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Abstract 

Epidemiology and clinical studies provide clear evidence of the complex links between diet and 

health. To understand these links, reliable dietary assessment methods are pivotal. Biomarkers have 

emerged as more objective measures of intake compared to traditional dietary assessment 

methods. However, there are only a limited number of putative biomarkers of intake successfully 

identified and validated. The use of biomarkers that reflect food intake to examine diet related 

diseases represents the next step in biomarker research. Therefore, the aim of this study was to (1) 

identify and confirm biomarkers associated with dietary fat intake and (2) examine the relationship 

between those biomarkers with health parameters. Heatmap analysis identified a panel of 22 lipid 

biomarkers associated with total dietary fat intake in the Metabolic Challenge (MECHE) Study. 

Confirmation of four of these biomarkers demonstrated responsiveness to different levels of fat 

intake in a separate intervention study (NutriTech study). Linear regression identified a significant 

relationship between the panel of dietary fat biomarkers and HOMA-IR, with 3 lipid biomarkers (C16, 

PCaaC36:2 & PCaeC36:4) demonstrating significant associations. Identifying such links allows us to 

explore the relationship between diet and health, to determine whether these biomarkers can be 

modulated through diet to improve health outcomes. 
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Introduction 

Epidemiology and clinical studies have shown clear evidence that a number of diseases with high 

morbidity and mortality are linked with diet; examples of such diseases include diabetes, 

cardiovascular disease (CVD) and a number of cancers.1 Therefore, reliable dietary assessment 

methods are necessary when attempting to understand the complex links between diet and health. 

At present, the majority of epidemiologic studies rely on traditional self-reported dietary assessment 

methods, which are associated with errors such as under-reporting and recall bias/errors.2, 3 To 

address some of these errors there is an increased interest in using dietary biomarkers to provide a 

more objective measure of intake.4, 5  

Metabolomics has emerged as an important tool in dietary biomarker discovery. Applications of 

metabolomics to identify novel dietary biomarkers have in general taken three approaches (1) acute 

intervention studies with specific foods (2) cohort studies and (3) analysis of dietary patterns and 

metabolic profiles.6, 7 In this first approach of acute intervention studies participants consume 

specific food items, biofluids are collected, and metabolomics techniques are applied with potential 

biomarkers identified. In cohort studies, low and high consumers of a specific food are usually 

selected and their metabolomic profiles compared, which can result in the discovery of potential 

dietary biomarkers.6, 8 The third approach looks at the concept of using biomarkers to reflect dietary 

patterns, where profiles have been linked to habitual dietary patterns to identify nutritypes and 

biomarkers.9-12  

These approaches have led to the identification of a number of putative biomarkers of exposure to 

certain foods and beverages such as red meat,13, 14 citrus fruits,15-17 cruciferous vegetables,18, 19 

coffee20, 21 and sugar sweetened beverages.8 Examples of such biomarkers include proline betaine 

which has been associated with citrus fruit intake in a range of different studies. 15-18 However, to 

date there is a dearth of studies demonstrating the potential application and/or sensitivity of such 

biomarkers.  
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One potential application includes the use of biomarkers that reflect food intake to study diet 

related diseases. Recently Wittenbecher and colleagues used a metabolomic and statistical approach 

to link red meat consumption to type 2 diabetes (T2D) in the European Prospective Investigation into 

Cancer and Nutrition-Potsdam cohort. Habitual diet was assessed with validated semi quantitative 

food-frequency questionnaires and serum samples were analysed by high-throughput flow injection 

tandem mass spectrometry. Statistical analysis identified six serum biomarkers (ferritin, glycine, 

diacyl phosphatidylcholines 36:4 and 38:4, lysophosphatidylcholine 17:0 and hydroxyl-sphingomyelin 

14:1) to be associated with red meat consumption and diabetes risk in the study cohort. This is the 

first reported study to evaluate a large set of metabolites as potential mediators linking red meat 

intake and diabetes risk. Such results generate and underline experimentally testable hypotheses 

that can advise future dietary interventions in terms of design and biomarker assessment.22 From a 

public health perspective it is important to investigate modifiable risk factors that contribute to 

alterations in metabolite concentrations impacting disease risk.12 For the present study we focused 

on insulin resistance and the metabolic syndrome. Insulin resistance is the condition where the body 

does not respond correctly to insulin levels. It is commonly associated with obesity, hypertension 

and the MetS and often precedes the onset of T2D making it an important measure of metabolic 

health.  

