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Abstract

Energy cost-aware scheduling, i.e., scheduling that adapts to real-time energy price volatility, can save large energy
consumers millions of dollars every year in electricity costs. Energy price forecasting coupled with energy price-
aware scheduling, is a step towards this goal. In this work, we study cost-aware schedules and the effect of various
price forecasting schemes on the end schedule-cost. We show that simply optimizing price forecasts based on classical
regression error metrics (e.g., Mean Squared Error), does not work well for scheduling. Price forecasts that do result in
significantly better schedules, optimize a combination of metrics, each having a different impact on the end-schedule-
cost. For example, both price estimation and price ranking are important for scheduling, but they carry different
weight. We consider day-ahead energy price forecasting using the Irish Single Electricity Market as a case-study,
and test our price forecasts for two real-world scheduling applications: animal feed manufacturing and home energy
management systems. We show that price forecasts that co-optimize price estimation and price ranking, result in
significant energy-cost savings. We believe our results are relevant for many real-life scheduling applications that are
currently plagued with very large energy bills.
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1. Introduction

Energy cost-aware schedules are designed around a vari-
able energy price tariff, and in their simplest form, aim to
place energy intensive tasks at time slots with low energy
price, therefore saving energy costs. In this paper, we an-
alyze applications where the schedule is built day-by-day
based on a day-ahead electricity price forecast, and evalu-
ated using the true price. This corresponds to a scenario
whereby a forecast price is available 24 hours in advance,
but the price paid will be the actual market price. Since
for many applications executing the schedule requires sig-
nificant preparation work, we assume that we cannot con-
tinuously reschedule based on the current, actual, price.

In this paper we focus on two main aspects critical for
understanding the value of designing cost-aware sched-
ules. The first aspect regards how much cost can be
saved by designing a cost-aware schedule based on a day-
ahead price forecast. Electricity prices tend to fluctuate
a lot during the trading day, for example in Ireland, an
increased level of wind-generated energy has resulted in
increased price volatility. Peak prices can be as much
as 15 times higher than the average price (e.g., in 2010,
max price of e766.35/MWh, average price e53.85/MWh),
while the cheapest time periods can have negative prices,
due to electricity exports (e.g., in 2010, min price of -

e88.12/MWh). We study a series of baselines for assess-
ing the benefit of designing schedules that are aware of
the price of energy at each time slot.

The second aspect focuses on the impact of price fore-
cast properties on the end schedule-cost. In particular,
we analyze how optimizing a price forecast for different
error metrics affects scheduling-costs. Our previous work
[1] has shown that even drastically improving price es-
timation based on regression error metrics (e.g., Mean
Squared Error, in short, MSE), is not enough to guarantee
schedule-cost savings. Here, we discuss how to optimize
price forecasts such that the gains with respect to price
forecasting metrics are observed in the end scheduling-
cost. We show that both price estimation and ranking
of time periods with respect to price (e.g., from cheap-
est to most expensive) should be co-optimized to reduce
scheduling-cost.

In this work we focus on the Irish Electricity Market
and analyze a range of price forecasts and their suitabil-
ity for cost-aware scheduling. Currently most consumers
in Ireland pay a fixed tariff (i.e., one electricity meter,
one constant price no matter the time of day or season),
day-night tariffs (i.e., two meters, cheaper rate between
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23h-8h), or time-of-use tariffs1 (smart meters, price de-
pends on the time of day and season) [2]. Nevertheless,
these tariff plans are not really linked to the real-time
electricity market price (they are pre-computed and fixed
well in advance), and the market price volatility is ab-
sorbed by the electricity supplier. Since electricity prices
are increasing sharply2, industrial consumers and electric-
ity suppliers have an added incentive to move to real-time
market prices [3]. Real-time pricing offers a huge potential
benefit for large electricity consumers that can exploit the
price volatility for their operations, but the risks of paying
the market price are not well understood. In this paper,
we consider the hypothetical scenario where consumers
pay the real-time electricity price in the Irish market, and
study the effect of building cost-aware schedules based on
price forecasts. For a review of electricity price forecasting
for other markets please consult [4].

In our previous study [1], we showed that the best
price forecast with respect to price estimation (e.g., MSE),
has the worst scheduling cost when employed in a man-
ufacturing scheduling application. Here, we analyze the
reasons behind this behaviour. We show that forecasts
co-optimizing price over-estimation, under-estimation and
Spearman rank correlation lead to significant scheduling-
cost savings. Furthermore, these three metrics have dif-
ferent impact on the end schedule-cost, and we show how
to learn metric importance-weights from a set of sample
price forecasts and their scheduling cost.

Most of the forecasts investigated in this paper (other
than very naive ones), result in scheduling cost not worse
than 4% as compared to using the true price. This is lower
than the mark-up required by suppliers for using fixed and
time-of-use tariffs. Our best price forecasts further reduce
this margin by 0.5-2% for the scheduling applications ana-
lyzed. The end metric for measuring success for the price
forecasts analyzed, is how much cost-saving a particular
price forecast leads to, when plugged into a cost-aware
scheduling application.

2. Related Work

Data centres and manufacturing plants are large en-
ergy consumers, in critical need to reduce their electricity
costs, which account for a big part of their operational
cost (electricity accounts for 30-50% of operating costs)
[5, 6, 7]. Understanding how to optimize price forecasts to
deliver good cost-aware schedules is critical for this goal.
A typical data centre can consume as much energy as a
medium-sized town3.

1http://www.cer.ie/docs/000117/

cer13152-time-of-use-tariffs.pdf
2http://ec.europa.eu/energy/doc/2030/20140122_swd_

prices.pdf
3New York Times. http://goo.gl/6v0AAG

A single pellet press machine in the manufacturing
plant used as a case-study in this paper (a real plant,
COSYTEC, UK) has an average power rating of about
375kW, and there are 2-6 such machines. Electricity
prices are also increasing: the cost for industrial con-
sumers in Europe4 has increased by almost 50%, from
e0.06/kWh in 2005 to e0.094/kWh in 2013. Therefore,
a considerable amount of recent work has focused on re-
ducing the overall energy consumption, e.g., by designing
energy-volume-aware operation schedules.

The main goal in this line of work is to reduce the
overall amount of energy consumed, while minimizing im-
pact on service quality. Examples of such work include
[8, 9, 10] that propose technologies such as speed scalable
processors, dynamic power-down and power-up mecha-
nisms, new cooling technologies, replacing and consolidat-
ing applications to decrease the number of running servers,
and multi-core servers. A review of energy-efficient algo-
rithmic developments can be found in [11].

In contrast to energy volume-aware scheduling, energy
cost-aware scheduling does not focus on reducing the
amount of energy consumed per unit of work, but rather
on reducing the cost for doing the work [12]. A num-
ber of recent papers focus on reducing both power usage
and power cost by taking real-time energy price into con-
sideration, or by considering various price tariffs such as
day-night and time-of-use tariffs [13, 14, 15]. This work
has mostly shown that allowing the schedule to consider
time-variable prices can lead to significant savings as com-
pared to a price-unaware schedule, but has assumed that
knowledge of the actual price is available (or other sim-
ple baselines), rather than analyzing the effect of price
forecasting model properties on reducing schedule-cost.

In our previous work [1] we started to study the prob-
lem of building schedules based on a day-ahead price fore-
cast and assessing potential schedule-cost savings. We
have pointed out that directly optimizing price forecasts
for minimizing price estimation error is misleading, and
can lead to increased schedule-cost. We established that
different types of error in the price forecast (e.g., over-
estimation vs under-estimation) have different effects on
the schedule, but we stopped short of recommending ways
to account for this (or other metrics) in order to build bet-
ter schedules. In this paper we present strategies to build
price forecasts directly aimed at reducing scheduling-cost.
We show that accounting for price estimation error is not
enough, and price ranking should also be considered. The
price forecasts that co-optimize these two types of er-
ror metrics have a better scheduling-cost than previously
achieved. In summary, we present an analysis of the Irish
electricity market, build scheduling-driven day-ahead elec-

4Eurostat. http://goo.gl/h11Hol
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tricity price forecasts for this market, and show the posi-
tive effect of employing these forecasts for two scheduling
applications (animal feed plant and home energy manage-
ment system).

