testing of SEQL classifiers. We propose two adaptations
of SEQL for time series data, under a SAX representation:
• SAX-VSEQL, can deal with X-axis offsets by learning

variable-length symbolic words, therefore addressing a
major weakness in prior work related to fixing the SAX-
word length across all time series [8], [9].

• SAX-VFSEQL, can deal with both X-axis and Y-axis
offsets by learning fuzzy variable-length symbolic words,
and removes the need for tuning SAX parameters, a task
that is computationally expensive and was identified as
an area in need of improvement by prior work [4], [9].

As shown in our experiments with UCR benchmark datasets,
our approach removes the need for extensive tuning of SAX
parameters, which results in fast training and test stages,
while preserving high accuracy. Furthermore, in light of new
legislation and research priorities that emphasize explainable
AI23, we aim to deliver interpretable classifiers. We discuss
the interpretability of our proposed classifier and compare our
findings to prior work.

II. RELATED WORK

The empirical work published by Wang et al in 2013 [6]
has compared 8 different time series representations and 9

1In SEQL there is no need to manually provide the subsequence length,
the data and learning objective drive the length selection.

2http://www.darpa.mil/program/explainable-artificial-intelligence
3European Union regulations on algorithmic decision-making and a ”right

to explanation”: https://arxiv.org/pdf/1606.08813v3.pdf

similarity measures across 38 time series datasets. Among
the main conclusions of that study was that using the raw
time series and Euclidean distance as a similarity metric for a
1NN classifier is very effective for time series classification.
Another conclusion was that a 1NN classifier with Dynamic
Time Warping distance delivers more accurate results than
the Euclidean distance on small datasets and is superior or
comparable to many other similarity measures, such as the
edit distance. As both 1NN-Euclidean and 1NN-DTW ap-
proaches are computationally intensive, many approaches were
proposed to deal with the efficiency aspect. Among them are
DTW averaging [2] and early abandoning techniques that use
lower bounds for early pruning of nearest neighbor candidates
[12]. Other approaches aim to further increase the accuracy of
1NN-DTW by ensembling many such classifiers [13], [14], at
the expense of computational cost. The computational burden
of many of these techniques remains very high, as summarized
in recent work [4] which details the training and testing
complexity for these methods.

Shapelet-based classifiers search for subsequences of raw
numeric time series that best discriminate the time series in
different classes [14], [15]. The shapelets are typically first
extracted from the data, then used as a new representation
in which to learn standard classifiers such as decision trees,
random forest and SVM [16]. Approaches for finding the best
shapelets vary from brute force search, to bounding quality
metrics such as the information gain [15], searching in a lower
dimensional SAX space [17], or learning discriminative fixed-
length shapelets [7]. These methods deliver high accuracy but
have a high computational complexity for training or testing
and many are sensitive to noise [4].

Approaches that work on discretized time series data have
also been very popular, culminating with the SAX represen-
tation that has been used in many applications [8], [17]–[19].
The most accurate approaches involving the SAX represen-
tation transform the original numeric time series to a space
of SAX-words and then use this representation for training
classifiers. SAX-VSM presented in [9] is a centroid based
classification approach where tf.idf weights of SAX-words are
used to compute a centroid per class. This work also discusses
an approach to search for the best parameters for the SAX
representation via an optimization algorithm, but its training
stage remains computationally expensive, mostly due to the
need to search through a large set of SAX parameters.

The recent work of [4], [20] introduces a new symbolic
approximation, the Symbolic Fourier Approximation (SFA),
based on Discrete Fourier Coefficients. Both techniques use
a vector space of SFA-words, but the first method (named
BOSS) uses ensembles of histograms of SFA-words and 1NN
classifiers, while the latter (named 1NN BOSS VS) uses tf.idf
class centroids for classification. The methods are shown to be
accurate and fast on many time series datasets [4]. We argue
that this comes at the cost of interpretability, as the SFA-words
used to build symbolic classifiers cannot be easily interpreted
and compared.

In this work we study a sequence classification method, the



Sequence Learner (SEQL), introduced in [10], [11]. Due to its
greedy optimization approach, SEQL can quickly capture the
distinct patterns of sequence data in very high-dimensional
spaces. In prior studies SEQL was shown to achieve similar
accuracy to the state-of-the-art, with improved scalability
and interpretability. Our aim in this work is to understand
how different transformations of time series influence this
discriminative learning classifier. SEQL is of particular
interest since it can learn variable-length subsequences as
induced by the training data, rather than as selected by a user
via parameter tuning. We show how to adapt SEQL to time
series data to address weaknesses identified by prior work
and compare the empirical behavior of our proposed methods
to the state-of-the-art, on the UCR benchmark.

III. SYMBOLIC REPRESENTATION OF TIME SERIES

A time series is a series of measurements collected over
a period of time. Usually the interval between any two
consecutive measurements is a constant. A time series can
be denoted as a vector V :

V = (v1, v2, . . . , vL) (1)

L denotes the length of the time series and is also the
number of dimensions of vector V . Here we discuss several
methods to transform numeric time series data to discrete
representations and the parameters associated with each trans-
formation. We also discuss the combination of discretisation
and learning of discriminative time series classifiers using
SEQL, and name each method to describe the combo of
discretisation and sequence learner.