The objective of the present work was therefore to (1) identify and confirm biomarkers associated 

with total dietary fat intake and (2) examine the relationship between those biomarkers with health 

parameters.  

Experimental Section 

Ethics statements 

Ethical approval for the MECHE study was obtained from the Research Ethics Committee in 

University College Dublin (LS-08-43-Gibney-Ryan). The NutriTech intervention study was approved 
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by the London Brent Ethics Committee (12/LO/0139). All procedures were conducted according to 

the principles expressed in the Declaration of Helsinki.  

(1) Discovery Study: MECHE Study 

Subjects 

A total of 214 healthy adults aged 18-60 years were recruited between 2008 and 2010 and provided 

their written informed consent. Good health was defined as the absence of a known chronic or 

infectious disease and supported by a series of fasting blood tests. Detailed information on the study 

has been previously published.23, 24 For the present study, participants (n=188) who had complete 

dietary data and lipidomic data were included (Table 1). 

Sample Collection 

Following a 12 hour overnight fast, serum and plasma samples were collected into serum tubes 

containing a clot activator coating, EDTA-coated and lithium heparin containing tubes for plasma 

isolation as previously described 23, 24. Serum samples were allowed time to clot (30 minutes) at 

room temperature. EDTA and lithium tubes were placed directly on ice. All blood samples were 

centrifuged at 1800 g for 15 minutes at a temperature of 4 ºC and 500 µl aliquots were stored at -80 

ºC until required for further analysis. For the lipidomic analysis lithium heparin samples were used.  

Anthropometric and Biochemical Parameters 

Height was measured using a wall-mounted Harpenden stadiometer and weight was measured on a 

calibrated beam balance platform digital body weight scale (SECA 888, Germany). Percentage body 

fat was measured using an air-displacement plethysmograph (BOD-POD GS system, UK) in 

accordance with the manufacturer’s instructions. Percentage body fat measurements were taken in 

fasting state.  
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Clinical chemistry analysis was performed using  an RxDaytona™ chemical autoanalyser (Randox 

Laboratories, UK) and Randox reagents. Details of the analytes and methods are as follows; total 

cholesterol (cholesterol oxidase); HDL-cholesterol (direct clearance); glucose (glucose oxidase) and 

triacylglycerol (lipase/glycerol kinase colorimetric) in plasma were measured by using a biochip array 

system (Evidence Investigator; Randox laboratories). Standard quality control procedures were 

followed on both analysers to ensure integrity of the data. The HOMA-IR was used as a proxy 

estimate of insulin sensitivity and was calculated as fasting insulin concentration (μU/mL) × fasting 

glucose concentration (mmol/L)/22.5. 

Dietary Data 

Dietary data was collected using the European Prospective Investigation into Cancer (EPIC) food 

frequency questionnaire (FFQ), which contains over 130 foods used to assess typical dietary intake 

over the previous year.25 A total of 25 food groups were examined which included: alcohol, bread, 

butter/margarine, cakes, cereal, cereals other, cheese, dairy other, drinks, eggs, fish, fruit, legumes, 

meat, meat products, milk, nuts/seeds, offal, potatoes, sauces, soups, sugar, tea, vegetables and 

vegetable dishes. Prior to analysis food group data was normalised using a logarithmic 

transformation. Food groups are reported in grams per day (g/d) and macronutrient intakes are 

reported as percentage total energy (% TE). 

Lipidomic Analysis 

Plasma (lithium heparin) samples were sent to BIOCRATES Life Sciences AG (Innsbruck, Austria) for 

targeted lipidomic analysis, where the TargetIDQ™ P150 kit and in-house lipid assays were used to 

identify and quantify phospholipid, sphingolipid, ceramide and acylcarnitine metabolites. 