3. Electricity Price Forecasting for the Irish Mar-
ket

The Irish electricity market is an auction-based mar-
ket, with spot prices being computed every half-hour of
a trading day. Under EU initiatives Ireland has an obli-
gation5 to supply at least 20% of its primary energy con-
sumption6 from renewable sources by 2020 [16]. The Irish
government has set ambitious targets in 2007, for its en-
ergy usage: no oil in electricity generation by 2020, 15% of
electricity from renewable resources by 2010, and 33-40%
by 2020. Wind is the most abundant renewable energy
source available in Ireland [16, 17]. However, introducing
such renewable energy sources increases volatility in the
market, making energy price prediction and cost-efficient
planning considerably more challenging.

The methodology for calculating the price in the Irish
all-island market, up to the end of 2011, was as fol-
lows: every half-hour of the trading day, the Single Elec-
tricity Market Operator (SEMO)7 calculates the System
Marginal Price (SMP). The SMP has two components:
the Shadow Price representing the marginal cost per 1MW
of power necessary to meet demand in a particular half-
hour trading period, within an unconstrained schedule,
e.g., no power transmission congestions; and the Uplift
component, added to the Shadow Price in order to ensure
the generators recover their total costs, e.g., start-up and
no-load costs [18].

One day ahead of the trade-day the generators have
to submit technical and commercial offer data: incremen-
tal price-quantity bids and technical specifications such as
generator start-up costs, maximum capacity, etc. Gener-
ator units are scheduled in merit order according to their
bids to meet the existing load. The SMP is bounded by
a Market Price Cap (e 1000/MWh) and a Market Price
Floor (e -100/MWh), which are set by the regulatory au-
thorities.

Two runs of the Market Scheduling and Pricing Soft-
ware are particularly relevant for our work. The Ex-Ante
(EA) run is carried out one day prior to the trade date
which is being scheduled and as such uses entirely forecast
wind and load data. A schedule of half-hourly forecasted
SMP, shadow price, load and wind generation is produced
by the market operator (SEMO) for the coming trade-day.

5http://www.eirgrid.com/media/

EirGridAnnualRenewableReport2013.pdf
6http://europa.eu/rapid/press-release_IP-08-80_en.htm
7http://www.sem-o.com

The Ex-Post Initial (EP2) run is carried out four days af-
ter the trade date which is being scheduled, and utilizes
actual wind and load data. The system marginal prices
produced in the EP2 run are used for weekly invoicing and
the SMP determined in the EP2 run for a given half hour
trading period is the price applicable to both generators
and suppliers active in such a trading period.

In this section we discuss day-ahead price forecasting
models for the Irish electricity market, in particular, the
factors influencing the price and data collection.

3.1. Data Collection and Analysis

We begin our study of the Irish electricity market by
analyzing the price and load (i.e., demand) profile from
January 2009 to June 2011. Figure 1 shows the actual8

half-hourly price (top frame, black) and demand (bottom
frame, gray). We note that the load profile is fairly simi-
lar over time, showing clear periodicity, with higher load
in winter. The price is much more volatile, with high
variations during both cold and warm months. Further-
more, price volatility and magnitude increased consider-
ably from 2009 to 2011.

Table 1 shows statistics about the price in this period.
We observe an increasing median and average price, as
well as increased price volatility (standard deviation) over
time. This could be explained by increasing fuel prices and
the ramp-up of wind-generated power, as well as other fac-
tors such as a higher percentage of unscheduled generator
outages in 2011.

Table 1: Statistics of the Irish SMP (e /MWh) for 2009 to mid-2011.

Year Min Median Mean Stdev Max

2009 4.12 38.47 43.53 24.48 580.53

2010 -88.12 46.40 53.85 35.49 766.35

2011 0 54.45 63.18 35.79 649.48

Figure 2 offers a closer look at the price versus load
pattern in 2011, for the first week of the year and the
week with the maximum price up to mid-2011. The daily
periodicity of the load, and the volatility of the price can
be seen more clearly here.

3.2. Methodology for Building Price Forecasts

SEMO provides a web interface for public access to the
historical Single Market Price (SMP), Shadow Price and
load, back to January 2008. In November 2009, SEMO
started providing day-ahead half-hourly actual (histori-
cal) values and forecasts for load, SMP, Shadow Price and

8http://www.sem-o.com/marketdata/
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Figure 1: Half-hourly price (top-black) and demand (bottom-gray) from January-2009 to June-2011. The X axis represents the delivery
time (every half-hour of a trading day). The Y axis for the top-black plot represents the SMP in e /MWh and for the bottom-gray plot,
the Load in MWh. Missing data in the Load plot is missing from the SEMO tables.
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Figure 2: Half-hourly price (top-black) and demand (bottom-gray) for two weeks in 2011.
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wind-supply. Due to the later availability of more com-
plete data (e.g., wind forecasts beginning 2010), we use
data starting January-2010 to June-2011 for training and
evaluating price forecasting models. We use the year 2010
for training our price forecasting models. Three months
of 2011 (January, March and May) are used for validation
(i.e., calibrating model parameters), and another three
months of 2011 (February, April and June) for testing.
The latter constitutes 88 test days.

The choice of training, validation and test is made in
order to respect the time dependency in which we train
on historical data of the past and forecast prices into the
future. Months from different seasons were chosen for
the test data, to avoid the bias of forecasting prices for
summer or winter months exclusively (since prices in the
winter tend to be more volatile than prices in the sum-
mer). Due attention was paid to the fact that in the Irish
market, the actual values for SMP, load, etc., are made
available only four days after the tradeday, thus for pre-
diction we can only use historical data with a gap of four
days back into the past from the current day. All evalua-
tions of our models and comparisons to the SEMO price
forecasts are done on the three test months that are not
otherwise used in any way during training or validation.

We began our analysis with simple models, using only
the historical SMP (i.e., the actual price values in the
past) for predicting the SMP of the next tradeday. We
then gradually introduced information about the Shadow
Price, load and wind-generation and studied the effect of
each of these new variables on the prediction quality. In
order to estimate the expected supply, we have extracted
information on the daily generator bids and planned gen-
erator outages available from SEMO and Eirgrid9. Infor-
mation about demand and supply is important since price
peaks are typically an effect of the mismatch between load
and supply. Our data integrity checks revealed missing
days/hours in the original SEMO data. We have filled in
the missing half-hours by taking the data of the closest
half-hour.

The data collected was available in different granularity
(e.g., wind-supply obtained from Eirgrid was sampled ev-
ery 15 mins) and units (Eirgrid wind-supply was in MW vs
SEMO in MWh); we aggregated it to half-hourly granular-
ity and converted the data to the same unit (MWh). Since
we rely on SEMO forecasts for building our models, we
estimated the SEMO forecast quality for each of the vari-
ables involved: load, wind, shadow price, and SMP. Our
evaluation of SEMO’s forecasts showed that the load fore-
cast is most reliable, followed by shadow price, SMP and
wind (we compared forecasts using the normalized MSE).
In our models we use local forecast-quality-estimates as

9EirGrid http://www.eirgrid.com

additional features. Table 2 summarizes the features we
used for building our day-ahead price forecasting models.

Table 2: Features used for building price forecasts.

Single Market Price (SMP)

Shadow Price (SHP)

Load (i.e., Demand)

Supply: Wind, Generator Bids, Planned Outages

Estimated quality of SEMO forecasts

3.3. Price Forecasting Models

We use machine learning to build price forecasting models
and present here two of the models that worked best in
our experiments (based on our prior work [1]).

The first model, FM1, aims to directly predict the price
using the available features. This approach follows the
classical line of price prediction in international electricity
markets where the main idea is to use historical data, e.g.,
past prices, load, and supply, for training a price model
for the next trade-day. From the time series data, we
extract regression vectors as follows. For each half-hour
of a tradeday, we take the actual SMP as a prediction
target and use historical data for the same half-hour in
the past as features. For example, if the SMP on 1st of
January 2010, 7 AM, is e 31.04/MWh, we take this as
a learning target and the SMP at 7AM of D past days
as features (in this case the most recent historical data
is from 27 December 2009, due to the 4 days gap). The
number of historical days D is a parameter of the model
and is calibrated using the validation dataset.