A. No Approximation

The first representation we investigate uses the raw numeric
data. For this representation there are no parameters. We call
this approach Raw-SEQL, to denote the combo of raw time se-
ries and the SEQL classifier. The Raw-SEQL approach learns
the most discriminative subsequences in the raw numeric data
by treating each distinct numeric value as a discrete symbol.
This is a fairly naive approach since it is unlikely to find
repeated identical numeric subsequences across many time
series. Nevertheless, we are interested to see how SEQL can
cope with such a huge alphabet and feature space.

B. Slicing the X-axis

There are various ways to slice or group the values on
the X-axis, in order to smoothen the original time series.
One popular and simple technique is the Piecewise Aggregate
Approximation (PAA) [6]. The main idea in PAA is to approx-
imate each group of values on the X-axis by their average,
therefore smoothing the original numeric data. For example
we can approximate the value of each 3 time series points by
their average, e.g., the time series subsequence 0.4, 0.5, 0.6
is replaced by the average 0.5. The main parameter of this
approach is w, the final length of the PAA transformed time

series. Figure 2 shows an example of how this method works.
We call this approach DiscX(w)-SEQL.

Fig. 2. X-axis slicing: Original time series versus PAA segments.

C. Slicing the Y-axis

This approach also aims to smoothen the raw numeric data,
but this time by grouping values on the Y-axis, such that for
example 0.5 and 0.55 are considered the same discrete token.
Two popular options for slicing the Y-axis are equal width
bins or equal probability areas. In both cases, the parameter
is the number of Y-axis bins that we also call the alphabet
size a. We investigate the binning of values on the Y-axis by
using equal probability area as popularised in SAX [8]. Figure
3 shows an example of how this method works. We name this
method DiscY(a)-SEQL.

Fig. 3. Y-axis slicing: Equal probability slicing with alphabet size a = 6.

D. Slicing both the X and the Y-axis

For this approach we first slice the X-axis using the PAA
approach, which results in one average value for each PAA
segment. Then, we slice the Y-axis using the equal probability
area approach, so that segments with averages falling in the
same area are mapped to the same symbol or token. The
parameters for this approach are the number of X-axis bins,
denoted by w and the number of Y-axis bins, denoted by a. A
popular approach in this category is the Symbolic Aggregate
Approximation (SAX) [8] which we detail below. Time series



data can be transformed to a SAX representation at character-
level or word-level [8]. A character-level representation is a
sequence of characters (e.g., abcadacbadbcbabdbcba) while
a word-level representation is a sequence of words (e.g., aba
dac aac dac daa). In the latter case, the words are made
of characters from a given alphabet and have equal length.
The character-level representation is simply a special case of
the word-level representation where the length of words is
1. However, it is more convenient to distinguish these two
representations in our work.

1) SAX-chars(w,a): The SAX representation at character-
level has two parameters: the number of X-bins w and the
number of Y-bins a. It results in a sequence of characters
of length w, where typically w is much smaller than L, the
original length of the time series. In prior work w is chosen
to range from 64 to 256, while the length of the time series
L can be in the thousands. The procedure for obtaining the
SAX-chars representation is as follows:

• X-slicing: Divide a time series into w segments with
equal length.

• Y-slicing: Encode each segment with a character from the
alphabet (where the alphabet has cardinality a).

Figure 4 shows an example of how the SAX-chars method
works. We denote this approximation as SAX-chars(w,a).
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Fig. 4. X and Y-axis slicing: An example of time series transformation to
SAX-chars(w = 10, a = 6). The final symbolic sequence is ffcbccbdad.

2) SAX-words(l,w,a): In practice, SAX is often combined
with a sliding window length l, which should be shorter than
the time series length L. The procedure is described as follows:

• Set the window at the start position of the time series.
• Transform the subsequence time series within the window

with the SAX-chars method. The result is a sequence of
length w.

• Move the window one step forward and repeat the process
until the window reaches the end of the original time
series.

Figure 5 shows an example for using SAX-chars with a sliding
window to obtain the SAX-words representation. We denote
this approach as SAX-words(l,w,a).

Fig. 5. Sliding window shifting results in SAX-words(l = 64, w = 10, a =
6) representation.

The final result is a sequence of equal-length SAX-words.
The SAX word is the smallest unit (i.e., unigram token) of
the sequence. From our observations, this representation is
vulnerable to the false dismissal problem which was discussed
in [17]. In short, an improper choice of Y-axis cuts may convert
two close numerical values to two different symbols, thus
introducing misleading information during the transformation.

Sliding windows are a common technique when working
with time series. In the case of SAX transformation, it helps
reduce the unwanted effects caused by misalignment between
time series. The technique was proven to be effective in [9],
[17], [19]. However, the robustness of SAX-based methods
strongly depends on the three parameters, l (window size), w
(word length) and a (alphabet size), which require computa-
tionally expensive optimization.

E. Implementation practices

Normalization: The work in [8] advocates that time
series data should be be z-normalized before applying further
transformations, as otherwise we compare time series with
different offsets and amplitudes. The SAX encoding process
also assumes that time series data follow a standard normal
distribution N (0, 1). Before applying any other transforma-
tions, raw time series are z-normalized with the following
formula:

z normalize(V ) =
V −mean(V )

std(V )
(2)

in which V is the numeric vector of time series values,
mean(V ) is the mean value of V and std(V ) is the standard
deviation value of V .