Metabolites were quantitatively analysed by a high-throughput flow injection electrospray ionization 

tandem mass spectrometry (ESI-MS/MS) screening method. For further information please refer to 

O’Gorman et al 2014.9 
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(2) Confirmation Study (NutriTech Study): Demonstration of dose response of biomarkers 

associated with dietary fat intake in an independent study  

For the NutriTech study, participants were randomly assigned to one of five different treatment 

diets; red meat, fish, poultry, processed meat or a supplement and vegetarian option. Participants 

attended the National Institute for Health Research (NIHR)/Wellcome Trust Imperial Clinical 

Research Facility, Imperial College London for three days over three consecutive weeks. During this 

time participants consumed a standardised breakfast and their treatment meals at midday and 

evening. All meals were designed to provide similar intakes of dietary energy and fibre but 

macronutrient composition varied with carbohydrate decreasing from week 1 to week 3 and protein 

and fat intake increasing from week 1 to week 3: Week 1: 13% protein, 30% fat, 57% carbohydrate; 

Week 2: 20% protein, 35% fat, 45% carbohydrate and Week 3: 30% protein, 40% fat, 30% 

carbohydrate. For the purpose of this analysis we focused on the red meat group, with a particular 

interest in the increasing fat intake over the 3 weeks, to confirm our findings in the MECHE study. 

Ten participants were recruited to this red meat group. Eligibility criteria included males and females 

aged 18-65 years with a BMI of 18.5-35 kg/m2 and free from any chronic medical condition.  

Information on the participants characteristics is provided in Supporting Information Table S-1. A 

fasting plasma sample was collected on day 4 of each intervention week: 4 ml of blood was collected 

in an EDTA tube and 10ml of blood was collected in a lithium heparin tube. All blood samples were 

inverted 8 times and processed immediately. If samples were not processed immediately, they were 

kept on ice and processed within 30 minutes. Blood samples were centrifuged at 1800 x g for 10 

mins at 4°C and aliquoted in 0.5 ml x 4 aliquots and stored at -80°C for analysis. Plasma collected in 

EDTA tubes were used in this analysis.  

 

Plasma samples were sent to BIOCRATES Life Sciences AG (Innsbruck, Austria) for targeted lipidomic 

analysis where the TargetIDQ™ P180 kit was used to identify and quantify phospholipid, sphingolipid 
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and acylcarnitine metabolites. Metabolites were quantitatively analysed by a high-throughput flow 

injection electrospray ionization tandem mass spectrometry (ESI-MS/MS) screening method.   A total 

of 145 lipids were identified and quantified by ESI-MS/MS; 40 acylcarnitines, 14 

lysophosphatidylcholines (LPCs), 76 phosphatidylcholines (PCs) and 15 sphingomyelins (SM).  

Statistical Analyses 

Firstly, heatmap analysis was carried out using regularised canonical correlation analysis (rCCA)26 in 

the mixOmics package27 in r (version 3.1.3). The statistical package is used to assess correlations 

between two multivariate datasets, in this instance it was employed to visualise the relationship 

between participant’s lipid profiles and their nutrient intake with a particular focus on total dietary 

fat and saturated fatty acid (SFA) intakes (% TE).  Multiple linear regression analysis was employed to 

(1) examine associations between the lipids with total dietary fat (% TE) and SFA intake (% TE) and 

(2) to identify relationships between food groups and the identified panel of lipids. P-values of ≤ 0.05 

were considered statistically significant. Beta coefficients were reported and used to determine the 

direction of the relationships between lipids and nutrient intake/food groups. Our power 

calculations revealed that 188 participants had power to detect a 0.2 standard deviation change in 

the dependent variable for each standard deviation change in a predictor variable 

A linear regression model was used to evaluate the relationship between biomarkers associated with 

dietary fat intake and HOMA-IR. Participants were then grouped according to their metabolic risk. 

The groups were classified based on the National Adult Cholesterol Education Program Adult 

Population III (ATPIII) guidelines. The ATPIII definition does not give one risk factor greater 

precedence over another, but by having three or more risk factors present, an individual is deemed 

to have the metabolic syndrome (MetS). Under the definition three of the following five conditions 

must be present: central adiposity, high blood pressure, low high lipoprotein cholesterol (HDL-C), 

high fasting glucose levels and elevated triacylglyceride (TAG) levels.28 
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Group 1 (n=129) were those defined as having no risk, group 2 (n=53) were those that had some risk, 

which was defined as having 1-2 risk factors present. Group 3 were defined as those who have the 

MetS (>3 risk factors) (n=6). The panel of 22 biomarkers associated with dietary fat intake was then 

evaluated across the groups using an ANOVA and post hoc Bonferroni’s test to determine if any of 

these lipids were significantly different between groups. Further to this, an ordinal logistic regression 

model was used to determine which variables were associated with an increased risk of the MetS. 