Since we also have access to day-ahead forecasts of SMP,
shadow price, load, wind and other-supply, we study those
as additional features. We have additionally investigated
weather and calendar information (e.g., weekend, bank or
school holidays) as features, but these have not increased
the quality of the model. This may happen since calendar
and weather data is already factored into the load and
wind-supply forecast, thus it does not add new informa-
tion to the model. We compute estimates of the weekly
and daily available supply from the information on out-
ages and generator bids publicly available10.

From Eirgrid, we use information on planned outages to
estimate the weekly maximum available supply based on
the maximum capacity of the available generating plants.
From SEMO day-ahead generator bids, we extract fea-
tures on daily available supply. For example, we set
thresholds on the maximum bid price (e.g., e 40) in or-
der to obtain estimates of expected cheap supply. The

10http://www.eirgrid.com/operations/outageinformation/
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maximum price thresholds of bids are set at e 40, e 50
and e 60, based on the bids and empirical SMP distri-
bution on the validation set. Once the data required for
preparing features is processed, we scale all features and
use an SVM with an RBF (i.e., Gaussian) kernel for learn-
ing. The RBF-SVM works by mapping examples into a
higher dimensional space and computing a model in that
space, and is known to deliver very good results in many
applications11.

We use the epsilon-SVR implementation of the LIB-
SVM package [19] (widely accepted as state-of-the-art for
SVM implementations). It has 3 main parameters which
can be tuned to improve performance: C that controls
the amount of regularization of the loss function, γ that
controls the kernel width, and ε that sets the tolerance
of the termination criterion. We tune these parameters
on the validation set, using grid search. All the data col-
lected and the scripts for reproducing our forecasting ex-
periments are online12.

The second model, FM2, aims to predict the difference
from the average price, rather than the price directly. It
builds on the following observation: the actual historical
SMP (i.e., past prices) are a good indicator for the average
electricity price at a given half-hour, but do not capture
the particular behavior of a given day in terms of the
magnitude of the SMP peaks and valleys. Due to the
particular features of the next tradeday (e.g., strong wind,
lower load, enough cheap supply), the SMP may diverge
from its average value (e.g., below/above the average).

We can estimate the characteristics of the next tradeday
using the publicly available forecasts. We then compute
the SMP as a sum of a locally computed average-SMP
(e.g., over the last 7 days) and a learned SMP-difference
from the average, estimated from the training set, captur-
ing whether the SMP is going up or down with respect
to the average. For example, for forecasting the SMP
on 1st of January 2010, 7AM (equal to e 31.04), we use
the local average-SMP (equal to e 29.57) over the most
recent seven days, as a first component. The second com-
ponent is the learned-difference between the actual SMP
and the average-SMP. As learning features, we use the
difference between the forecasted tradeday characteristics
(load, wind-supply, shadow price) from their local aver-
ages. Intuitively, lower than average load and higher than
average wind, should trigger a decrease in price, thus a
negative difference of SMP from the average. A regression
model can estimate the SMP-difference (from its average)
from the differences of its features.

As shown in Table 3 (and further detailed in [1]), when
optimizing these models for regression metrics such as the
MSE, they give a 28% improvement over the SEMO fore-

11http://svms.org/tutorials/
12http://4c.ucc.ie/~gifrim/Irish-electricity-market

cast. Nevertheless, when plugged into cost-aware schedul-

Table 3: Mean squared error (MSE) for SEMO forecast versus
learned forecasts FM1 and FM2.

Method MSE

SEMO 1086.25

FM1 821.01

FM2 781.72

ing applications, the improvement in price estimation is
not reflected in the schedule-cost. We use these two mod-
els as the base for our study of error metrics that are
more appropriate for scheduling-driven price forecasts (as
detailed in Section 5).

4. Scheduling Applications

In this work we analyse cost-aware scheduling models
for two applications: feedmill manufacturing and home
energy management systems. The following subsections
present the corresponding models. For simplicity the
models below describe cost in each time period in terms
of power usage rather than energy usage. However the
average power rating and fixed durations enable us to
compute energy usage in each time period, and this was
implemented for the applications.

4.1. Feedmill Manufacturing: Energy Cost-Aware
Scheduling Model

In order to test the quality of the price forecasts on a
realistic scheduling problem, we adapted a variant of the
feedmill scheduling problem from [20]. The schedule is
generated from orders on the current day for delivery in
the next morning. Tasks i are scheduled on four disjunc-
tive press lines with their allocated machine mi, duration
di, power requirement pi and due date ei, satisfying an
overall power limit lt at each time point t.

We express the problem as a Mixed Integer Linear Pro-
gramming (MILP) minimization problem following [21],
where the main decision variables are 0/1 integers xit in-
dicating whether task i starts at time t, and non-negative,
continuous variables prt denoting the power use at time
t. For this evaluation we choose the MILP formulation
over a more conventional constraint programming model,
as it allows us to find the optimal solutions for the core
problem.

The objective function is based on the predicted price
vt, while the evaluation of the quality uses the actual price
at. This corresponds to a scenario whereby a forecast price
is available 24 hours in advance, but the price paid will
be the actual market price. As executing the schedule
requires significant preparation work, we cannot continu-
ously reschedule based on the current, actual price. There-
fore, the energy cost of an optimal schedule is computed

6



as:
cost =

∑
t

pr∗t at (1)

where pr∗t is the power use at time t of the optimal solution
to the following MILP problem:

min
∑
t

prtvt (2)

subject to:

∀i :
∑

t xit = 1 (3)

∀t :
∑

i

∑
t−di+1≤t′≤t pixit′ = prt ≤ lt (4)

∀m∀t :
∑

i|mi=m

∑
t−di+1≤t′≤t xit′ ≤ 1 (5)

∀i∀t|t+di>ei : xit = 0 (6)

Constraints (3-6) can be described as follows. Each task
must be assigned a start time. The overall capacity cannot
be exceeded in any time period. No two tasks running on
the same machine can overlap in their processing time.
The final constraint (6) states that no task can start after
its due date.

4.2. Home-Energy Management Systems: Energy-Cost-
Aware Scheduling Model

Energy consumption in the residential sector accounts
for a significant proportion of national usage. For ex-
ample, in Ireland this sector accounted for 32% of total
electricity usage in 2008, and over 44% of thermal energy
usage [22]. The electricity demand in this sector is ex-
pected to increase significantly in the coming years due
to the influx of plug-in electric vehicles (PEVs) [23]. A
number of methods have been proposed to improve the
energy efficiency of homes such as smart metering and
better building insulation. The pricing strategy used by
the utility can also affect user behavior. In particular,
time-variable tariffs such as Time-of-Use Pricing and Real
Time Pricing encourage load shifting on the part of the
user from peak to off-peak times. However, it is often
impractical for the user to manage their energy usage in
reaction to constantly changing price information.

A Home Energy Management System (HEMS ), illus-
trated in Fig. 3, is an energy efficiency tool which can be
used to address this issue, automating energy usage of cer-
tain home appliances with respect to time-varying prices.
In this work, we model the HEMS problem as follows: The
objectives are to minimize the electricity cost of the home
over a fixed horizon (e.g., 24 hours), while maximizing
user comfort. The latter involves user preferences with
regard to the ambient temperature and completion times
of certain activities (e.g., dishwasher, washing machine,
etc.).

There are three primary components for scheduling in
the HEMS problem that we discuss in detail in the follow-
ing subsections.

Electricity!
Price!

User!

Weather!
 Forecast!

HEMS! EV!
Charging!

Schedulable!
Appliances!

HVAC!
Thermostat!

Charge/Discharge 
per time interval!

Figure 3: HEMS Overview

4.2.1. Deferrable Activities

A deferrable activity is an activity that can be scheduled
to run at some point in the fixed horizon. Let A be the
set of activities to be run, and Ar be the set of activities
on resource r. For simplicity we will consider all activities
i on a resource to have the same fixed duration, di, and
will use the resource power rating, pi, as a constant across
the duration. Furthermore we assume the activities are
non-preemptive, i.e., once the activity has started it must
be run to completion.

