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Abstract. In this paper we share our experiences of working with a
real-time news recommendation framework with real-world user and news
data. We discuss the challenges faced while working in such a noisy but
uniquely real-world context. Specifically, we focus on an initial evaluation
of a 12 different news recommendation algorithms across 7 different Ger-
man news sites, including general news, sports, business, and technology
related news sites. We compare the performance of these algorithms, pay-
ing particular attention to their relative click-through rates and how this
can vary with time of day and news domain.

Keywords: News Recommender Systems, Real-time Recommendation
Frameworks, Adapting/Contextualizing Recommendations

1 Introduction

Recommender systems have become an essential part of our day-to-day lives,
when it comes to dealing with the overwhelming amount of information avail-
able, especially online. Recommender systems improve user experience and in-
crease revenue in the context of online retail stores (Amazon, eBay), online news
providers (Google News, BBC) and many more. In this work we present a wide
range of online recommender algorithms and compare their performance in the
scope of the CLEF-NewsREEL 2014 online challenge - has to be modified to fit
the current paper. In CLEF-NewsREEL 2014, participating teams connect to
the Plista Open Recommendation Platform [1, 2] and have to respond to real-
time user requests for recommendations. Given that recommender systems have
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traditionally been evaluated offline, this poses an interesting challenge in terms
of algorithm efficiency, tracking users, building quality models of user browsing
behaviours and preferences, and in terms of dealing with a highly dynamic do-
main like news in which there is a constant cycle of new articles appearing and
older articles becomming redundant. We consider the challenges of online news
recommenda- tion more fully in Section 3.1. The rest of this article is organised
as follows: in Section 2 we present some related research in news recommen-
dation; in Section 3 we provide a more detailed description of the Plista ORP
framework[3] and the CLEF-NewsREEL challenge, the challenges of online news
recommendation, and our system architecture; in Section 4 we describe our rec-
ommender algorithms; in Section 5 we report and analyse the data collected and
the performance of our recommender algorithms, and in Section 6 we conclude
and discuss directions for future research.

2 Related Work

Within the field of recommender systems, the problem of recommending news
articles to readers has a number of unique and interesting features. In many
traditional application domains of recommender systems a user profile is often
available, for example: movies that have been rated or products purchased. The
user must create a profile which is used to build a ratings or preference history
which is associated with that user as they interact with the site and these detailed
profiles then feed into the creation of personalised recommendations. In the news
domain it is generally not common to have detailed user profiles, with users not
often required to sign in or create profiles. It is also not common for users to rate
news articles and often the only information available is implicit in the logs of the
users click patterns. This presents a particular challenge for collaborative filtering
methods which rely on the opinions of similar users to generate recommendations
(51, [9], [7].

Further complications for collaborative filtering arise from the dynamic na-
ture of the users and the news items themselves [6],[3]. In general, users will
prefer fresher news articles, and building an accurate model of user preferences
based on the items they have previously read can be difficult [4], [6]. While users
may have preferred categories of news articles, or topics they are particularly in-
terested in, these preferences are difficult to learn. User preferences change over
time too, and another challenge is to provide a diverse set of interesting recom-
mendations, accounting for known users preferences and recency and popularity
of the news articles themselves [8].

Content based approaches can run into problems where some measures of
similarity identify news articles which are in fact about different topics. Ex-
tracting the constantly changing distribution of topics in the news presents a
challenge [12] in addition to learning how users choices are influenced by these
latent factors [11].
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3 Plista

Plista provides a platform ORP ! for making live recommendations to a number
of their client sites. Plista communicates via an HTTP API by sending (JSON)
messages. One can register a team name and as many algorithms as one like.
However, we should note that Plista sees each algorithm individually, meaning
that all the different types of messages described below are replicated and if the
team uses a single machine this can introduce an unnessesary overhead in terms
of network traffic. In Section 7.1 we will see how we overcome this challenge.