Indivisible-length problem: As it was mentioned above,
the X-axis segmentation step divides the time series into
segments of equal length. However, it is quite common that
the time series length L (or sliding window length l) is
not divisible by the number of segments w. For example,
how should we divide a time series of length 20 into 3
segments? In this case, the original time series data requires
modification before segmentation. Divisible-length time series
can be obtained by padding the data points of original data w
times. If V = v1, v2, . . . , vL is the original time series, then

V̄ = (v11 , v
2
1 , . . . , v

w
1 , v

1
2 , . . . , v

w
2 , . . . , v

1
L, . . . , v

w
L ) (3)



is the modified time series where vij = vkj = vj ∀ i, j, k.
The resulting vector V̄ of length L × w is divisible into w
segments. This is now standard practice and is implemented
in recent SAX software [8].

Numerosity reduction: In practice, if the word obtained
in the current window is identical to the word obtained in the
previous window, it will be ignored in the output time series.
This practice is to avoid the redundancy of information in the
compressed data and does not affect the classification accuracy
[8], [9]. The notation used for describing the time series and
various parameters of the symbolic representations described
above are summarized in Table I.

TABLE I
NOTATION FOR TIME SERIES CLASSIFICATION FRAMEWORK

Symbols Description
V Raw (normalized) numeric time series
L Length of original time series
w Number of X-axis bins
a Number of Y-axis bins
l Size of sliding window

IV. CLASSIFICATION WITH SEQUENCE LEARNER

In this section we describe the theoretical framework for
employing the SEQL symbolic sequence classifier, and pro-
pose two adaptations for time series classification.

A. Sequence Learner

SEQL learns discriminative subsequences from training data
by exploiting the all-subsequence space using a coordinate
gradient descent approach [10], [11]. The key idea is to exploit
the structure of the subsequence space in order to efficiently
optimize a classification loss function, such as the binomial
log-likelihood loss of Logistic Regression or squared hinge
loss of Support Vector Machines. This approach was originally
designed for classification of sequences of discrete items, such
as text or DNA. An important aspect of this approach is that
it can efficiently select the best variable-length subsequences
as driven by the training data and loss function (by combining
learning and feature selection), and does not require a user to
provide candidate subsequence lengths, such as in [7]. SEQL
was shown to perform well in dense feature spaces and with
very long sequences and large vocabularies. We are therefore
interested to study how this method performs with different
discretizations of time series data.

In the training stage, SEQL takes as input discretized
time series with corresponding labels and produces a linear
classifier (i.e., a list of weighted subsequences) for each class.
In the classification stage, the classifier is applied to new
(discretized) test time series to produce classification scores.
Each test time series is assigned to the class with the maximum
classification score. SEQL is designed for binary classification
and is typically employed for multi-class problems via the one-
vs-all approach [10].

In this section we briefly provide some of the theoretical
background and intuition for SEQL. This is necessary as
we later show how to adapt SEQL to better exploit the
characteristics of the discrete time series representation we
work with.

Let Σ be the alphabet of possible symbols, e.g., in the
case of DNA sequences, Σ = {A,C,G, T}. Let D =
{(s1, y1), (s2, y2), . . . , (sN , yN )} be a training set of instance-
label pairs, where si = c1c2 . . . cm is a sequence of length
m with each ci ∈ Σ. Each sequence si has an associated
score yi ∈ {−1,+1}. We represent a sequence si as a binary
vector in the space of all subsequences in the training data:
xi = (xi1, . . . , xij , . . . , xid)

T , xij ∈ {0, 1}, i = 1, . . . , N ,
where xij = 1 means that subsequence sj occurs in sequence
si. We denote by d the number of distinct subsequences in
the feature space, i.e., the coordinates of the vectors space in
which we learn. This is a huge feature space, but it is never
fully explicitly represented, only parts of the feature space are
explicitly generated, as driven by the learning algorithm. The
notation used in this section is summarized in Table II:

TABLE II
NOTATION FOR SEQL FRAMEWORK

Symbols Description
S Set of sequences
D Training set
si Sequence i
yi Score of sequence i
xi Vector representation of sequence si
xij Indicator of subsequence sj for sequence si
N Number of training examples
m Sequence length
d The number of distinct subsequences

in the feature space
Σ The alphabet set, e.g., {A,C,G, T}

The goal is to learn a mapping f : S → {−1,+1} from
the given training set D so that f(s) predicts a classification
score y ∈ {−1,+1} for a new unseen sample s ∈ S.
In this setting, we learn a linear mapping from the vector
representation xi of sequence si to a class yi, so we set
f(xi) = βTxi. The linear classifier is defined by the parameter
vector β = (β1, . . . , βj , . . . , βd), which is computed by
minimizing a loss function over the training set:

β∗ = argmin
β∈Rd

L(β) (4)

where

L(β) =

N∑
i=1

ξ(yi, xi, β) + CRα(β) (5)

Most βj will be zero when the optimization is concluded
and only those coordinates selected during training as useful
(i.e., discriminative), will be non-zero.

The notation in Equation 5, ξ(yi, xi, β), denotes a classifi-
cation loss function. SEQL implements two loss functions, the
binomial log-likelihood loss (logistic regressions) (Equation 6)
and the squared hinge loss (SVM) (Equation 7):

ξ(yi, xi, β) = log(1 + e−yiβ
T ·xi) (6)



ξ(yi, xi, β) = max(1− yiβT · xi, 0)2 (7)

In Equation 5, C ∈ R+
0 denotes the weight for the regular-

izer Rα(β). Larger C leads to larger penalty for β and can
influence the sparsity of the learned model. SEQL implements
the elastic-net regularization for Rα(β) [21], which combines
l1 and l2 penalties.