The user supplies the earliest, latest and preferred start-
ing time (sei , s

l
i, s

best
i respectively) for each requested ac-

tivity i. The start time, si, of activity i is constrained by
the user preferences (constraint (7)). A resource can only
handle one activity at a time (8). The total energy usage
of the deferrable appliances, Eapp

t , in each time period t
is given by (9).

sei ≤ si ≤ sli ∀i ∈ Ar (7)

(si + di ≤ sj) ∨ ∀i, j ∈ Ar, i 6= j

(sj + dj ≤ si) (8)

Eapp
t = (

∑
i

pi) ∀ i active in t (9)

We define the user comfort relative to a deferrable appli-
ance to be the difference between the preferred and actual
starting time. We further differentiate between the early
and late completion of an activity as the user may have a
preference which is reflected in the appliance cost fi:

fi =

{
δ−A(sbesti − si) if si ≤ sbesti

δ+A(si − sbesti ) if si > sbesti
(10)

where δ−A/δ+A is a (user-inputted) cost coefficient for the
early/late completion of an activity, reflecting the strength
of the preference the user has for both.
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4.2.2. Electric Vehicle

A widespread introduction of EVs would see an increase
in demand during off peak hours as users charge their
vehicles overnight. One benefit of EVs is their capacity
to operate as energy storage devices in a vehicle-to-home
(V2H) setting. This can result in a flattening of the de-
mand curve as batteries are charged during off-peak hours
and battery power is supplied to the home during peak
times [24].

The user inputs for the EV battery charging of each EV
i for each charge request are as follows:

• Arrival time, tarri , and estimated state-of-charge
(SOC) upon arrival, larri (in kWh).

• Departure time, tdepi , and required SOC for depar-

ture, ldepi .

The charge state of the EV battery of each EV i is
subject to the following constraints for all time periods t ∈
(tarri + 1, . . . , tdepi ), where p+ev,i,t/p

−
ev,i,t is the power rating

at which the battery of EV i is charged/discharged in time
period t. These power ratings are set to 0 for all other time
periods. For each EV i, constraint (11) ensures that the
battery cannot be charged and discharged in the same
time period, constraints (14) and (15) enforce that the
battery should not be discharged beyond some minimum
level, lmin

i ; while constraint (12) ensures that the battery
is charged to the required amount at the departure time.
The battery level, li,t, is calculated using Equation (16),
where zci is the charge efficiency of the battery. Finally the
net energy usage of the electric vehicle, Eev

t , in time period
t is given by Equation (17), where zdi is the discharge
efficiency of the EV battery i.

(p+ev,i,t == 0) ∨ (p−ev,i,t == 0) (11)

0 ≤ li,t ≤ lmax
i (12)

l
i,tdepi

≥ ldepi (13)

(li,t−1 ≤ lmin
i ) => p−ev,i,t = 0 (14)

(li,t−1 ≥ lmin
i ) => li,t ≥ lmin

i (15)

li,t = li,t−1 +

(zci (p
+
ev,i,t)− (p−ev,i,t)) (16)

Eev
t =

∑
i

(p+ev,i,t − z
d
i p
−
ev,i,t) (17)

4.2.3. Heating, Ventilation and Air Conditioning
( HVAC)

The thermal model we use is a simplified estimate based
on the “Irish official method for calculating and rating
energy performance of dwellings” [25]. A house-specific
learning component will be added and will be used to re-
fine the coefficients model once sufficient data has been

gathered. We make the following assumptions: thermal
losses between internal zones are negligible; and the ther-
mal mass of internal elements are negligible compared to
the thermal mass of the fabric surfaces, e.g., walls, roof,
floor. We describe the model for a single zone below,
which can easily be extended to handle multiple zones.

The HVAC system cannot operate in both heating
and cooling modes in the same time period (18), where
p+h,j/p

−
h,j is the power used to heat/cool the room. The in-

door temperature (T in
t ) at time point t is calculated using

Equation (19), where w is a conversion factor to calculate
average power rating (in Watts) from the energy used (in
Joules) in the time period, and Hcap is the heat capacity
of the room.

The heat loss (H loss
t ) due to the difference between in-

ternal and external temperatures at time point t is given
in Equation (20). This comprises: the losses across the
external surfaces S, where ∆T ext

t is the temperature dif-
ference between indoor and outdoor temperatures, Aj is
the area of external surface j and uj is the u-value (rate
of heat loss through a material) of the external surface j;
and losses due to ventilation, where Vair is the volume of
air in the zone, vf is the ventilation factor and ac is the
rate of air change. The three latter factors are considered
to be constant for all time periods.

We consider heat transfer over multiple time periods to
account for systems such as the underfloor heating. The
net heat gain (Hgen

t ) from the HVAC system in time pe-
riod i is the sum of the power used to heat/cool the room
(p+h,j/p

−
h,j) given in Equation (21), where λk is the propor-

tion of heating/cooling from period (t − k) which is still
dissipating into the room, and heff/ceff is the efficiency
of the heating/cooling.

(p+h,t == 0) ∨ (p−h,t == 0) (18)

T in
t = T in

t−1 + w(Hgen
t−1 −H

loss
t−1 )/Hcap (19)

H loss
t = (∆T ext

t

∑
j∈S

(Ajuj)) +

(∆T ext
t ∗ Vair ∗ vf ∗ ac) (20)

Hgen
t =

t∑
j=t−k

λk((heff ∗ p+h,j)−

(ceff ∗ p−h,j)) (21)

Ehvac
t = (p+h,t + p−h,t) (22)

The user supplies their preferred temperature values for
certain time intervals. More formally, let R be the set of
temperature requests; trstj , trendj be the start and end time

periods respectively for request j; and Tmin
j , Tmax

j , T best
j

the minimum, maximum and preferred temperatures for
request j. The indoor temperature must be between the
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minimum and maximum temperature for each tempera-
ture request interval.

We define the thermal user comfort to be the differ-
ence between the preferred and actual temperature values.
Similarly to the deferrable appliances, we further differen-
tiate between lower/higher temperatures than preferred as
the user may have a stronger dislike for one over the other
which is reflected in the penalty gt:

gt =

{
δ−T (T best

j − T in
t ) if T in

t ≤ T best
j

δ+T (T in
t − T best

j ) if T in
t > T best

j

∀j ∈ R,∀t ∈ (trstj , ..., tr
end
j ) (23)

where, similarly to the activity start times, δ−T /δ+T is a
(user-inputted) cost coefficient for a cooler/warmer tem-
perature than requested.

4.2.4. Objective Function

The total electricity consumed in each time period t is
given by:

ETot
t = Eapp

t + Eev
t + Ehvac

t + Ebl
t (24)

where Ebl
t is the predicted base load during time period

t. The objective function to be minimized is a weighted
sum of the electricity cost and user discomfort components
over a fixed horizon N :

α
N∑
t=1

(ETot
t vt) + β

∑
a∈S

fa + γ
N∑
t=1

gt (25)

where vt is the (predicted) unit cost of electricity in time
period t; and α, β, and γ are (user-inputted) coefficients
representing the priority of the objectives from the user’s
perspective. Standard techniques are used to reformulate
the problem as a MILP.

5. Price Forecasting for Energy Cost-Aware
Scheduling

In [1] we showed that optimizing price forecasting mod-
els for regression metrics (e.g., MSE) does not automat-
ically lead to improved schedule-cost. In fact, the best
price forecast model (i.e., best MSE), had worst schedule-
cost. Here, we further analyze those forecasts with respect
to both price estimation metrics and scheduling cost, and
clarify that behavior. We then propose better scheduling-
driven price forecasts.

5.1. Learning Price Forecasts

In the price forecasting framework presented in Section
3 we build regression vectors for each half-hour, based on
historical and forecasted data. In this paper we use a
similar price forecasting framework: we build kernel-SVM
models and tune model parameters to optimize a set of

error metrics. The novelty of this work is in showing what
are the trade-offs of different regression error metrics and
how these trade-offs affect the end scheduling-cost in two
different scheduling applications.

5.2. Evaluation Methodology

We evaluate price forecasts with respect to metrics de-
fined below, on the set of 88 test days (3 months of 2011
as test data) described in Section 3.