The event messages, Plista sends us, are triggered by a user reading an article
or clicking on a recommendation (event notification), and whenever an article
is created or updated by the publisher (item update). Requests for article rec-
ommendations (recommendation request) are sent as message. As an indicator
of whether a recommender framework performs as expected (responding to the
above 3 types of messages within a certain timeframe - 100ms; responding with
a correctly formated recommendation message; and whether the machine used
slows down when under load or the network bandwidth is big enough) Plista
sends error notifications. Even though Plista is fault tollerant towards error no-
tifications, they are particularly important for monitoring the general health
condition of the recommendation framework as exceeding a certain threshold
per unit time results in a temporary ban and concequently in loss of data.

The event notification information that we receive is somewhat incomplete.
Specifically, teams are told which items were recommended and which item was
clicked by the user. However, when a click event occurs we can only guess the
set of recommended items it was part of. This missing data could aid us in our
analysis. The resulting dataset is unique in many respects, providing detailed
user profile information for some users (where available), cross-site data (from
13 - do we keep it as what the paper sais or what is currently available 11
(accodring to event notifications), or 8 according to item_update or 7 as the
ones we consider? different news providers), and information about different
interaction types. The dataset is fully described in [10].

With each message type (request, event, update) the Plista ORP framework
provides additional metadata regarding the current user and article. Although
the Plista ORP API documentation [1] lists almost 60 fields of information, in
practice we found many were unclear, or not useful or detailed enough to use.
Fields such as Pizel_4th_party and Filter_allowosr typify the ones we simply
didn’t understand (they had no description either), and popular demographic
signals like age, gender and income, expressed as probabilities (male vs female,
age and income brackets) turned out to be too vague to be of use in reality. In
the end, we settled on 10 fields for use in our recommenders:

geo_user The geolocation of the user

time_weekday The day of the week

category The subcategory under which an article is published within a given
domain, e.g. sport, world, local etc.

1 orp.plista.com
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time_hour The hour of the day

item_source The unique item (article) identifier

publisher The publisher (domain) of an article.

keyword Keywords with their corresponding counts occurring in the article

user_cookie The user id (recall users are not obliged to register so many do
not have a unique id.

title The title of the news article

summary The summary of the news article

Note that the category, publisher and keyword fields only provide a numerical
id rather than a textual representation. For category and publisher it was possible
to exploit URLs in order to determine this information, but for keywords there
was no way to uncover what the words actually were, or how they were chosen.
Nonetheless, we found that despite this the keywords still provided a useful
signal. don’t know about this sentence yet In Section ?? we provide a deeper
analysis of the data provided and used.

4 Challenges

In this section we present the challenges concerning the production of online news
recommendations. In the section that follows, we detail the system architecture
that we have implemented to cope with these challenges and we describe our
recommendation algorithms, suitable for this environment.

Traditionally, recommender systems are evaluated offline, with plenty of time
to build complex models of user browsing behaviours and preferences. In real-
time online scenarios like NewsREEL however, such leisure is not afforded; not
only do teams have to respond within a very tight time frame (100ms), they
also have to deal with factors like the lack of rich user browsing history as users
are not obliged to register and therefore do not always have persistent profiles
or identifiers. Moreover, a user can access the news sites from different devices,
and many users can do so from the same shared device, further complicating
the ability to reliably track their browsing, as pointed in [10]. Tracking their
preferences is also non-trivial, as users do not provide any explicit feedback on
recommendation quality, and clickstream data is the only signal of relevance
available. Finally, the nature of the news domain itself throws its own set of
challenges into the mix due to the dynamic nature of the data, where many
new article appear every hour, and older articles quickly become redundant. In
such unstructured and dynamic environments, it is necessary to apply techniques
that satisfy requirements such as response time, scalability while improving the
user experience using limited and sometimes noisy information. Adomavicius
et al. [2] point out that these sorts of environments pose serious challenges to
standard collaborative filtering recommenders. Instead we should use other rec-
ommendation algorithms that fit the nature of the data and take advantage of
the features provided by Plista for each user, and the various properties of the
articles themselves [1].
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5 System Architecture

