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Abstract

We propose a Genetic Algorithm (GA) to address a Green Vehicle Routing Problem
(G-VRP). Unlike classic formulations of the VRP, this study aims to minimise the
CO2 emissions per route. The G-VRP is of interest to policy makers who wish to
reduce greenhouse gas emissions. The GA is tested on a suite of benchmark, and
real-world instances which include road speed and gradient data. Our solution ap-
proach incorporates elements of local and population search heuristics. Solutions are
compared with routes currently used by drivers in a courier company. Reductions
in emissions are achieved without incurring additional operational costs.
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1 Introduction

The EU directive on decreasing greenhouse gas emissions and the dependency
on fossil fuels motivates focus on G-VRP problems. Specific targets have been
set for the transport sector. Most VRP software produces schedules for vehi-
cles that minimise economic costs for the logistics service provider. Typically,
the numbers of vehicles and drivers and the financial cost of the distance trav-
elled are minimised. However, environmental concerns are beginning to play
a role in corporate social responsibility policies [11] and there is a competitive
advantage for companies with provably green credentials.

This study was conducted in conjunction with Xpreso, a start-up com-
pany operating in the IT and logistics sector. Xpreso’s business objective is
to provide a software communication platform for parcel delivery couriers that
provides drivers’ route optimisation, real time tracking, time window notifica-
tion to customers, real time routes adjustments, data gathering and analytics.

We focus on a route optimisation GA that incorporates elements of local
and population search to minimise CO2 emissions. We describe emission mod-
els based on 1) EU regulations, 2) vehicle speed, and 3) load weight and road
slope. The GA was tested on benchmark, and real world data for deliveries
by m homogenous light duty diesel vehicles in the Bristol area of the UK.

2 The Green Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVPR) is defined on an undi-
rected graph G = (V,E) with vertices V = {1, . . . , n} where node 1 is the
depot and the vertices V = {2, . . . , n} are customers. Each edge (ij) ∈ E
has an associated cost cij proportional to distance or travel time. Demand
and possibly a service time of each customer are given. The number of homo-
geneous vehicles m of fixed capacity is either known in advance or expressed
as a decision variable of the problem. The goal of the CVRP is to minimise
the sum of the costs of routes for the m vehicles beginning and ending at the
depot, visiting all customers in the network once to satisfy demand. See for
example [1].

The VRP generalises the TSP and is an NP -hard problem. Exact ap-
proaches are given in [8, 12]. Approximate algorithms are described in [9]
while an evolutionary algorithm is used in [13]. The greedy approach in the
Clark and Wright Algorithm, [5] is a construction heuristic. Initial routes are
generated and merged if savings can be achieved by merging routes subject
to capacity constraints. The local search heuristic in [10] for the TSP can be



adapted for the CVRP. Tour construction approaches can be used to initialise
a (set of) tour(s), otherwise the Lin Kernighan heuristic (LKH) proposes ran-
dom starting solutions. A λ-swap of a tour removes λ arcs and replaces them
with λ new arcs in such a way as to generate a new tour. In the LKH λ-opt
algorithm, all λ-swaps are tested until no feasible exchange can be found to
improve the solution. The LKH implementation in [6] notes that 2- and 3-opt
exchanges are most frequently implemented. They give the intuition that for
high values of λ, a λ-opt tour is likely to be optimal.

Environmental effects are generally not considered in the classical VRP.
G-VRPs are concerned with reducing energy consumption [14]. Routes are
designed to optimise both environmental and financial objectives. Changes in
distance travelled may provide environmental benefits when fuel consumption
(and consequently pollutants) are reduced. The amount of CO2 emitted by
a vehicle is proportional to fuel consumption. Fuel consumption is influenced
by several factors such as distance travelled, average driving speed and ac-
celeration, load, engine type and size, road gradient and weather effects such
as temperature. Fuel consumption can be estimated using real time on-board
measurements. An alternative approach is to use an analytical emission model
(EM). The EMs in this study are based on the work in [7]. They propose a
class of EMs for CO2 emission for light duty diesel vehicles, based on driving
velocity and distance travelled. The goal of the G-VRP in this study is to
minimise the CO2 emissions of the VRP routes of a set of light duty diesel
delivery vehicles.