In [1] the parameters of our models are optimized for
minimizing the MSE (Equation 26), but they can be cali-
brated for any quality measure. The reference price fore-
cast used for comparison is the Irish market operator’s
forecast, which we refer to as SEMO from now on13. MSE
is a classical measure of both bias and variance of regres-
sion models [26]. We also compute the Mean Absolute Er-
ror (MAE, Equation 27). We show that MSE is less useful
than MAE as a price estimation metric, because MSE is
too sensitive to outliers. Nevertheless, reducing the MAE
alone, is still not sufficient to guarantee significant im-
pact on schedule-cost. In [1], we observed that under-
estimating the price had higher effect on scheduling-cost,
than over-estimating, but did not quantify this effect or
present ways to exploit this for building better forecasts.
Here, we decompose the MAE into an over-estimation and
an under-estimation component (MAEover, MAEunder,
Equations 28-29), and compute, via experiments, their
different weight on scheduling-cost.

Furthermore, we employ the Spearman rank correlation
[27] (Equation 30), to characterize how well does a forecast
estimate the correct ranking of time periods with respect
to the true price. We show that optimizing price forecasts
for these 3 metrics, MAEover, MAEunder and Spearman
rank correlation, is important to achieve cheaper schedul-
ing. In Equations 26-30, x obs stands for the actual, ob-
served, price, while x pred stands for the predicted price.

MSE =
1

n

n∑
i=1

(xpred,i − xobs,i)2 (26)

MAE =
1

n

n∑
i=1

|xpred,i − xobs,i| (27)

MAEover =
1

n

n∑
{i|xpred,i>xobs,i}

|xpred,i − xobs,i| (28)

MAEunder =
1

n

n∑
{i|xpred,i<xobs,i}

|xpred,i − xobs,i| (29)

13Although SEMO is also short for the market operators’ name,
from here on, SEMO will refer to the operator’s forecast. Clarifica-
tion will be given when required.
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Spearcor =∑n
i=1(rxobs,i − r̄xobs,i)(rxpred,i − r̄xpred,i)√∑n

i=1(rxobs,i − r̄xobs,i)2
∑n

i=1(rxpred,i − r̄xpred,i)2
(30)

Spearcor stands for the Spearman rank correlation be-
tween the forecasted prices and the true prices each day,
rxobs,i/rxpred,i is the true/predicted price rank of time pe-
riod i. A rank correlation of 1 means that the rankings are
identical, while a value of -1 means that the two rankings
are the exact opposite. Further details on how this metric
is computed can be found in [27].

5.3. Baseline Price Forecasts

To analyze the benefits of building energy cost-aware
schedules based on the true market price (and its fore-
casts), we will compare our forecasts with the following
baseline schedules:

• Minimize schedule-cost with respect to true price to
get the best-case scheduling cost where the true mar-
ket price is known (BestCase).

• Maximize schedule-cost with respect to the true price
to get the worst-case scheduling cost, where energy-
intensive tasks would be placed at high price time
slots (WorstCase).

• Minimize schedule-cost using an informed14 day-
night tariff as a price forecast to build and evaluate
the schedule. This day/night-tariff price forecast is
computed as the average true price over the 88 test
days for day and night periods (day 9h-23h, night
24h-8h). This schedule gives an idea about the cost
when using a day-night tariff that encourages sim-
ply shifting the big energy consumers to night-tariff
periods (DayNight-DayNight).

• Minimize schedule-cost using the same day-night
tariff as above, but evaluate with the true price
(DayNight-True). The difference between the
DayNight-DayNight and DayNight-True is only in the
evaluation of the schedule (they are both built using
the same forecast), the first is evaluated using the
forecast, the second is evaluated using the true price.

• Minimise schedule-cost based on simple price fore-
casts, e.g., averages of historical true price over a
time period in the past (PrevDay-True, WeeklyAvg-
True, MonthlyAvg-True, YearlyAvg-True). Evalua-
tion of cost is done using the true price. PrevDay-
True refers to the price at the same half-hour for the
most recent day in the past for which we know the

14Built using information of the prices on the actual test data.

true price. WeeklyAvg-True is the averaged price at
each half-hour over the most recent 7 days in the past,
for which we know the true price. Similarly for the
MonthlyAvg-True and YearlyAvg-True, we compute
averages over past 30 and 365 days respectively.

6. Feedmill Scheduling Results

In this section we analyze the impact of various price
forecasts for two scenarios of the feedmill scheduling appli-
cation. The first is a simplified scenario where task dura-
tions can take only a single half-hour (“feedmill-single”),
and due dates and total capacity constraints are ignored.
This scenario allows us to quickly analyze the impact of
various price error metrics on the schedule cost. The opti-
mal schedule can be obtained by simply sorting the tasks
with respect to energy requirements (descending), and the
electricity price (ascending), so we assign energy-intensive
tasks to low energy price time slots. The second scenario
(“feedmill-across”), is more realistic and it is modeled af-
ter a real-world running plant (COSYTEC, UK), but is
much more computationally intensive to find optimal so-
lutions.

We generated problem instances randomly, filling each
of 4 production lines to capacity for 24 hours. The power
requirements for each task were uniformly chosen between
0 kW (as there are a small number of tasks in feedmill
production that require very little power) and 199 kW.

Regarding duration of tasks, we analyse and present
experiments for the two above-mentioned scenarios,
feedmill-single and feedmill-across. In the feedmill-single
case all task durations are set to exactly 30 minutes (a
single time period). The feedmill-across scenario uses ran-
dom durations uniformly chosen between 25 and 100 min-
utes, the last task generated being truncated to fit into 24
hours. The time resolution was set to 5 minutes so that
optimal solutions could be found within a 10 minute time
limit.

Due to the computational cost of solving to optimality,
ten instances were generated for the feedmill-across sce-
nario which, combined with 88 prediction days, resulted
in a total of 880 runs for each forecast. For the feedmill-
single scenario, we tested on both a set of 100 instances
and a subset of 10 instances to confirm that the number
of instances had no significant bearing on the results.

For each instance we computed the actual cost based
on an optimal solution for the actual price, and for each
forecast. The schedule based on the actual price provides
a lower bound, but since the actual price is not known
in advance, it is not realizable. The state-of-the-art com-
mercial MIP solver IBM ILOG CPLEX V12.5.115was used

15http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/
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to find the optimal solution for each day in the feedmill-
across instances, while the statistical software R16 was
used for computing the optimal solution to the feedmill-
single instances employing the sorting method described
above. R was also used to compute all statistics given in
the following sections and in Section 7.

6.1. Feedmill-Single

We present results for the schedule-cost when the sched-
ule is built using baseline price forecasts, versus us-
ing learned price forecasts, for the first feedmill-single
scheduling scenario. Unless otherwise stated, the follow-
ing scheduling results are on the set of 100 instances,
tested with 88 test days of price forecasts.

6.1.1. Baselines

Table 4 shows the average schedule-cost over all in-
stances and all test days for the above baselines in
the feedmill-single scenario, ordered from worst to best
schedule-cost (column %Worse sorted in decreasing or-
der). The %Worse column stands for how much worse is
the daily schedule-cost using a price forecast, as compared
to using the actual true price, for designing the schedule.
The percentage is computed for each instance for each
day and the average is given in the following tables. This
measure helps compare the impact of price forecasts on
schedule-cost for different scheduling applications without
regard to the schedule-cost scale, which is very different
for the feedmill and HEMS applications (e.g., schedule-
cost is in hundreds of e for the feedmill versus tens of
e for HEMS).

Table 4: Feedmill-Single: Schedule-Cost (euro) of Baseline Price
Forecasts.

Baseline Schedules Avg Cost %Worse

WorstCase 684.67 36.18%

DayNight-DayNight 549.72 10.55%

DayNight-True 548.07 8.48%

PrevDay-True 535.72 5.91%

YearlyAvg-True 532.66 5.38%

WeeklyAvg-True 530.27 4.83%

MonthlyAvg-True 526.82 4.19%

BestCase 505.90 -

The results given in Table 4 show that even with fairly
simple price forecasting baselines, the schedule-cost comes
close to optimal cost. For example, the schedule built
using a price forecast based on the monthly average price
and evaluated with the true price (MonthlyAvg-True) is

16http://www.r-project.org

only 4.19% worse on average than using the actual price
for building the schedule. We note that even when using
an informed day-night tariff (based on the true prices),
building a schedule with such a price forecast has worse
schedule-cost than using a simple market-price forecast
based on the average historical prices. This is due to the
high variability of the true market price for different time
periods.