The number of potential subsequences grows exponentially
with the sequence length m. A result of this is that the
dimension d of vectors xi and β is potentially huge. The work
in [10], [11] introduces a branch-and-bound strategy which
simplifies the learning problem by using greedy coordinate
descent with an efficient selection of the most discriminative
subsequences. The main idea relies on bounding the gradient
of any subsequence based on its prefix, so that large parts
of the search (i.e., feature) space do not need to be explored.
Next, we describe the high level SEQL workflow and our pro-
posed adaptations to symbolic representations of time series.

Algorithm 1 shows the SEQL optimization process. The
crucial part of this algorithm is the search for the subsequence
with the largest gradient value, which is also the feature
that best discriminates the classification objective, given the
features already selected (line 4).

Algorithm 1 SEQL workflow

1: Set β(0) = 0
2: while !termination condition do
3: Calculate objective function L(β(t))
4: Find coordinate jt with maximum gradient value
5: Find optimal step length ηt
6: Update β(t) = β(t−1) − ηt ∂L

∂βjt
(β(t−1))ejt

7: Add feature at coordinate jt to feature set
8: end while

Algorithm 2 shows the search procedure for efficiently
finding the best feature in each iteration. The search starts
at unigrams (single symbols) and only explicitly generates
longer subsequences if the quality criterion does not prune
those candidate subsequences out.

B. Adaptations of SEQL for Time Series Classification

We describe here two adaptations of SEQL for working with
SAX representations. We chose this symbolic representation
due to its popularity, high accuracy of classifiers trained with
SAX and the quality that SAX-words are interpretable4.

SAX-SEQL: SEQL with SAX representations. As
described in Section III, the result of transforming a numeric
time series using SAX can be one of two types: sequence of
SAX-characters or sequence of SAX-words. SEQL directly
supports input sequences with characters as unigrams (single
tokens) or words as unigrams. Thus, we can directly use
SAX to transform numeric sequences to character or word

4SAX symbols at different positions in the sequence are directly comparable
to each other, and have a natural ordering which can be exploited during
learning.

Algorithm 2 Search for best subsequence in SEQL
1: τ ← 0
2: best feature← NIL
3: for all s′ ∈

⋃N
i=1{s|s ∈ si, |s| = 1} do . For each

unigram
4: GROW SEQUENCE(s′)
5: end for
6: return best feature
7:

1: function GROW SEQUENCE(s)
2: if µ(s) ≤ τ then return . µ(s) bound as in [10]
3: else if abs(gradient(s)) > τ then
4: best feature = s . Suboptimal solution
5: τ = abs(gradient(s))
6: end if
7: for all s′′ ∈ {s′|s′ ⊇ s, s′ ∈

⋃N
i=1 xi, |s′| = |s| + 1}

do
8: GROW SEQUENCE(s′′)
9: end for

10: end function

based sequences, and feed this representation to SEQL. In
this combo (called SAX-SEQL) we still need to optimize the
SAX parameters to obtain the SAX representation for which
SEQL provides the best accuracy. In our experiments section,
we investigate the SAXchars-SEQL and SAXwords-SEQL
approaches, with and without SAX parameter tuning. We
are particularly interested to investigate the influence of
representation choice (chars versus words) and subsequence
length (going beyond unigrams) on the accuracy of SAX-
SEQL.

SAX-VSEQL: Learning variable-length SAX-words.
Most prior work promotes the use of SAX-words and the
sliding window approach [8], [9], [18], [19]. Nevertheless,
the SAX-word length is always fixed across all time series.
This was identified as a weakness by prior research, since the
best word-length may depend on each individual time series
and the discriminative parts could be subunits of SAX-words.
We address this weakness by a hybrid approach that takes a
sequence of SAX-words as input, but treats it as a sequence of
characters from the perspective of SEQL. We also adapt the
SEQL implementation to search for char subsequences only
within each SAX-word, therefore allowing us to learn subunits
of SAX-words, which we call variable-length SAX-words.
We think this is an important adaptation as it allows to deal
with noise introduced during the transformation of numeric
to symbolic data. We call this method SAX-VSEQL and
show in our experiments that learning SAX-words subunits
improves the accuracy of SAX-SEQL.

SAX-VFSEQL: Learning fuzzy variable-length SAX-
words.

SEQL only supports exact matching of sequences, e.g. only
identical sequences are counted as matched sequences. In SAX



representations the symbols have an actual ordering which can
be exploited for learning fuzzy features. We believe this is
helpful in order to deal with potential noise introduced during
the Y-axis mapping of numeric to symbolic data, where for
example numeric values that are close to each other would
be mapped to different symbolic values, that are nevertheless
semantically close to each other, i.e., in the SAX symbolic
representation, a is semantically closer to b, than to c.

We modify the SEQL algorithm to work with a distance
mapping between characters, in order to learn fuzzy sub-
sequences. For example, we want SEQL to consider the
subsequence abb similar to subsequence bbb, since the only
different symbol in the two subsequences is at position one,
and a and b are close to each other in the SAX mapping. We
explain how we define the distance mapping between symbols
and subsequences, and show that the SEQL theoretical frame-
work still holds when introducing a distance function between
symbols, to enable learning fuzzy subsequences.