The variables included in the model were the panel of 22 biomarkers associated with dietary fat, sex, 

age, BMI and total dietary fat intake (% TE). 

A repeated measures ANOVA was used to evaluate plasma metabolites from week 1 to week 3 in the 

NutriTech study controlling for gender and BMI. Multiple comparisons were adjusted for by using 

Bonferrroni’s correction. 

Results 

Identifying biomarkers associated with total dietary fat intake (Meche Study) 

A total of 229 lipids were identified and quantified by ESI-MS/MS (Biocrates p150 and lipidassay) ; 14 

acylcarnitines, 12 lysophosphatidylcholines (LPCs), 71 phosphatidylcholines (PCs), 9 

lysophosphatidylethanolamines (LPEs), 54 phosphatidylethanolamines (PEs), 3 phosphatidylglycerols 

(PGs), 14 phosphatidylserines (PS), 38 ceramides (Cer) and 14 sphingomyelins (SM).  

Heatmap analysis was performed with the use of rCCA to visualise correlations between 

participant’s lipid profiles with their nutrient intakes. A panel of 22 lipids were identified as having 

strong positive correlations with either total dietary fat intake (% TE) or SFA intake (% TE) (Figure 1). 

The lipid panel was made up of the following lipid species; 10 PCs, 8 acylcarnitines, 2 LPCs, 1 PS and 

1 Cer.   

A multiple regression model was used to determine if this panel of 22 lipids had the ability to predict 

total dietary fat intake (% TE) and SFA intake (% TE). The panel of lipid biomarkers had a significant 
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relationship with both total dietary fat intake (P 7.0 x 10-3) and SFA intake (P 1.0 x 10-3) (Supporting 

Information Table S-2), indicating that this panel of lipid metabolites are associated with  dietary fat 

intake and are potential biomarkers. 

Examination of the relationship between this panel of biomarkers associated with dietary fat and the 

food group intakes revealed a number of significant relationships (Table 2).  For example, meat and 

meat products had significant relationships with a phosphatidylcholine (PCaeC36:4), an acylcarnitine 

(C16) and a ceramide (NC-C19:0-OH.Cer2H). Milk and dairy products had significant relationships 

with a phosphatidylcholine (PCaeC38:4) and two acylcarnitines (C5 and C3). Interestingly vegetables 

had significant negative relationships with two potential dietary fat biomarkers (C18:0 and NC-C19:0-

OH.Cer2H). 

The response of the biomarkers associated with dietary fat intake to differing amounts of fat 

intake: Biomarker confirmation (NutriTech Study) 

Of the panel of 22 biomarkers associated with dietary fat intake identified in the MECHE study, 19 

were also measured in the NutriTech study. Examination of these revealed that  8 were found to be 

increasing as dietary fat intake increased from week 1 to week 3 in the intervention study (C3, C4, 

C5, PCaaC36:1, PCaaC40:4, PCaeC36:4, PCaeC36:5 and PCaeC38:5). Further analysis revealed that 

four metabolites were significantly increased (PCaeC36:4, PCaeC36:5, PCaeC36:3 and PCaeC38:5), 

demonstrating that these biomarkers were responsive to differential dietary fat intake (Figure 2). 

Exploration of the relationship between biomarkers associated with dietary fat intake and insulin 

resistance (HOMA-IR) and MetS risk score. 

The panel of 22 biomarkers associated with dietary fat intake had a significant association with 

HOMA-IR (P 1.0 x 10-6), with 3 lipid metabolites (C16, PCaaC36:2 and PCaeC36:4) having strong 

positive associations (Table 3). Participants in the Meche Study were then grouped according to their 

metabolic risk.28 The panel of dietary fat biomarkers were then evaluated across the groups. Of the 
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panel of 22 dietary fat biomarkers, 5 were significantly altered between the groups (Table 4), which 

included 3 PCs (PCaaC38:4, PCaaC40:4 and PCaeC36:4) and 2 acylcarnitines (C3 and C5). These lipid 

metabolites were all found to be significantly elevated in participants with a higher risk score for the 

MetS.  