6.1.2. Scheduling-driven Price Forecasts

We present price forecasts optimized for different er-
ror metrics, and analyze the impact of those metrics on
schedule-cost. We start by comparing the price forecasts
(FM1 and FM2) presented in Section 3, with the market
operator’s forecast (SEMO) as a strong baseline.

Table 5: Feedmill-Single: Schedule-Cost (euro) of Price Forecasts.

Price Min Mdn Avg Max %Worse

FM2 358.05 505.76 522.66 858.94 3.28%

SEMO 358.23 502.58 521.95 886.07 3.10%

FM1 352.67 504.09 520.99 868.93 2.97%

Actual 343.12 492.40 505.90 838.48 -

Statistics of the scheduling cost for the different price
forecasts are given in Table 5 (as we show later, differences
in average behaviour between the different forecasts were
statistically significant in all cases). We find that these
three forecasts further improve on the baseline results of
Table 4, with %Worse scheduling cost down to 2.97%.
Nevertheless, the price forecast with the best MSE (FM2,
as shown in Figure 4a) has significantly worse schedule-
cost than the other two (SEMO, FM1). In Figure 4 we
analyze these price forecasts with regards to the price error
metrics they optimize and the effect they have on sched-
ule cost. Figure 4 shows the distribution of MSE, MAE,
Spearman rank correlation and schedule-cost across the 88
test days (and across the 100 instances for the schedule-
cost), for the 3 forecasts, via boxplots17. Each circle on
the Y axis of the boxplots, represents one test day, and in
the case of schedule-cost, an instance of the test day. The
colored line in each box shows the total average and the
95% confidence interval for each metric.

Both FM1 and FM2 outperform SEMO, regarding price
estimation metrics, MSE and MAE (Figure 4a-4b). Fig-
ure 4c compares the forecasts with respect to price ranking
performance, via the average Spearman rank correlation.
We note that although FM2 is best with regards to MSE,
it is worst with regards to daily Spearman rank correla-
tion. FM1, on the other hand, is best from the perspec-

17The default in R is that the box range is 1.5 · IQR.
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Figure 4: Price forecasts compared wrt MSE, MAE, Rank Correlation and Scheduling-Cost.
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Figure 5: Price forecasts compared wrt MAEover and MAEunder.

tive of MAE and Spearman rank correlation, and only
marginally worse than FM2 in terms of MSE.

Lastly, Figure 4d focuses on the schedule-cost of the
3 forecasts (rather than price forecasting metrics), and
shows the average scheduling-cost reported as %Worse
(relative to using the true price to design the schedule).
FM1 performed best. The outliers above 30% come from
the same day (Feb 4th, 2011) for the three forecasts. The
night time prices were nearly always twice the average
daytime price, possibly due to unexpected generator out-
ages. This was the only day for SEMO and FM1 where the
Spearman correlation was negative, whereas there were a
number of days where the SEMO forecast had worse MSE.

Figure 4 shows an interesting point: price estimation
metrics (e.g., MSE, MAE) cannot alone explain the effect
of different price forecasts on schedule-cost. Price rank-
ing metrics (e.g., Spearman rank correlation) bring light
into new properties that a price forecast should have, to
benefit scheduling: it is not enough to get the price esti-
mate right, the forecast has to get the rank of prices right
too. Nevertheless, ranking alone is not enough to deliver a
forecast that benefits scheduling, since similar price rank-
ing can be achieved for very different price forecasts, e.g.,
a hypothetical forecast that swaps a e50 time slot with a
e51 time slot, versus another one that swaps a e50 time
slot with a e200 time slot. With respect to ranking, the
two forecasts would be the same, but the penalty implied
for price estimation is very high, since we may schedule
an energy-intensive task during a very high priced time

slot. Thus, both price magnitude and price rank have to
be forecasted correctly by a price forecasting model, to
positively impact the schedule-cost.

To better understand the trade-offs of each price
forecast, in Figure 5 we decompose the MAE into
an over-estimation and an under-estimation component
(MAEover, MAEunder). This decomposition allows us to
zoom-in on the type of price estimation error made by each
price forecast. Figure 5 shows that all forecasts are better
at predicting low values than high values (they don’t over-
estimate as much as they under-estimate the price). Ad-
ditionally, although FM2 has both MAEover and MAE-
under error values considerably lower than SEMO, due
to having a bad Spearman rank correlation it leads to
worst schedule-cost. The above discussion sheds light into
the key point for building price forecasts for cost-aware
scheduling: good price forecasts should co-optimize price
estimation and price ranking metrics.

We show next how to build such forecasts. We first eval-
uate a simple metric based on MAE and Spearman rank
correlation: maximizing the geometric mean of (-MAE)
and average daily Spearman correlation. This essentially
favors price forecasts that minimize MAE and maximize
Spearman rank correlation. The geometric mean allows
combining quantities expressed on different scales (e.g.,
MAE of 11.0 versus Spearman correlation of 0.83). We
tune the kernel-SVM model parameters (i.e., C, γ and ε)
to optimize this new metric (rather than the MSE), us-
ing the learning framework of FM1 (since this has the
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(d) %Worse scheduling cost per instance per day

Figure 6: Price forecasts compared wrt MSE, MAE, Rank Correlation and (Feedmill-Single) Scheduling Cost.

best schedule-cost). We refer to the resulting forecast
as FM1geom. Next, we analyze approaches to capture
finer trade-offs when optimizing the price forecast, e.g., via
co-optimizing the decomposed MAE (MAEover, MAEun-
der) and Spearman rank correlation. In order to allow
each metric to have a (metric-importance) weight, we op-

timize the convex combination of these scaled metrics18.
We use the previously gathered set of forecasts and their

18Each metric is computed as an average over test days and is nor-
malized by its maximum value over test days. Convex combination
refers to the weighted linear combination, weights sum up to 1.
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Table 6: Feedmill-Single: Schedule-Cost (euro) of Scheduling-Driven Price Forecasts.

Price Min Mdn Avg Max %Worse

FM2 358.05 505.76 522.66 858.94 3.28%

SEMO 358.23 502.58 521.95 886.07 3.10%

FM1 352.67 504.09 520.99 868.93 2.97%

FM1geom 351.76 503.74 520.76 866.37 2.92%

FM1convex 350.15 503.20 520.63 861.51 2.88%

FM1scost 362.78 509.60 527.63 858.22 4.35%

Actual 343.12 492.40 505.90 838.48 -

Table 7: Confidence intervals (95%) and p-values for feedmill-single scheduling-cost with new price forecasts.

Price SEMO FM1 FM2 FM1geom FM1convex

Actual L −16.67 −15.63 −17.33 −15.43 −15.29
U −15.43 −14.55 −16.18 −14.28 −14.17
p 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

SEMO L - 0.71 −0.91 0.96 1.10
U - 1.21 −0.51 1.42 1.54
p - 3.2e− 14 9.0e− 12 2.2e− 16 2.2e− 16

FM1 L - - −1.87 0.15 0.23
U - - −1.47 0.31 0.49
p - - 2.2e− 16 1.5e− 8 6.0e− 8

scheduling-cost, to learn the weights of the 3 metrics by
fitting a linear regression model (e.g., with the 3 metrics
as features, to predict the %Worse scheduling-cost as a
regression target). Modeled this way, the learned weights
(rescaled to sum to 1) are: 0.573 for the average Spearman
correlation, 0.305 for MAEunder and 0.122 for MAEover.
This shows that the 3 metrics all play a role (since the
weight > 0) in capturing the potential of a price fore-
cast for reducing scheduling-cost, with the most impor-
tant metric being rank correlation, followed by MAEunder
(correctly estimating high prices) and MAEover (correctly
estimating low prices). We build a new price forecast by
tuning the kernel-SVM parameters to optimize this con-
vex combination (denoted by FM1convex ). We test this
same price forecast for the other two scheduling scenarios
(Section 6.2 and Section 7) to see if it generalizes. i.e.,
still leads to lower schedule-cost.