Definition 1 (Distance between two characters). The dis-
tance between two characters of a given alphabet is defined
by the difference of the character indexes in the alphabet.

d(c1, c2) = |index(c1)− index(c2)| (8)

For example: given the alphabet of 4 characters {a, b, c, d},
then d(a, b) = 1 while d(a, c) = 2.

Definition 2 (Distance between two sequences of same
length). Let s1 = a1a2 . . . aL and s2 = b1b2 . . . bL be the two
symbolic sequences of equal length. The distance between s1
and s2 is

D(s1, s2) =

L∑
i=1

d(ai, bi) (9)

Definition 3 (Distance between two sequences of different
length). Let s1 = a1a2 . . . aL and s2 = b1b2 . . . bl be the two
symbolic sequences with l ≤ L and SS(s1, l) be the set of all
s1 subsequences of length l. The distance between s1 and s2
is

D(s1, s2) = min
s1i∈SS(s1,l)

D(s1i, s2) (10)

Definition 4 (Fuzzy matching of sequences). Two sequences
are said to match if the distance between them is less than a
predefined threshold.

We can restrict the total distance between two
sequences to domain [0, 1], by dividing by an appropriate
factor (e.g., the maximum distance between symbols
multiplied with the sequence length). We can turn the
distance function into a similarity function by defining
Sim(s1, s2) = 1−D(s1, s2), Sim(s1, s2) ∈ [0, 1].

Anti-monotonicity property. The SEQL search approach
relies on the anti-monotonicity property of the frequency of
subsequences: the frequency of a subsequence is always equal
or lower than the frequency of any of its subsequences. To
simplify the argument, we focus on the prefix of a subse-
quence, rather than any of its subsequences. We show here

that the anti-monotonicity property still holds if instead of
exact match of features, we introduce a fuzzy match via a
distance function between subsequences. The main intuitive
reason why this works is that the matching distance increases
with sequence length, and conversely, the matching similarity
decreases with sequence length, so the same anti-monotonicity
argument can be used for similarity as for frequencies. We
prove the gradient bounding theorem for fuzzy SEQL learning
below.

As in [10] we assume the following properties for the loss
function:

1. ξ depends on yi, xi and β only through the classification
margin mi = yiβ

txi. We write ξ(y, x, β) = ξ(m).
2. ξ is a monotone decreasing function of the margin:

ξ′(m) ≤ 0.
3. ξ is convex and continuously differentiable.

The gradient of L(β) with respect to a coordinate βj is:

∂L

∂βj
(β) =

N∑
i=1

yixijξ
′(mi) + CR′α(βj) (11)

Theorem 1 (Bounding the search for the best coordinate
with fuzzy matching). For any loss function ξ satisfying
properties 1-3 and for any subsequence sp ⊆ sj , we can bound
the gradient at coordinate j (corresponding to sequence sj) ,
using only information about coordinate p (corresponding to
the occurrence of the prefix sp):

∣∣∣∣ ∂L∂βj (β)

∣∣∣∣ ≤ µ(sp) (12)

where

µ(sp) = max


∣∣∣∣∣∣

∑
{i|xip∈(0,1],yi=+1}

xipξ
′(mi) + CR′α(βj)

∣∣∣∣∣∣,
(13)∣∣∣∣∣∣

∑
{i|xip∈(0,1],yi=−1}

−xipξ′(mi) + CR′α(βj)

∣∣∣∣∣∣


and xij ∈ [0, 1] denotes fuzzy matching of feature sj (i.e.,
features that are close in similarity to sj , can contribute to
the gradient computation).

Proof. To prove the theorem we split the gradient computation
between the terms computed over positive examples and
negative examples, following similar arguments as in [10].
The main difference is that we now use a soft matching of
features, where instead of xij ∈ {0, 1} to denote an exact



match of feature sj , we have xij ∈ [0, 1], to denote fuzzy
matching of feature sj .

∂L

∂βj
(β) =

N∑
i=1

yixijξ
′(mi) + CR′α(βj) (14)

=
∑

{i|xij∈(0,1]}

yixijξ
′(mi) + CR′α(βj)

≤
∑

{i|,xij∈(0,1],yi=−1}

yixijξ
′(mi) + CR′α(βj)

≤
∑

{i|xip∈(0,1],yi=−1}

yixipξ
′(mi) + CR′α(βj)

=
∑

{i|xip∈(0,1],yi=−1}

−xipξ′(mi) + CR′α(βj)

The last inequality holds due to the anti-monotonicity prop-
erty of subsequence occurrence and similarity. Every sequence
which contains sj also contains its subsequence sp, thus:
xij ≤ xip, i = 1, . . . , N .

Similarly, we compute a bound for the positive examples:

∂L

∂βj
(β) ≥

∑
{i|xip∈(0,1],yi=+1}

xipξ
′(mi) + CR′α(βj) (15)

The two bounds on each class can be combined to get an upper
bound for the gradient at coordinate j, using only information
about coordinate p (for dealing with the penalty term, see
details in [10]):∣∣∣∣ ∂L∂βj (β)

∣∣∣∣ ≤max


∣∣∣∣∣∣

∑
{i|xip∈(0,1],yi=+1}

xipξ
′(mi) + CR′α(βj)

∣∣∣∣∣∣,
(16)∣∣∣∣∣∣

∑
{i|xip∈(0,1],yi=−1}

−xipξ′(mi) + CR′α(βj)

∣∣∣∣∣∣


The bound allows us to efficiently search for the coordinate
with the largest gradient, without having to expand the full
feature space and allowing fuzzy features to contribute to the
gradient computation.