An ordinal logistic regression model identified increasing age, BMI and PCaeC36:4 (Table 5) as 

contributors to an increasing risk of developing the MetS. Total dietary fat (% TE) was also included 

in the model; however it did not have a significant effect on the risk of developing the MetS, 

highlighting the importance of obtaining more sensitive measurements of dietary intake. 

 

Discussion 

The present study identified a panel of 22 lipid biomarkers which were related to total dietary fat 

intake. Importantly, four of these biomarkers demonstrated responsiveness to different levels of fat 

intake in an intervention study. Furthermore, it was demonstrated that this panel of biomarkers had 

a significant relationship with HOMA-IR and MetS scores.  

Dietary fat is an important component of the diet for a number of physiological functions.29, 30 

However an imbalance in lipid and fatty acid intake has been linked to adverse health effects such as 

increased risk of diseases for example CVD, diabetes and MetS.31, 32 For such reasons there is a need 

to identify robust validated biomarkers of total dietary fat intake, which at present is lacking.33 In our 

study we focused on a panel of 22 lipid metabolites that had strong positive correlations with both 

total dietary fat intake and SFA intake. Previous work in our research group also identified a number 

of PCs as potential biomarkers of dietary fat intake.9 The study identified a lipid pattern (LP1) that 

could discriminate between low and high consumers of dietary fat with good sensitivity and 

specificity. This lipid pattern included four long chain PCs among other lipid species. Indeed the long 

chain PCs were also implicated in a recent study, which together with a number of SM were found to 
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be increased in the serum of mice following a high fat diet (HFD) for 14 weeks compared to those on 

a standard chow diet.34 The present study makes a significant contribution by identifying a panel of 

biomarkers related to dietary fat intake. Importantly, it was demonstrated that the biomarkers 

respond to differing amounts of dietary fat intake in a controlled intervention. To the best of our 

knowledge, this is the first demonstration of a dose response to metabolomics derived dietary 

biomarkers in an independent study.  

The main contributors to total dietary fat intake in the Irish diet are fresh meat, meat products and 

dairy consumption.35, 36 Importantly, significant relationships between the panel of dietary fat 

biomarkers and key contributing foods were identified. In particular PCaeC36:4 had a significant 

positive association with meat (P 1.2 x 10-5) and meat products (P 4.73 x 10-7). Furthermore, others 

have also identified PCaeC36:4 as having an association with meat intake.22  A long chain PC 

(PCaeC38:4) and acylcarnitines (C3 & C5) were found to have significant positive associations with 

dairy in our study. Previous work has also demonstrated a relationship between PCaeC38:4 and high 

fat dairy products and subsequently identified a dietary pattern characterised with red meat, poultry 

and butter to be associated with a higher risk of T2D.12 

An important aspect of this research was the use of dietary biomarkers to link intake to 

health/disease parameters. This concept has been successfully explored in the field of epidemiology 

with a particular focus on environmental exposures; the model that has emerged is coined a “meet 

in the middle” approach which aims to identify intermediate biomarkers linking exposure and 

disease.37 Although, the approach used here was not identical, the fundamental concept of using the 

exposure biomarkers (in this case dietary exposure) to link to health/disease is similar. The 

identification of a link between dietary fat intake and HOMA-IR is significant as it provides an insight 

into which lipid metabolites and pathways are potential disease mediators and therefore could be 

modulated using dietary interventions to improve health outcomes. In terms of HOMA-IR and the 

MetS, PCs and acylcarnitines had significant positive relationships, with PCaeC36:4 linking dietary fat 



13 
 

intake with both HOMA-IR and the MetS. PCs together with the LPCs and SMs are the main 

components of cellular membranes and part of blood lipo-proteins and in recent times have been 

associated with a number of diseases including T2D.38 Mechanisms underlying the relationship 

between PCs and incidence of diabetes are still unclear. Acylcarnitines have traditionally been used 

to measure inborn errors of metabolism, but in recent years have been shown to be markers of 

insulin resistance.39, 40 The identification of these biomarkers that link diet and health is an important 

next step in biomarker research. Identifying such links allows us to investigate modifiable risk factors 

that are related to disease risk. 