3 Methodology

We consider three EMs for CO2 emissions over distance d. In the following
EF is an emissions factor, g is the road gradient and v is vehicle speed.

A simple road distance EF model is given in Eq. 1.

Emissions = EF ∗ d (1)

Limits for light duty vehicles in the EU2020 targets are 147 grams/Km giving
a simple upperbound on EF , in that case Eq. 1 becomes: Emissions = 147∗d.

The road distance EF model can be improved by considering the nonlinear
relationship between emissions and speed: EF ′ = (429.51 − 7.8227 ∗ v +
0.0617 ∗ v2). Eq. 2 is based on the MEET report, [7] and yields a speed
model.

Emissions = EF ′ ∗ d (2)



The road gradient and vehicle load can also affect emissions, Eq. 3 is
a gradient-weight model which includes an adjustment based on empirical
analysis of sample diesel vehicles in [7]. k = 1.27 is a constant to account for
load weight; l = 0.0614; q = -0.0011; r = -0.00235; u = -1.33 are coefficients.

Emissions =
(
k + l ∗ g + q ∗ g2 + r ∗ v +

u

v

)
∗ EF ′ ∗ d (3)

Figure 1 allows us compare the speed model Eq. 2 on the left and the
gradient-weight model Eq. 3 on the right, where emissions are calculated for
speeds from 0 to 120 Km/h for a 10 km distance.

(a) Speed EM
(b) Gradient EM

Fig. 1. Comparison of speed and gradient emission models

3.1 Real world test instances

Real world instances were developed from data for parcel deliveries in the
Bristol area (UK). The Bristol area is relatively flat, extends to 110 Km2

within a radius of 6 Km from the city centre. Most deliveries are destined for
the city centre which is 12.8 Km from the depot. A homogeneous fleet of light
duty diesel vehicles with a net weight ≤ 3.5 tons and max operating weight
≤ 7.5 tons is used. A sample of the ex-post data consolidated by Xpreso is
shown in Table 1. Latitude and longitude give the position of a customer.
Parcels generally have weights ≤ 2000 g. Delivery time is the clock time of
the delivery. The driver code identifies the driver.

Latitude Longitude Parcel Weight (g) Delivery Time Driver Code

51.503 -2.685 1000 9.345 Driver 1

Table 1
Ex-post data (provided by Xpreso)



We used the Google Maps commercial API to estimate driving distance
and travel time for node pairs in the Bristol delivery area. Queries were
launched on weekdays at 10 a.m. to account for traffic congestion and hence
allow us estimate driving speed for use in the EMs. The average speed v per
node pair is estimated as Distance[Km]

Time[hours]
. Similarly, the average road gradient

is estimated based on the elevation at the origin and destination: Gradient
g(%) = Rise

Run
∗ 100, where Rise is the difference in elevation and Run is the

distance between the nodes. This data allows us test the use of the emission
models as fitness functions in the GAs.

3.2 The Genetic Algorithms (GAs)

Current business practice is for Xpreso to solve mTSPs (as the m drivers are
pre-assigned to regions) using third party routing software. In effect mTSPs
are solved rather than a single VRP. In this section we describe a set of GAs
to solve both the mTSPs and the G-VRP. TSP solutions are converted to
VRP solutions using the split procedure described in [13]. The procedure
can be used to create ≤ m routes. Load capacity is not a critical constraint
for Xpreso’s parcel deliver service due to the vehicle size, but driver time is
limited to a maximum number of shift hours D. The emission models are used
as alternative fitness functions to traditional distance metrics on the Bristol
real world instances as road speed and gradients are available.

