
Poster: BDTest, a System to Test Big Data
Frameworks

Alexandre Langeois∗†, Eduardo Cunha de Almeida‡, Anthony Ventresque∗
∗Lero@UCD, School of Computer Science, University College Dublin, Ireland Email: anthony.ventresque@ucd.ie

†Ecole Centrale de Nantes, France. Email: alexandre.langeois@eleves.ec-nantes.fr
‡C3SL Labs, UFPR, Brazil. Email: eduardo@inf.ufpr.br

Abstract—Testing Big Data Processing systems is a challenging
task as these systems are usually distributed on various virtual
machines (potentially hosted by remote servers). In this poster1

we present a platform for testing non-functional properties of
Hadoop, a well known big data management and processing
platform.

I. INTRODUCTION

“Big Data” has become a reality in the past years, with
enormous amounts of data generated humans (e.g., Soocial
Networks) and by all sorts of sensors (e.g., Internet of Things).
For instance, it is estimated that we create 2.5 quintillion
bytes of data every day and that 90% of all data has been
created in the last two years [1]. While managing and storing
large amount of data has been a focus of interest, processing
them is challenging as it is skill and labour intensive [2].
MapReduce [3] and similar frameworks have been proposed to
simplify the ingestion, storage and processing of large amount
of data on distributed architectures. For instance Hadoop [4]
is extensively used by companies by companies, for instance
Ebay, Facebook or Google [5].

The quality of such software systems is difficult to assess
though, as testing any distributed systems is a known complex
challenge. Issues in a distributed software system can come
from various elements: software or hardware components, their
integration, or the communication between components [6].
Another risk is also to introduce artificial defects or to impact
the performance of the system with the monitoring apparatus.

In this poster we present BDTest, a system that aims at
testing Big Data Platforms, such as, Hadoop. BDTest uses a
lower tester architecture [7] which has a limited impact on the
system under test (SUT), while offering the possibility to run
complex test scenarios. While BDTest could test functional
properties, we focus on non-functional ones - for instance,
changing artificially the performance or availability of comput-
ing nodes in the SUT, i.e., only for the test scenarios. We plan
to address in our future work a variety of research questions,
such as:

• Can we test the performance of the partitioning and load
balancing mechanisms of Hadoop?

• Can we discover performance bottlenecks in Hadoop
using BDTest and, for instance, model-based testing
techniques?

1This work was supported by Science Foundation Ireland grant 13/RC/2094.

• Can we identify portability issues of Hadoop using our
testing system and heterogeneous platforms?

II. RELATED WORK

The increased interest in and use of Big Data platforms
like Hadoop has led to a lot of research and the development
of testing techniques and tools. One of the most interesting
attempts is MRUnit [8], a Java framework that aims at creating
JUnit [9] tests like test cases for MapReduce jobs. However,
this tool requires to introduce specific calls to its API in the
SUT and can generate new bugs or decrease performance of
the SUT. BDTest tries to avoid any modification of the SUT.

PigUnit [10] is another interesting tool which uses the unit
test model with some success. However, PigUnit works only
for Pig, one of the many applications/modules of the Hadoop
ecosystem. On the contrary, BDTest being independent of the
exact running systems, should be able to interact with any Big
Data platform - and in particular any Hadoop module.

Testing distributed systems has been studied quite a lot in
the past, however with poor success at times. GridUnit [11],
[12] proposed a mixed model: a centralised architecture with
the execution of tests on the node level, but GridUnit does not
handle the volatility of computing nodes, which is an important
element in distributed systems. P2PTester [13] and Pigeon [14]
proposed to use a fully distributed architecture but they require
to modify the code of the SUT which brings the same
limitations as MRUnit for Big Data systems. PeerUnit [15],
[7] is a project that inspired BDTest. PeerUnit creates complex
unit tests for distributed (peer-to-peer) systems without mod-
ifying the SUT. Test scenarios in PeerUnit are synchronised
over all the computing nodes using either a centralised or a
decentralised architecture [16] - PeerUnit can work using both
modes. BDTest follows some of the general ideas proposed by
PeerUnit, but we extend PeerUnit in two original directions:
(i) BDtest can manage parallel executions (typical of Big
Data tasks) and (ii) BDTest can run heterogeneous nodes.
HadoopTest [17] is a framework based on PeerUnit created
to test Hadoop applications. HadoopTest caters for two types
of testers: master and worker (as does BDTest), but can only
create a centralised testing architectures. HadoopTest focuses
on functional properties, while BDTest aims at addressing also
non-functional properties such as, scalability or performance.
For instance, HadoopTest can drop nodes (as it is also the
case in PeerUnit) while in BDTest we can modify more finely



Fig. 1. Execution of Map-Reduce operations

all the properties of each computing node (e.g., constrain the
hardware resources such as, CPU or memory).

III. HADOOP

MapReduce uses the potential of parallel execution, it is
based on two main functions which are written by the user:
Map and Reduce. First the Map function analyses parts of
the data and sorts them, then the Reduce function computes
the output of the algorithm. There are two types of nodes,
the Master which assigns tasks to workers and workers which
handle the Map or Reduce function when needed (see Figure
1).
Hadoop is the Apache open-source implementation of Map-
Reduce, it is composed of two basic parts: Hadoop MapReduce
to process the data and HDFS (Hadoop Distributed File
System) the storage part. Apache Hadoop also refers to the
whole ecosystem with programming tools (Apache Pig) or
distributed database (Hbase).