Table 6 and Figure 6 show FM1geom and FM1convex,
compared to the previous 3 forecasts: SEMO, FM1, FM2.
The two new forecasts outperform the previous forecasts
in terms of scheduling cost. We further note that co-
optimizing the convex combination of MAEover, MAEun-
der and average Spearman correlation (FM1convex) per-
formed marginally better than FM1geom with regards to
scheduling cost. Table 7 provides paired t-test results
for the 5 forecasts, showing that the improvements of

FM1geom and FM1convex over the previous 3 forecasts
were statistically significant.

For the feedmill-single simplified scheduling scenario,
we can build price forecasts that optimize directly the
scheduling cost. This is normally expensive to compute
for more realistic (i.e., more constrained) problem ap-
plications. For feedmill-single, we simply sort the tasks
by decreasing energy demand, sort the price forecast by
increasing price, and use the forecast to order the true
price and compute the end schedule-cost. This gives a
fast way to compute the schedule-cost for a price fore-
cast, and thus can be used for parameter tuning. In Ta-
ble 6 we also show the results of optimizing directly the
scheduling cost to create a forecast (FM1scost) for this
simple scenario. Surprisingly, we find that FM1scost re-
sults in worse scheduling cost than either FM1geom or
FM1convex. Indeed, FM1scost resulted in considerably
worse performance than any of the other forecasts in Ta-
ble 6. We discuss next the reasons behind this behavior.

Consider the following hypothetical example where
there are three tasks to schedule, with energy require-
ments 200MWh, 100MWh, 50MWh, and durations of
30 minutes each. Assume the true price of the three
time periods is e50/MWh, e100/MWh, e50/MWh.
We compare two sample price forecasts for this set-
ting: e40/MWh, e80/MWh, e40/MWh and e0/MWh,
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Table 8: Feedmill-Single: Average Schedule-Cost (euro) and %Worse over 100 instances versus over 10 instances.

Forecast Cost Cost %Worse %Worse %Worse
100 10 100 10 Diff

WorstCase 684.67 688.62 36.18 35.99 -0.19
DayNight-DayNight 549.72 553.91 10.55 10.62 0.07
DayNight-True 548.07 552.21 8.48 8.55 0.07
Prevday-True 535.72 540.39 5.91 6.10 0.19
YearlyAvg-True 532.66 536.64 5.38 5.43 0.05
WeeklyAvg-True 530.27 534.10 4.83 4.85 0.02
MonthlyAvg-True 526.82 530.74 4.19 4.23 0.04
FM2 522.66 526.47 3.28 3.31 0.03
SEMO 521.95 526.06 3.10 3.19 0.09
FM1 520.99 524.82 2.97 3.00 0.03
FM1geom 520.76 524.60 2.92 2.96 0.04
FM1convex 520.63 524.46 2.88 2.91 0.03
FM1scost 527.63 531.43 4.35 4.37 0.02
BestCase 505.90 509.47 - - -

e1/MWh, e0/MWh for this setting. The procedure for
computing the schedule-cost, is to sort the forecasted price
from lowest to highest, and use the forecast ordering to
induce an ordering on the true price, which we then use
to compute the end schedule-cost. If we sort the true
price according to either forecast, we get the same order-
ing e50/MWh, e50/MWh, e100/MWh, thus the same
schedule-cost: 50 ∗ 200 + 50 ∗ 100 + 100 ∗ 50. Neverthe-
less, these two price forecasts are very different, and while
the first one is reasonably close to the true price, the sec-
ond one is quite far off. This issue suggests that simply
optimizing the schedule cost may not be well-suited for
parameter tuning of the price forecasting model, since we
need to also constrain the price estimation error, not only
the ranking of prices, thus again having to co-optimize
schedule-cost (similar to optimizing price ranking) and
MAE (for price estimation).

When we build such a price forecast we get the same re-
sult as for the previous FM1geom that was co-optimizing
MAE and Spearman rank correlation. Therefore, we can
see from this experiment that our proxy metric combin-
ing MAE and Spearman rank correlation is quite effective
for building price forecasts that are good for cost-aware
scheduling. Furthermore, running a realistic schedule with
each price forecast is normally a time consuming process,
thus a proxy metric that only involves price forecast prop-
erties (without having to run the schedule for each price
forecast and parameter configuration) is quite useful.

Finally, Table 8 provides results for each forecast over
100 instances and over the first 10 instances. We note a
decrease in average schedule-cost of approximately 4 euro
for all forecasts, when going from 10 to 100 instances.
However, there is no difference in the ranking of the dif-

ferent forecasts with respect to average schedule-cost, and
very little difference in performance in terms of %Worse
cost, as can be seen from the final column.

6.2. Feedmill-Across

In this section, we compare the previous 5 forecasts for a
more realistic scheduling scenario, where tasks can take
between 25 to 100 minutes, thus can be spread over more
than one time slot or only part of a time slot. We test
on a set of 10 instances (as described in Section 6), in
combination with the same 88 test days of forecasts.

6.2.1. Baselines

Table 9 shows the average schedule-cost over the test
days for the baseline price forecasts on the feedmill-across
instances, where tasks can span a fraction of one or several
time periods.

Table 9: Feedmill-Across: Schedule-Cost (euro) of Baseline Price
Forecasts.

Baseline Schedules Avg Cost %Worse

WorstCase 680.83 34.08

DayNight-DayNight 549.06 8.13

DayNight-True 548.08 7.94

PrevDay-True 535.97 5.55

YearlyAvg-True 533.15 5.00

WeeklyAvg-True 530.85 4.54

MonthlyAvg-True 527.74 3.93

BestCase 507.78 -
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Table 10: Feedmill-Across: Schedule-Cost (euro) of Scheduling-Driven Price Forecasts.

Price Min Mdn Avg Max %Worse

FM2 381.14 507.57 523.62 838.21 3.07%

SEMO 375.64 504.58 522.73 851.57 2.87%

FM1 374.68 504.97 522.24 838.44 2.82%

FM1geom 374.11 505.24 521.98 844.45 2.77%

FM1convex 371.82 504.36 522.04 838.29 2.76%

Actual 365.31 494.54 507.78 817.16 -

Table 11: Confidence intervals (95%) and p-values for feedmill-across price-aware scheduling costs comparing optimal solutions priced
using actual price, and each of the analysed price forecasts.

Price SEMO FM1 FM2 FM1geom FM1convex

Actual L −16.71 −16.15 −17.61 −15.97 −16.00
U −13.19 −12.78 −14.07 −12.44 −12.52
p 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16 2.2e− 16

SEMO L - −0.13 −1.44 0.15 0.12
U - 1.11 −0.32 1.34 1.25
p - 1.2e− 1 1.9e− 3 1.4e− 2 1.6e− 2

FM1 L - - −2.00 −0.00 −0.20
U - - −0.74 0.52 0.60
p - - 1.9e− 5 5.4e− 2 3.3e− 1

Note that the costs are quite similar to the feedmill-
single scenario because both types of instances were gen-
erated such that each production line must have a task
running at all times. The results follow the same pattern
as those found with the baselines on the feedmill-single
instances (cf. Table 4), with a day-night rule of thumb
approach again performing much worse than the simple
forecasts based on historical prices.

6.2.2. Scheduling-driven Price Forecasts

Table 10 and Figure 7 compare the schedule-cost of
the 5 forecasts for the feedmill-across scheduling sce-
nario. The dots on the Y axis of the boxplot represent
%Worse schedule-cost for the scheduling instances (880
data points, 10 instances for each of 88 test days), built
using the forecast versus built based on the true price.
We observe that the scheduling-cost when the schedule is
built using the FM1geom and FM1convex price forecasts
remains best when compared to the other forecasts. The
FM1convex price forecast is the exact same as for the pre-
vious section, to test how that forecast behaves for other
scheduling scenarios.

The outlier points are those with worst scheduling-cost,
and they correspond to 2-3 days in which, as discussed in
the previous section, prices were abnormally high across
the night period or there were electricity price peaks at
unusual times (e.g. peak occurring on 06/04/11 at 6:30

a.m. was e323.77/MWh). Interestingly, for the former
day type the rank correlation was lowest for all 3 fore-
casts as previously discussed, while for the latter the rank
correlation was high for all 3 forecasts (> 0.77) but still
resulted in poor performance as the price at the 6:30a..m.
peak, mentioned above, was approximately 5 times larger
than the average price for the day. This further illustrates
the need to co-optimize price ranking and estimation error
metrics.