Bound Quality. The upper bound given in Theorem 1
is tight, as the inequality in Equation 12 becomes equality
whenever the set of occurrences of the prefix is identical to
that of the longer sequence.

Algorithm Complexity. We discuss the total time com-
plexity of each component in the SAX-VFSEQL algorithm.
The SAX transformation with fixed parameters has O(NL)
complexity, where N is the number of time series and L is
the time series length. The training stage for VFSEQL has a
complexity of O(Nf), where N is the number of sequences
(time series) and f is the number of features that need to
be explicitly generated for gradient computation. Thus the
training stage of the SAX-VFSEQL combo has a total time

complexity of O(NL) + O(Nf). The test stage of SAX-
VFSEQL has a complexity of O(L) as it only requires a linear
scan of the time series.

Covergence Speed. The work of [22] presents a theoretical
analysis of the convergence speed of learning algorithms
that use greedy coordinate descent with the Gauss-Southwell
rule, for optimizing convex, continuous classification losses
(as implemented in VFSEQL). They show that this type of
algorithms have very fast convergence and are recommended
to alternative optimization strategies such as full gradient
descent or other coordinate descent approaches.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We conduct our experiments on the well-known UCR
archive [3] which is the main benchmark for most time series
classification studies. Detailed information on sizes of data sets
and length of time series can be found on the UCR website.
We also use the classification results listed there for 1NN-
Euclidean and 1NN-DTW, as baselines for the comparison
with our approaches. For studying the different variants of
our proposed methods we only use the binary datasets listed
in Table III. Once we select the best variant of our approach,
we compare to the state-of-the-art on 41 UCR datasets (which
also include the previous binary datasets) for which SAX-VSM
has published results [9].

Our implementation of SAX-VSEQL and SAX-VFSEQL
is written in C++. All methods are run on a Linux PC with
Intel Core i7-4790 Processor (Quad Core HT, 3.60GHz), 16GB
1600 MHz memory and 256 Gb SSD storage.

TABLE III
BINARY DATASETS.

Dataset Train Pos/Neg Test Pos/Neg Length
Coffee 28 14/14 28 15/13 286

Earthquakes 139 104/35 322 264/58 512
ECG200 100 31/69 100 36/64 96

ECGFiveDays 23 14/9 861 428/433 136
FordA 1320 681/639 3601 1846/1755 500
FordB 810 401/409 3636 1860/1776 500

Gun Point 50 24/26 150 76/74 150
Lighting2 60 20/40 61 28/33 637

MoteStrain 20 10/10 1252 675/577 84
Passgraph 69 36/33 131 64/67 364

SonyAIBORS 20 6/14 601 343/258 70
SonyAIBORSII 27 11/16 953 365/588 65
TwoLeadECG 23 12/11 1139 569/570 82

wafer 1000 97/903 6164 665/5499 152
yoga 300 137/163 3000 1393/1607 426

B. Parameters for SAX and SEQL

The SAX parameters include the window length l, word
length w and alphabet size a. The work in [9] introducing
SAX-VSM is the only one which invests substantial effort to
optimize these parameters. Most prior work disregards this
problem by fixing the parameters or only considering a small
subset of the parameter space. We think that because SAX-
VSM fails to address the false dismissal problem, it needs to



fully optimize the parameters to mitigate the negative effect
on accuracy. Unfortunately, this leads to very high training
cost for SAX-VSM, as also criticized in [4]. For all follow-up
experiments we set all SAX parameters of our SAX-SEQL
methods to fixed values, specifically a = 4, w = 16 and l =
0.2 ∗ L (where L is length of the time series). For SEQL
parameters, we use the default values set in the open source
code5. For SAX-VFSEQL we set the distance threshold to 1
(i.e., we allow only one character difference).

C. Accuracy

1) Without sliding window: In our first set of experiments,
we study different symbolic representations in combination
with SEQL. We start from raw data (i.e., no transformation)
to SAX characters transformation (Table IV). The tested
representations are as follows:
• Raw-SEQL The extreme version of our approach which

takes the numeric data as symbolic input, i.e., each
number is a symbol.

• DiscX(w)-SEQL Equal-width areas X-axis slicing only.
Sequence length w is the only parameter.

• DiscY(a)-SEQL Equal-probability areas Y-axis slicing
only. Alphabet size a is the only parameter.

• SAXchars(w,a)-SEQL SAX character sequences, i.e.,
both X and Y-slicing is applied. Parameters include
sequence length w and alphabet size a.

TABLE IV
CLASSIFICATION ERROR RATES WHEN COMBINING SYMBOLIC

REPRESENTATIONS WITH SEQL.