The identification of these links between diet and health also confirms metabolomics as an 

invaluable tool for identifying biomarkers of metabolic diseases, which are required in order to 

understand the relationship between nutrition and such chronic disorders. The importance of the 

approach taken here is highlighted by the fact that no association between dietary fat intake 

estimated from an FFQ and HOMA-IR was observed.  The use of such intermediate biomarkers will 

have an important role in future studies. Support for this also comes from previous studies where 

biomarkers of certain foods demonstrated clear relationships with health outcomes not found when 

using traditional methods. For example in one such study, urinary sugars and plasma vitamin C, but 

not FFQ based estimates of intake were found to be associated with obesity.41  Subsequent work by 

these authors identified that the risk of ischaemic heart disease was associated with plasma vitamin 

C (P < 0.001) and intake of vitamin C and fruit and vegetables assessed by a food diary (P quintile 

trends <0.001, 0.001), however this association was not captured by the FFQ (P quintile trends 

0.923, 0.186).42  

The strengths of this study include the fact that a confirmation step was included for the biomarkers 

in an independent study.  The demonstration of a dose response adds significant credibility that the 

biomarker is associated with intake. Furthermore the wide range of lipids profiled is also a strength 

of the study. The participants in the discovery study and the confirmation study were predominately 

of Caucasian origin and future work is needed to validate these markers in other populations. 
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Conclusions 

In conclusion, this study has identified a panel of potentially important total dietary fat biomarkers, a 

number of which were then confirmed in a dose response intervention study. An important aspect 

of this work was the demonstration of a link between certain biomarkers and health parameters. 

Such an approach proves very useful in Identifying links between diet and health, thus allowing us to 

explore the relationship between the two and to determine whether lipid biomarkers can be 

modulated through diet to improve health outcomes.  
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Figure Legends 

Figure 1: Heatmap analysis performed using regularised canonical analysis showing the association 

between plasma lipid profiles and nutrient profiles (% TE). The x-axis represents the measured lipids 

and the y-axis the nutrient profiles. Correlation strengths are indicated by the colour key. The panel 

of dietary fat biomarkers are highlighted by the box. SFA: saturated fatty acid; TotalFat: Total dietary 

fat; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid. ESI/MS-MS: Electrospray 

ionisation tandem mass spectrometry. 

Figure 2: Dose response of lipid metabolites significantly increasing from week 1 to week 3 in the 

NutriTech study following an increase in dietary fat. Data are averages (µM) ± SEM (n=10). * 

indicates a P-value <0.05 for repeated measures anova controlling for gender and BMI. 
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Figure 2: Dose response of lipid metabolites significantly increasing from week 1 to week 3 in the 

NutriTech study following an increase in dietary fat. Data are averages (µM) ± SEM (n=10). * 

indicates a P-value <0.05 for repeated measures anova controlling for gender and BMI. 
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Tables 

 

Table 1: Anthropometric and biochemical parameters of the study population 

 Male (n= 90) Female (n= 98) P-value 

Age (years) 32 ± 10 32 ± 12 ns 
Weight (kg) 82.1 ± 14 67.06 ± 14.5 1.18 x 10-11 
BMI (Kg m-2) 26.3 ± 4 24.4 ± 5.2 6.6 x 10-3 
Body fat (%) 20.5 ± 9.1 31 ± 9.4 4.42 x 10-12 
glucose (mM) 4.86 ± 0.45 4.77 ± 0.39 ns 
Insulin (µIU ml-1) 7.43 ± 6.74 7 ± 4.14 ns 
Triacylglycerol (mM) 1.19 ± 0.83 0.89 ± 0.4 3.0 x 10-3 
Total cholesterol (mM) 4.59 ± 1.02 4.55 ± 0.88 ns 
HDL-c (mM) 1.35 ± 0.31 1.72 ± 0.37 4.14 x 10-12 
LDL-c (mM) 2.69 ± 0.93 2.43 ± 0.78 4.42 x 10-2 
HOMA-IR 2.01 ± 1.76 1.8 ± 1.32 ns 

Data are presented as means ± standard deviation (SD); BMI: body mass index; HDL-c: high-density 
lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; HOMA: homeostasis model 
assessment; ns: not significant  
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Table 2: The relationship between biomarkers associated with dietary fat and food group intakes 