We assume a symmetric cost matrix which holds for the distance and
speed models on an undirected graph. Further work on asymmetric matrices
to cater for the gradient method is not described in this paper. Time window
constraints are not included as the Xpreso customer interface sends parcel
recipients the estimated time of arrival before the driver workday begins and
allows them to accept or reject a delivery. Our GA implementation is similar
to [13] with the novel addition of 3-Opt moves as a mutation operator. The
GA design decisions are:

(i) Chromosomes - a sequence of n nodes;

(ii) Population - small populations P of size N/ no clones allowed / high elitism;

(iii) Fitness F (Pi) - the tour cost of the ith member of population P ;

(iv) Initialisation - include good heuristics solutions in the initial population;

(v) Mutation - λ-opt local search with probability pm of 2-Opt and p3opt of 3-Opt;

(vi) Population management - an offspring can substitute for a chromosome of
worse fitness.

(vii) Exploration phase, followed by R restarts.



Nearest Neighbour, the Clark Wright and Random Insertion construction
heuristics are used to initialise three members of the population. The remain-
ing members are initialised randomly. We store the fitness and tour sequence
of each chromosome. Chromosomes are sorted in increasing order of fitness
F (Pi). We keep the populations in our GAs small and do not allow individuals
with the same fitness level (even though they might not be clones). Nor do
we allow clones, which are detected using a bisection search.

Parents are selected by a binary tournament. A new child only enters
the population if it has a better fitness value than the current chromosome
to be replaced (very high elitism). We use the ordered crossover approach
(OX) for TSP-like problems to produce two valid children from two parents.
A summary of the GA is shown in Algorithm 1.

Algorithm 1 Genetic Algorithm
initialise population and parameters
while Number of restarts < R do

while α < αmax and β < βmax do
Select two parents Pi and Pj by binary tournament
Apply OX to generate C1 and C2

Select one child C randomly
Select rand ∈ [0, 1]
if rand < mutationprobability then

Call local search mutation on C
Select k = random.integer(⌊n/2⌋, n)
if VRP then

Call Split procedure on C
end
if F (C) not in the population and F (C) < F (Pk) then

Pk = C
end
α = α+ 1

end
Sort the population
if P1 has not changed then

β = β + 1
end

end

end

Mutation is performed as a local search operator. Instead of simple moves
of swapping nodes, we use 2- and 3-Opt moves combined with other node
swap strategies [10, 13]. This provides a faster convergence of the GA, while



taking advantage of the diversification of the GA. A child is mutated with
probability pm by performing a 2-Opt local search. A 3-Opt operation may
then be applied with probability p3opt. Generally 3-Opt exchanges produce
better solutions, but it is much slower; O(n3) compared to the O(n2) 2-opt
algorithm.

The GA stops when it reaches a maximum number of successful offsprings,
αmax, or when it reaches a maximum number of unsuccessful offsprings, βmax,
without improving the best solution. The population is re-sorted (so the best
solution to date is P1), and restarted R times using a partial replacement
procedure.

4 Results and Analysis

All algorithms were implemented in Python on an i7 core laptop with 8 GB
RAM running Windows 7. The GAs were tested on benchmark CVRP in-
stances such as [2, 3] along with the real world instances from Bristol.

Two GA variants were selected. GA-VRP1 has a population of size N =
30, pm = 0.1, αmax = 300, βmax = 3000. GA-VRP2 has N = 50, pm = 0.05,
αmax = 300, βmax = 1500. GA-VRP1 produces better solutions with a higher
running time. GA-VRP2 produces tours with a high gap but in shorter run
times. p3opt = 0 for VRP instances and p3opt = 0.5 for TSP instances.