Dataset Raw DiscX(w) DiscY(a) SAXchars(w,a)
Coffee 0.4286 0.4643 0.1071 0.2143

Earthquakes 0.2019 0.1801 0.2453 0.2638
ECG200 0.63 0.64 0.23 0.25

ECGFiveDays 0.5006 0.5029 0.3136 0.338
FordA 0.4788 0.4874 0.2285 0.3602
FordB 0.4981 0.4884 0.2162 0.4686

Gun Point 0.4667 0.4933 0.06 0.1333
Lighting2 0.4754 0.541 0.3279 0.3443

MoteStrain 0.4609 0.4609 0.1581 0.1845
Passgraph 0.5115 0.5115 0.2366 0.4122
SonyAIBO 0.4309 0.4293 0.3694 0.3794

SonyAIBOII 0.6149 0.617 0.2875 0.3221
TwoLeadECG 0.4996 0.5004 0.1062 0.2564

wafer 0.6723 0.5357 0.016 0.0386
yoga 0.4837 0.3123 0.299 0.3293

The results (Table IV) show that directly taking numbers
as symbols is not generally a good idea. The accuracy is
surprisingly good for the Earthquakes dataset, but not for
the remaining ones. On the other hand, transforming numeric
values to symbols seems to provide some information about
the structure of time series that is useful for the classification
task. However, the X-slicing seems to be troublesome, as we
can observe that the accuracy decreases when applying the
full SAX transformation (SAXchars) compared with Y-slicing
only (DiscY).

5https://github.com/heerme/seql-sequence-learner

2) With sliding window: As discussed before, SAX presents
a number of issues when combined with sequence learn-
ing techniques. SAX without sliding windows is particularly
sensitive to both X and Y-slicing choices. In our case, we
address these issues using sliding windows (SAX-SEQL),
subsequences-of-subsequences learning (SAX-VSEQL) and
fuzzy matching (SAX-VFSEQL). Our next experiment shows
that these techniques have a positive impact on the classifica-
tion results. Table V shows that using a sliding window for
the SAX representation (SAXwords and SEQL, denoted as
SAX-SEQL) delivers better results than using the SAXchars
approach. It also shows that learning subunits of SAX-words
(done in SAX-VSEQL) and fuzzy matches (SAX-VFSEQL)
improves the results compared to SAX-SEQL, where the SAX-
word length is fixed across all time series.

TABLE V
CLASSIFICATION ERROR RATES FOR VARIANTS OF SAX-SEQL.

Dataset SAX-SEQL SAX-VSEQL SAX-VFSEQL
Coffee 0.0714 0.0 0.0357

Earthquakes 0.2081 0.2112 0.205
ECG200 0.25 0.26 0.18

ECGFiveDays 0.0743 0.0244 0.0174
FordA 0.4685 0.1486 0.1347
FordB 0.5069 0.2175 0.2134

Gun Point 0.04 0.0133 0.02
Lighting2 0.377 0.2951 0.2951

MoteStrain 0.1845 0.1597 0.1661
Passgraph 0.3511 0.2595 0.3128
SonyAIBO 0.2363 0.3694 0.3727

SonyAIBOII 0.3284 0.1123 0.0965
TwoLeadECG 0.021 0.0623 0.0527

wafer 0.0081 0.0071 0.0079
yoga 0.1977 0.2313 0.2033

D. Comparison to the state-of-the-art
In the next set of experiments which also include multi-

class datasets, we compare our best approach, SAX-VFSEQL,
with state-of-the-art techniques including, 1NN-ED, 1NN-
DTW [3], FastShapelets [17], SAX-VSM [9] and BOSS VS
[4]. The results for those methods are either taken directly
from publications or websites of the authors, or are reproduced
with code available online. We also include the most recent
results published in the study of Bagnall et al 2016 [14]
(that aims to reproduce all those methods), as they report
conflicting results for some of the methods. Figure 6 represents
visually the errors of SAX-VFSEQL paired with a state-of-
the-art method. Each point represents a dataset. Points below
the line mean that SAX-VFSEQL is more accurate than the
other method in the pair. Note that all parameters for SAX-
VFSEQL are fixed (as detailed in Section V-B), while the
state-of-the-art methods use fully optimized parameters, unless
indicated otherwise in their name. We observe that SAX-
VFSEQL clearly outperforms SAX-VSM when parameters
are fixed. When SAX-VSM uses optimized parameters, the
accuracy is comparable to that of our method, but as we
show in the next section, SAX-VSM requires high running
time for tuning parameters. We provide the code of our

https://github.com/heerme/seql-sequence-learner


method as well as accuracy and running time results for
all methods and datasets at https://github.com/thach/saxseql.
Among competing methods BOSS VS is most notable with
good accuracy and running time. Nevertheless, it is hard to
interpret the classification decisions of this method.

TABLE VI
STATE-OF-THE-ART CLASSIFIERS

Symbols Description
fixedSAX-VSM SAX-VSM with fixed parameters

(a = 4, w = 16, l = 0.2 ∗ L).
optSAX-VSM SAX-VSM with optimized parameters.

Results taken from the author’s GitHub.
SAX-VSM* Results reproduced by [14].
BOSS VS Results reproduced with the author’s implementation [4].
FastShapelets SAX-based method, results from [14].
1NN-Euclidean Results taken from the UCR Archive.
1NN-DTW Results taken from the UCR Archive.
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Fig. 6. SAX-VFSEQL accuracy against state-of-the-art classifiers.

E. Running time and scalability

In our study, we address the issue of parameter dependence
of SAX-based techniques, by proposing new SAX-SEQL
methods. Our aim is to reduce the running time by avoiding

expensive training of SAX parameters, but still preserve a
high accuracy. In Figure 6, we already showed that SAX-VSM
heavily depends on parameter optimization since its accuracy
drops substantially when tested with the same fixed set of
configurations as SAX-VFSEQL. On the other hand, the high
price of optimizing parameters for SAX-VSM can be seen
in Table VII which shows the increase in running time when
training data grows on the synthetic dataset CBF.