IV. BDTEST

BDTest is developed in Java and has a Hadoop interface
for the moment - we will provide interfaces to other Hadoop
components in the future to provide a full library of Big Data
testing tools. Each Hadoop node (i.e., master or worker) is
coupled to one tester. Those testers can monitor and instrument
both the system being tested and the testing system. The testers
can for instance limit the resource usage of the system (e.g.,
cap the CPU utilisation) and run part of global scenarios (e.g.,
stress test the load balancing algorithm in Hadoop/HDFS).
The testers do not modify the SUT when those scenarios are
implemented - they merely virtualise the interface between
the SUT and the Operating System. BDTest also provides a
coordinator agent, which dispatches the actions (of a test case)
to the relevant testers. The coordinator also manages the set
of testers and in particular synchronises their actions.

BDTest, while implementing a centralised architecture at the
moment (see Fig. 2), can run on a centralised or decentralised
mode. In the former, BDTest has only one coordinator, which
gives actions to all the testers and is responsible for the
parallel execution of the tests (see Fig. 2). In the decentralised
architecture on the other hand, all testers (but the testers on the

,

Fig. 2. BDTest (centralised architecture)

Fig. 3. BDTest (decentralised architecture)

leaves) belong to a tree where testers are also coordinators and
give actions to their descendants and report to their parents.
The testers subscribe to their parent – their ‘coordinator’ (see
Fig. 3). The root node kicks-off the test cases, communicate
with its children which in turn forward the actions on to their
own children and so on until the leaves of the tree. This
decentralised architecture scales up better compared to the
centralised one and limits the communication overhead.

Validating global properties is one of the key challenges in
testing distributed systems [18]. BDTest makes sure that each
tester manages its own data which is later aggregated in to
a global view (a test oracle) by the coordinator (centralised
architecture) or the root node (decentralised architecture).

BDTest implements assertions and value comparisons as
they are the easiest testing methods [19], [20]. Log file
(offline) analysis is not yet implemented in BDTest but this is
a potential direction of research.

V. CONCLUSION

This poster presents BDTest, a system to test Big Data
platforms, such as Hadoop. Software testers using BDTest
create test scenarios using simple unit tests (assertions and
value comparisons) and BDTest manages the dissemination
of the actions to every tester (each in charge of a computing
node). BDTest can simulate all sorts of defects (e.g., perfor-
mance defects) and as such can be used to test non-functional
properties as well as functional characteristics of Big Data
platforms.

As a future direction, we would like to extend the number of
Big Data modules (from the Hadoop galaxy) that BDTest can
work on - e.g., Spark [21]. We would also like to evaluate the
performance of Big Data platforms on different architectures
and see whether BDTest can be used for benchmarking as well
as for testing.



REFERENCES

[1] “What is big data?” https://www-
01.ibm.com/software/data/bigdata/what-is-big-data.html.

[2] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The end of an architectural era: (it’s time for a complete
rewrite),” in VLDB, 2007, pp. 1150–1160.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” OSDI, pp. 137–150, 2004.

[4] The Apache Software Fondation, “Apache Hadoop,” 2017,
http://hadoop.apache.org/.

[5] ——, “Who use Hadoop,” 2017, https://wiki.apache.org/hadoop/PoweredBy.
[6] X. Bai, M. Li, B. Chen, W.-T. Tsai, and J. Gao, “Cloud Testing Tools,”

SOSE, 2011.
[7] E. C. de Almeida, “Testing and validation of peer-to-peer systems,”

Ph.D. dissertation, University of Nantes, 2009.
[8] The Apache Software Fondation, “Apache MRUnit,” 2016,

https://mrunit.apache.org/.
[9] “JUnit,” 2017, http://junit.org/junit4/.

[10] The Apache Software Fondation, “JUnit,” 2017, https://pig.apache.org/.
[11] A. Duarte, W. Cirne, F. Beasileiro, and P. Machado, “Using the compu-

tational grid to speed up software testing,” BSSE, 2005.
[12] ——, “Gridunit: software testing on the grid,” ICSE, pp. 779–782, 2006.
[13] F. Dragan, B. Butnaru, I. Manolescu, G. Gardarin, N. Preda, B. Nguyen,

R. Pop, and L. Yeh, “P2PTester: a tool for measuring P2P platform
performance,” ICDE, 2007.

[14] Z. Zhou, H. Wang, J. Zhou, L. Tang, K. Li, W. Zheng, and M. Fang,
“Pigeon: a framework for testing peer-to-peer massively multiplayer
online games over heterogeneous network,” CCNC, 2006.

[15] “PeerUnit,” 2011, http://peerunit.gforge.inria.fr/.
[16] E. C. de Almeida, J. E. Marynowski, G. Sunye, Y. L. Traon, and

P. Valduriez, “Efficient Distributed Test Architectures for Large-Scale
Systems,” ICTSS, 2010.

[17] J. E. Marynowski, M. Albonico, E. C. de Almeida, and G. Sunye,
“Testing MapReduce-Based Systems,” SSBD, 2011.

[18] G. Sunye, E. C. D. Almeida, Y. L. Traon, B. Baudry, and J.-M. Jzquel,
“Model-based testing of global properties on large-scale distributed
systems,” IST, 2014.

[19] L. Baresi and M. Young, “Test oracles,” Technical Report CI S-TR-01-
02, University of Oregon, Dept. of Computer and Information Science,
Eugene, Oregon, USA, 2001.

[20] E. T. Barr, M. Harman, O. McMinn, M. Shahbaz, and S. Yoo, “The
oracle Problem in Software Testing : a Survey,” TSE, 2015.

[21] The Apache Software Fondation, “Apache Spark,” 2017,
http://spark.apache.org/.