Food Group (g/d) Lipid Metabolites Β-coefficient P-value 

Alcohol C8:1 
LPCaC20:3 

0.178 
0.146 

1.4 x 10-3 
4.3 x 10-2 

Butter & Margarine C8:1 0.189 9.0 x 10-3 
Cereal Other C3 0.286 1.35 x10-4 
Dairy Other PCaeC38:4 

C3 
0.199 
0.211 

2.8 x 10-2 
8.0 x 10-3 

Drinks NC-C19:0-OH.Cer2H 
PCaeC36:3 

0.156 
0.283 

2.9 x 10-2 
1.0 x 10-3 

Eggs C5 0.243 1.0 x 10-3 
Fish PCaeC36:1 

PCaeC36:5 
0.529 
0.284 

7.0 x 10-6 

2.0 x 10-3 
Meat PCaeC36:4 

C16 
0.695 
0.189 

1.2 x 10-5 
6.0 x 10-3 

Meat Products PCaeC36:4 
NC-C19:0-OH.Cer2H 

0.806 
0.261 

4.73 x 10-7 
9.9 x 10-5 

Milk PCaeC38:4 
C5 

0.254 
0.178 

5.0 x 10-3 
1.3 x 10-2 

Offal C3 0.36 2.0 x 10-6 
Potatoes C8:1 

PSaeC36:2 
0.210 
0.206 

3.0 x 10-3 
4.0 x 10-3 

Sauces C8:1 0.231 1.0 x 10-3 
Vegetables C18:0 

NC-C19:0-OH.Cer2H 
-0.192 
-0.187 

7.0 x 10-3 
9.0 x 10-3 

g/d: gram per day; ns: not significant 
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Table 3: The relationship between biomarkers associated with dietary fat intake and HOMA-IR 

Dietary fat Biomarker β-coefficient P-value 

C16 0.311 1.0 x 10-3 
PCaaC36:2 0.378 2.62 x 10-5 
PCaeC36:4 0.794 1.75 x 10-6 

Overall model using the panel of 22 dietary fat biomarkers: P 1.0 x 10-6  
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Table 4: The relationship between biomarkers associated with dietary fat intake and metabolic 

risk 

Dietary fat biomarker Group 1 (n=129)  Group 2(n=53) Group 3 (n=6) P-value 

C3 0.29 ± 0.13 0.31 ± 0.093 0.46 ±0.11,2 5.8 x 10-5 
C4 0.2 ± 0.12 0.18 ± 0.05 0.22 ± 0.09 ns 

C5 0.1 ± 0.033 0.11 ± 0.033 0.15 ± 0.041,2 1.7 x 10-3 
C16 0.09 ± 0.02 0.09 ± 0.02 0.11 ± 0.02 ns 

C18 0.04 ± 0.01 0.04 ± 0.01 0.05 ± 0.02 ns 
C8:1 0.11 ± 0.06 0.13 ± 0.06 0.15 ± 0.07 ns 
C14:1 0.18 ± 0.05 0.18 ± 0.05 0.17 ± 0.03 ns 

C18:1 0.12 ± 0.03 0.12 ± 0.03 0.13 ± 0.01 ns 

PCaaC36:1 40.61 ± 10.79 39.9 ± 12.2 41.94 ± 6.84 ns 

PCaaC36:2 227.85 ± 50.21 229.08 ± 51.82 265.67 ± 37.33 ns 

PCaaC38:4 87.79 ± 21.793 93.16 ±25.073 118.42 ± 25.661,2 3.85 x 10-3 
PCaaC40:4 2.8 ± 0.723 2.83 ± 0.73 3.78 ± 1.261,2 6.38 x 10-3 