TABLE VII
SCALABILITY SAX-VFSEQL VS SAX-VSM ON CBF DATA. RUNNING

TIME (SEC) AS A FUNCTION OF TRAINING SET SIZE.

Size of training data SAX-VFSEQL SAX-VSM
60 10.97 3.4

120 22.19 13.65
240 47.22 55.57
480 96.56 265.14
960 176.65 1245.79
1920 303.96 5569.41

To further test the scalability of SAX-VFSEQL, we again
use CBF, and increase the size of training data as well as
the length of the time series. In line with the algorithm time
complexity, the running time increases linearly with the data
size.
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Fig. 7. Scalability with training size and length of time series. Running time
(sec) on CBF synthetic dataset.

VI. INTERPRETABILITY

Our proposed SAX-SEQL based methods result in in-
terpretable classifiers. The result of the training stage is a
linear classifier per class: a list of the most discriminative
subsequences identified for each class, sorted by the weight
optimized during training. We argue that these discriminative
features are potentially more useful than the SAX-word fea-
tures ranked based on tf.idf weights as in SAX-VSM [9]. There
is a lot of evidence [23]–[26] that discriminative classifiers

https://github.com/thach/saxseql


(e.g., SVM, Logistic Regression, RandomForests, NeuralNets)
are more accurate than generative ones. Generative methods
only learn from positive examples, while discriminative meth-
ods exploit both the negative and the positive examples during
learning. The SAX-VSM method is a generative classification
method as it builds characteristic tf.idf centroid vectors for
each class. There can be cases where the top tf.idf patterns are
the same for two or more classes, in which case generative
approaches, such as SAX-VSM, would fail to capture the
difference between the classes.

We note that since the SEQL output is in SAX symbolic rep-
resentation, it is necessary to map the patterns to their positions
in the original numeric data. This is a simple step that matches
the features to each window in the SAX transformation. To
discuss the interpretability of our methods, we analyze the
classifiers for two UCR datasets also discussed in [9]: Coffee
and Gun/Point. The Coffee dataset consists of time series from
two classes: Arabica and Robusta. Table VIII illustrates the
top-2 positive and negative features selected by the classifier.
Figure 8 illustrates the best and second best patterns found for

TABLE VIII
FEATURES SELECTED BY SAX-VFSEQL FOR THE COFFEE DATASET.
ARABICA IS THE POSITIVE CLASS, AND ROBUSTA IS THE NEGATIVE

CLASS.

Weight Feature
Class: Arabica

0.02891 bcddbdd
0.02696 bcdccdd

Class: Robusta
-0.02891 baaaacdcddc
-0.03179 baabacdddd

the Coffee dataset, for each class. Although the time series
selected from each class look quite similar at first glance,
the classifier captures the fine grained differences via the
selected features than can be mapped back to the original time
series to explain the decision taken by the classifier. The two
best patterns selected by SAX-VSM are shown in Table IX.
The patterns selected by the two methods seem to be quite
different, although when mapped to the original numeric time
series, they cover a similar region. The classification decision
in SAX-VFSEQL is driven directly by the linear combination
of feature weights. The Gun/Point dataset has time series

TABLE IX
FEATURES SELECTED BY SAX-VSM FOR THE COFFEE DATASET.

Weight Feature
Class: Arabica

0.08254 cdddddccccbaaaaa
0.07572 ccdddddccccbaaaa

Class: Robusta
0.08436 ddddddcddbaaaaaa
0.08264 abbcddcddccdcaaa

from two classes: Gun and Point. Table X illustrates the top-2
positive and negative features selected by the classifier, and
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Fig. 8. Best two patterns for each class in the Coffee dataset. Top is an
example from Arabica and bottom, an example from Robusta.

TABLE X
FEATURES SELECTED BY SAX-VFSEQL FOR THE GUN/POINT DATASET.

GUN IS THE POSITIVE CLASS, AND POINT IS THE NEGATIVE CLASS.

Weight Feature
Class: Gun

0.02994 dcaaabb
0.02688 dcabaaaaaaa

Class: Point
-0.02679 aabbbbbbbccd
-0.02839 bbbbbbbcbaa

Figure 9 illustrates these patterns on an example time series
from each class. The top-2 features learned by SAX-VFSEQL
agree with prior literature that studies these two datasets [9],
[27], [28]. Nevertheless, they are directly tied to our linear
classifier and enable us to deliver an explainable classification
decision to the user.

VII. CONCLUSION

We propose new structure-based time series classification
methods that are built on the popular SAX transformation and
two new adaptations of an efficient linear sequence classifier,
SEQL. Our aim is to deliver an efficient classifier, that is
yet accurate and interpretable. We achieve this by extending
the SEQL approach to support flexible fuzzy patterns, to
reduce the need for tuning SAX parameters. We show in our
experiments that the two proposed approaches, SAX-VSEQL
and SAX-VFSEQL, work well with fixed SAX parameters and
deliver efficiency and accuracy that is comparable to the state-
of-the-art. An advantage of the proposed methods is that the
resulting classifiers are very simple and interpretable, enabling
us to explain the classification decision as a simple linear
combination of extracted patterns.
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Fig. 9. Best two patterns for each class in Gun/Point dataset. Top is an
example from the Point class and bottom and example from the Gun class.
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