plista ORP I Insight Server

Recommendation Responses | \ /

Event Notifications
Item Updates
Recommendation Requests

Error Notifications AlchemyAPI

Semantic Data
Service

Fig. 1. System Architecture

Our system architecture, shown on Fig 1, is implemented in Python and
is designed to accomplish our goals of scalability, speed and extensibility. The
first point of interaction with Plista are four web servers, which implement the
standard Python web protocols, each responsible for the different types of Plista
requests (event notifications, item updates, recommendations and error notifica-
tions). All servers write to a database, for which we use ElasticSearch?.

Rather than trying to guarantee accurate recommendations in under 100ms,
we precompute the recommendations and store them in ElasticSearch. For each
of our recommendation algorithms, we have a long running process which con-
tinually reads the latest events and articles from the database to build its recom-
mendations. With this offline approach, there is a danger that we might send back
a recommendation which contains outdated, non-recommendable articles, during
the time it took to compute the recommendations. To minimise this possibility,
we update our recommendations in the background as frequently as possible so
that our recommendations have a minimal lag. For most of our algorithms, the
typical refresh time is less than 5 minutes. We have constructed the system with
a goal of compromising between accuracy or freshness and scalability.

2 http://elasticsearch.org/
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6 Algorithms

In this section we describe our recommender algorithms. For each we describe
the algorithm by how it selects the candidate set i.e. the larger set of items that
will be considered for recommendations, and its ranking strategy, i.e. how it
ranks the candidate items for recommendation, before returning the top N to
the user. We refer to the target user as the user for whom the recommendations
are required, and the target article as the news article the user is currently
reading - the recommendations will appear on this page.

We have implemented 12 recommenders in total: 6 popularity-based recom-
mender and 6 content-based recommenders.

Before each algorithm is run, we apply three basic filters to the item set:

Exclude items from other domains : Articles must come from the same do-
main as the current article. Note that although we get user and news article
data from multiple web sites it is prohibited to make cross-site recommenda-
tion, contradicting what the authors of [10] say. However, the Plista dataset
let us observe user behaviours across multiple web sites and as part of our
future work we plan to use them to better understand and target individual
users.

Exclude already seen articles : Clearly we do not make recommendations of
articles we know the target user has already seen.

Exclude non-recommendable items : These are items that are flagged as
non-recommendable (usually older articles) by Plista.

6.1 Popularity-based Algorithms

Each of the 6 popularity recommenders rank their candidate set by item pop-
ularity, i.e. the number of users who have read an article. However, they differ
in the way they compile their candidate sets. We have developed a basic as
well as more advanced recommenders that use additional features. They can be
described, based on whether and what information they use as a filter, as follows:

Popularity - No Filter The candidate set is all items in the dataset.

Popularity - Geolocation The candidate set is all items that have been read
by users in the same geographical location as the target user.

Popularity - News Category Every item is associated with 0 or 1 news cat-
egory (business, sports, politics, etc.). The candidate set is all items whose
category intersects with the target article’s category.

Popularity - Day of Week The candidate set is all items that have been seen
at least once in the same day of the week as the target article.

Popularity - Hour of the Day The candidate set is all items that have been
seen at least once in the time range [current hour - 1, current hour + 1], where
current hour is the hour of the day in which we receive the recommendation
request.
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Popularity - Positive Implicit Feedback The candidate set is all articles
that have been successfully recommended in the past to some user, i.e. clicked
by the user. The more popular an article is as a recommendation, i.e. the
more clicks it has, the higher the algorithm ranks it.

6.2 Similarity-based Algorithms

This group of similarity-based recommenders find articles that are similar to
the current article for recommendation to the target user. The intention here is
not to present the user with an article essentially the same as the current one,
something which would of course be undesirable, but rather to find articles that
are strongly related to the current article. Given our recommender algorithms
only operate within a given domain, the chances of the recommendation being
too similar to the current article are low.