PCaeC36:1 6.69 ± 1.42 6.46 ± 1.69 5.44 ± 0.62 ns 

PCaeC36:3 8.29 ± 1.84 7.92 ± 1.87 7.81 ± 0.81 ns 

PCaeC36:4 15.99 ± 3.663 16.33 ± 3.91 20.12 ± 2.563 3.0 x 10-2 

PCaeC36:5 10.94 ± 3.04 11.21 ± 3.5 12.42 ± 1.67 ns 

PCaeC38:4 12.55 ± 2.66 12.34 ± 2.77 12.56 ± 1.5 ns 

PCaeC38:5 17.123 ± 3.63 17.07 ± 3.92 19.3 ± 1.65 ns 

LPCaC20:3 2.04 ± 0.75 1.83 ± 0.64 1.93 ± 0.4 ns 

LPCaC20:4 5.48 ± 2.01 4.89 ± 1.53 4.85 ± 1.28 ns 

NC-C19:0-OH.Cer 2H 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 ns 

PSaeC36:2 0.004 ± 0.003 0.004 ± 0.003 0.004 ± 0.004 ns 

Group 1: No risk of metabolic syndrome; Group 2: Some risk factors present (1-2); Group 3: 
Metabolic syndrome present (> 3 factors). ns: not significant 
1 Significance to Group 1; 2 Significance to Group 2, 3 Significance to Group 3 
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Table 5: An ordinal logistic regression model using the panel of biomarkers associated with dietary 

fat intake, sex, age, BMI and total dietary fat intake (% TE) to determine which variables are 

associated with an increased risk of the MetS 

Variable Β-coefficient Standard error (SE) P-value 

Age 0.64 0.02 6.9 x 10-3 

BMI 0.14 0.05 8.3 x 10-3 
Total dietary fat intake 
(% TE) 

-0.02 0.04 ns 

C3 5.57 3.33 ns 
C4 -8.31 3.34 1.3 x 10-2 
C5 2.34 7.72 ns 
C16 7.4 18.81 ns 
C18 8.02 27 ns 
C8:1 2.64 3.59 ns 
C14:1 -3.35 6.75 ns 
C18:1 1.66 13.83 ns 
PCaaC36:1 0.02 0.04 ns 
PCaaC36:2 0.01 0.01 ns 
PCaaC38:4 0.03 0.03 ns 
PCaaC40:4 -0.32 0.66 ns 
PCaeC36:1 -0.78 0.32 1.6 x 10-2 
PCaeC36:3 -0.14 0.3 ns 
PCaeC36:4 0.41 0.19 3.3 x 10-2 
PCaeC36:5 -0.08 0.16 ns 
PCaeC38:4 -0.04 0.25 ns 
PCaeC38:5 -0.21 0.19 ns 
LPCaC20:3 0.11 0.57 ns 
LPCaC20:4 -0.64 0.26 1.5 x 10-2 
NC-C19:0-OH.Cer 2H -42.24 165.63 ns 
PSaeC36:2 48.29 75.73 ns 

BMI: body mass index; ns: not significant 
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Supporting information  

 

Supporting Table S-1: NutriTech food intake study participant’s characteristics 

 

 

 

 

 
 

 

 

 

 

 

 

1
Data are Mean ± SD.  

 

 

  

  Characteristic 

5 (M) 5 (F) Gender 

58 ± 41 Age (y) 

90.9 ± 17.7 Weight (kg) 

1.7 ± 0.1 Height (m) 

30.9 ± 3.2 BMI (kg/m2) 
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Supporting Table S-2: Multiple regression models to evaluate the overall relationship of the lipid 

panel with total dietary fat intake and SFA intake.  

Dependent Variable Independent Variables P-Value 

Total dietary  fat intake (% TE)  C3, C4, C5, C8:1, C16, 
C18, C14:1, C18:1, 
PCaaC36:1, PCaaC36:2, 
PCaaC38:4, PCaaC40:4, 
PCaeC36:1, PCaeC36:3, 
PCaeC36:4, PCaeC36:5, 
PCaeC38:4, PCaeC38:5, 
LPC20:3, LPC20:4, N-
C19:0(OH)-Cer(2H), 
PSaeC36:2 
 

7.0 x 10-3 

SFA intake (% TE) C3, C4, C5, C8:1, C16, 
C18, C14:1, C18:1, 
PCaaC36:1, PCaaC36:2, 
PCaaC38:4, PCaaC40:4, 
PCaeC36:1, PCaeC36:3, 
PCaeC36:4, PCaeC36:5, 
PCaeC38:4, PCaeC38:5, 
LPC20:3, LPC20:4, N-
C19:0(OH)-Cer(2H), 
PSaeC36:2 
 

1.0 x 10-3 

SFA: Saturated fatty acids 
Regression method used: ENTER 
% TE: Percentage of total energy 

 

 