Table 11 gives t-tests results for the schedule-cost of
the 5 forecasts. The statistical significance results for 10
instances per day are not as strong as for the 100 instances
of the feedmill-single scenario, although they are similar to
the t-test results for the first 10 instances of the feedmill-
single scenario.

The main observation for this experimental setup (i.e.,
feedmill-across vs feedmill-single) is that the ranking of
price forecasts with respect to reducing scheduling-cost is
preserved, with the price forecasts that are built by co-
optimizing MAE and Spearman rank correlation provid-
ing better schedule-cost.

7. HEMS Scheduling Results

The HEMS was run on a subset of 40 of the 88 test days,
according to the scheduling scenario described in [28].
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Figure 7: Feedmill-Across: Price forecasts compared wrt %Worse Scheduling Cost.

This accounted for ten weeks of consecutive Mon-Fri, mid-
day to midday forecasts. The inputs which changed from
day to day were the price forecast and external weather
data (taken from Weather Underground19).

The daily (actual) schedule-cost was computed in an
identical manner to that in the Feedmill scheduling ap-
plication, and the state-of-the-art commercial MIP solver
IBM ILOG CPLEX V12.5.1 was again used to find the
optimal solution for each day for each forecast.

For this application the forecast with best MSE
(i.e., FM2) delivered good scheduling-cost, but by co-
optimizing price estimation error and Spearman rank cor-
relation, we further reduced the cost. Table 12 shows
statistics for the cost across all instances over the 40 test-
days. Table 13 gives the t-test results for comparing the
scheduling-cost by using different price forecasts. Figure 8
shows the 5 forecasts for this scheduling scenario.

We note that the FM1convex forecast described in Sec-
tion 6.1 does not deliver better cost here (e.g., as compared
to FM1geom) and there was no statistical significant dif-
ference between FM1convex and FM1. The reason for this
could be that the importance weight of MSE or MAE is
higher for HEMS, than it was for Feedmill, relative to the
importance of the Spearman correlation metric. This is

19www.wunderground.com

further supported by the fact that FM2 with best MSE,
has good schedule-cost for this application (while it had
worst schedule-cost for Feedmill).

Nevertheless, in order to re-learn metric importance
weights, one needs enough samples of forecasts and their
schedule cost. It is much simpler to use the geometric
mean of MAE and Spearman correlation to co-optimize
the price estimation and ranking. If enough examples
of price forecasts and their scheduling-cost are available,
learning metric-importance weights may further reduce
the schedule-cost (of FM1geom), but testing this hypoth-
esis is beyond the scope of this paper.

Note that this scheduling application is quite different
from the feedmill scheduling problem. Firstly the optimal-
ity criterion involves not only energy cost, but also user
discomfort factors related to user temperature and appli-
ance start time preferences in a weighted sum objective
function.

Secondly, as illustrated in Figure 9, there is typically
considerably more slack in the HEMS experimental setup
than in the feedmill instances. In the former, there are
large time periods during the day where there is little if
any energy consumption to be scheduled. On the other
hand, production lines are typically run non-stop in feed-
mill production. Note that the feedmill instances gener-
ated had no slack in that there were no time periods where
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Table 12: HEMS: Schedule-Cost (euro) of Price Forecasts.

Price Min Mdn Avg Max %Worse

SEMO 1.50 1.96 2.10 2.93 6.50%

FM1 1.55 1.94 2.06 2.96 4.69%

FM1convex 1.49 1.96 2.05 2.93 4.24%

FM2 1.53 1.96 2.05 2.94 4.06%

FM1geom 1.49 1.93 2.04 2.94 3.70%

Actual 1.35 1.90 1.97 2.84 -

Table 13: Confidence intervals (95%) and p-values for HEMS price-aware scheduling costs.

Price SEMO FM1 FM2 FM1geom FM1convex

Actual L −0.18 −0.13 −0.10 −0.09 −0.12
U −0.07 −0.05 −0.05 −0.04 −0.04
p 1.4e− 5 7.3e− 5 9.6e− 7 8.7e− 7 5.0e− 5

SEMO L - −0.003 0.01 0.01 0.01
U - 0.07 0.08 0.09 0.07
p - 7.2e− 2 7.7e− 3 3.2e− 3 7.5e− 3

FM1 L - - −0.01 −0.003 −0.01
U - - 0.04 0.04 0.03
p - - 2.9e− 1 9.9e− 2 0.5
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Figure 8: HEMS: Price forecasts compared wrt %Worse Scheduling Cost.
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Figure 9: HEMS Experimental Setup: Est/Pst/Lft refers to earliest starting/preferred starting/latest finishing time for a deferrable
appliance. The bottom half of the figure, along with left y-axis, shows user preferences and energy consumption requirements for an EV
and schedulable appliances; the top half, along with right y-axis, shows the user temperature requests.

a task wasn’t running, albeit some tasks may have had a
power rating of 0kWh. Indeed, as can be observed in the
figure, there are time windows (e.g., 8:30 - 12:30) when the
only possible energy consumer that could be scheduled is
the HVAC. Since the next temperature request after 8:30
is at 18:00, it is highly unlikely that preheating will occur
in this time window, given heat losses.

Finally, the impact of the price has different charac-
teristics for the Feedmill scheduling problem as for the
HEMS. In the former the tasks are scheduled based on
the relative price, adding a constant to all prices will re-
sult in an identical schedule. In the HEMS, there are
energy losses to overcome when preheating the home and
when availing of V2H capabilities. Preheating / discharg-
ing will only occur if the price differential between time
periods is above some certain threshold value. Therefore
the daily energy consumption in the HEMS instances is
dependent on the electricity prices, energy efficiency of
heating/battery-charging, etc., whereas each feedmill in-
stance has a fixed energy consumption total.

For example let us consider the EV battery charging
requirements in the HEMS. There is an efficiency rating
for charging (zc) and discharging (zd) the battery. In our
experiments the battery must be charged from 40% to
85% between 21:00 and 08:00 the next morning (so 22
available time periods). For a battery of capacity 30kW
and maximum charge rate of 3.3kW, this means that at
least the 9 cheapest time periods will be used for this
charge. In the remaining 13 time periods, V2H will only
occur if the ratio of price in the discharge period to price
in the “charge-back” period is greater than 1/(zc ∗ zd), to

overcome the energy losses due to charging/discharging
the battery. This is further constrained by the bounds on
the battery capacity, lmin/lmax which cannot be violated.

8. Conclusion

In this paper we study methods for building effective
price forecasts for cost-aware scheduling. We analyze the
Irish electricity market, present electricity price forecast-
ing models and test our forecasts for two different schedul-
ing applications: animal feed manufacturing and home en-
ergy management systems. We show that building cost-
aware schedules using forecasts of the actual electricity
market price, is feasible, and leads to significant cost
savings, as compared to cost-unware or day-night-tarrif
based schedules. This is an encouraging finding in the
context of increased electricity prices and increased in-
terest from electricity stakeholders (operators, suppliers,
consumers) to start charging/paying the actual market
electricity price, instead of constant tarrifs plans.

One of the key technical insights from this work is
that optimizing price forecasts for regression metrics alone
(e.g., estimating the price magnitude-error via the MSE
or MAE), does not suffice to guarantee significant reduc-
tions in schedule-cost (as already shown in our prior work
[1] for manufacturing scheduling). Adding to the state-of-
the-art (e.g., [1]), in this paper we show that price ranking
is also an important metric, and present forecasts that co-
optimize price estimation and price ranking to deliver im-
proved schedule-cost across all scheduling scenarios stud-
ied. Depending on the scheduling setting and application,
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the price estimation (e.g., MSE or MAE) seems to have a
different importance-weight relative to price ranking (e.g.,
Spearman rank correlation). In this work we have shown
two ways to combine price estimation and ranking met-
rics, and have shown how to learn the importance weights
of each metric, from given examples of price forecasts with
known schedule-cost.

In the future we intend to further study the relative
importance of various price forecasting metrics in different
scheduling scenarios, e.g., how do the importance-weights
of price metrics change with various scheduling con-
straints.
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