All the similarity-based recommenders we deploy use the conventional TF-
IDF vector space model to derive the candidate set. However, each algorithm
uses a different selection of content within an article over which to apply the
model. For each of the following similarity-based recommenders, the candidate
set is always ranked in decreasing order of similarity to the current article.

Similarity - Title The articles are represented by the terms in their title.

Similarity - Summary The articles are represented by the terms in their sum-
maries only.

Similarity - Title and Summary The articles are represented by the terms
in their titles and summaries only.

Similarity - Full Body Text The articles are represented by the terms in
their titles and full body text. As Plista provides only the title and the
summary of the articles, to apply this algorithm we have a long running
process which craws through the news articles’ web pages and extracts the
full body text using boilerpipe?

Similarity - Keywords : The terms are the keywords provided by Plista (re-
call that Plista provides a set of keywords and their frequencies within a
document, and although they are publisher difined we do not know what
they are as in our dataset they are represented numerically).

Similarity - German Entities Using AlchemyAPI* we extract entities, in Ger-
man, from the full text of the articles as their representation.

7 Setup and Methodology

7.1 Experimental Setup
Check List
1. time periods - done

3 https://code.google.com/p/boilerpipe/
* http://www.alchemyapi.com
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. table of the domains and their description - done

. volumes of data - done

. round robin, reasons behind it - done

. data we consider, volumes, in order to calculate CTR - done
. how do we calculate CTR - done

STk W IN

We ran our experiments from 21/12/14 to 31/12/14, inclusive, giving us
a total of 11 day worth of data. During this period we had access to 7 news
websites, listed with their description and unique identifiers (ID) in the table
1. During this period we gathered some 14.2M user logs (event notifications),
over 3.1M recommendation requests of 2.48M unique users and some 20k unique
news articles.

Table 1. News web site details with their Plista suppied unique ID (Domain ID), name
(Domain Name) and brief description.

Domain ID|Domain Name Description

418 ksta.de Regional news website

1677 tagesspiegel.de National news website

596 sportl.de National sports website

2522 computerwoche.de| Technology & Business website

3336 tecchannel.de Computer Hardware & Software news website
694 gulli.com IT & Technology website

In order to let our framework be extensible with a minimal footprint on
performance, both in terms of system load and network traffic, we register a
single algorithm (remember in Section 3 we said that we can register multiple
algorithms to a single team) and then we use a Round-robin approch to rotate our
12 algorithms giving them equal oppurtunity of generating recommendations.

Plista provides us with the visual mean of observing CTR performance of
registered algorithms. However, we work with a real-life dataset and we want to
calculate our own CTR, which imposes some constraints on the subset of data
we look at. We follow the following step when we filter our dataset:

— Consider only successful recommendations, filtering out recommendation re-
quests that have missing data needed for the algorithm to execute or re-
questing for data that is not present in our database.

— Consider recommendation request which have both item and user present
and they are not represented by default values.

— Consider recommendations, notifications, and updates only from 7 domains

After this processing step we are left with some 900k recommendations over
which we will conduct hour CTR analysis. We calculate CTR with the following
formula

crR= — Yo 1)

1Mpressions
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where clicks is the number of recommendations where users clicked on 1 news
article out of set of 6 and impressions is the total number of recommendations.

7.2 Results and Analysis
Check List

recommendations rate

clicks compared to recommendations

clicks compared to recommendations on per domain basis barchart
General CTR

CTR per hour

CTR per domain

clicks compared to recommendations on per domain basis as points
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Fig. 2. The barchart gives an overview of the recommendation rate of the 12 algo-
rithms employed. Recommendation rate is the percentage of times when an algorithm
is capable of producing a recommendation.

7.3 Lessons Learned

8 Conclusions
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Fig. 4. An overview of the Click-Through Rate (CTR) performance of the algorithms.

As we can see

similarity algorithms perform better with a maximum CTR of 0.77%

achieved by similarity-full-body.
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