Sample results for benchmark VRP instances minimising road distances,
(i.e., the fitness function is Eq. 1 with EF = 1), are shown in Table 2. Run
times (RT) are in seconds. GA-VRP1 was used on problem set E in [3].
GA-VRP2 was used on problem set M in [4]. For our purpose of solving
real world VRP instances with emissions objectives, the average gap for GA-
VRP1 is reasonable when the number of nodes is ≤ 100. Otherwise GA-VRP2
is applied.

Having validated the GAs on traditional VRP instances, we then tested
the GAs on the Xpreso Bristol G-VRP instances, i.e., the recorded mTSP
routes with the road network speed and gradient data extracted from the
API. We compared solutions from solving mTSPs, one for each driver against
VRP solutions created using the split procedure. We separately tested the use
of the three different emission reduction fitness functions - 1) Eq 1 the Road
Distance (RD) with the EU upperbound EF = 147; 2) Eq 2 the Average
Speed Emissions Model (SP-EM) and 3) Eq 3 the Load and Road Gradient
Emissions Model (GD-EM).

Results for a sample 70 node instance, Bristol70, are shown in Table 3.
The columns show the objective, the tour distance and the emissions for the



Instance n Opt Best GA Gap(%) RT(s)

E-n22-k4 22 375 375 VRP1 0.0 6.39

E-n33-k4 33 835 835 VRP1 0.0 28.6

E-n51-k5 51 521 521 VRP1 0.0 82.78

E-n76-k7 76 682 691 VRP1 1.3 150.24

E-n101-k14 101 1067 1099 VRP1 3.0 200.46

M-n101-k10 101 820 831 VRP2 1.3 96.21

M-n151-k12 151 1015 1086 VRP2 7.0 203.2

M-n200-k16 200 1274 1371 VRP2 7.6 380.98

Table 2
GA Results on benchmark VRP problems using distantce metrics

Objective RD(Km) EU20-EM(gram) SP-EM(gram) GD-EM(gram)

DRIVER 146.73 21,569.31 33,469.67 38,358.61

Eq. 1 RD 131.46 19,324.62 30,329.93 35,108.79

Eq. 2 SP-EM 132.07 19,414.29 30,018.98 34,764.00

Eq. 3 GD-EM 133.59 19,637.73 30,516.56 34,082.58

Table 3
Sample Single Driver Bristol70 Results

three tests. The first row shows as our base line the recorded route per-
formed by the driver (DRIVER) using symmetric distances for consistency.
The recorded route covered 146.73 km with estimated CO2 emissions of 21.5,
33.5 or 38.4 kg depending on which EM is used. The remaining rows show
results for each green objective function. Solving the GA with Eq 3 as the
objective found a solution 133.59 km in length that would produce 34.1kg
(or 19.6 or 30.5 if that route were measured by Eq. 1 or Eq 2). There are
similar improvements in emissions when other real instances are solved using
the SP-EM and GD-EM models. The more accurate EM models offer better
estimates of the emissions produced. The amount of reduced emissions is pro-
portional to increased road distances in some cases. The effects of speed and
road gradients play a role in achieving CO2 reductions.

We also compare the mTSP approach currently employed by the business
to a G-VRP where the Split procedure finds at most m routes. We show
results for a sample instance with m = 3 and n = 133 in Table 4. The



Objective RD(Km) EU20-EM(g) SP-EM(g) GD-EM(g) Algorithm

DRIVER 245.52 36,281.07 62,681.54 71,603.09 Recorded

Eq. 1 RD 158.43 23,300.97 38,440.25 43,260.41 3-TSP

Eq. 2 SP-EM 159.09 23,133.39 38,071.61 43,094.19 3-TSP

Eq. 3 GD-EM 159.66 23,246.58 38,368.47 42,885.85 3-TSP

Eq. 1 RD 130.05 19,117.35 32,055.16 36,609.87 G-VRP

Eq. 2 SP-EM 130.75 19,220.24 31,963.99 36,360.07 G-VRP

Eq. 3 GD-EM 130.75 19,220.24 31,963.99 36,360.07 G-VRP

Table 4
3-TSPs versus G-VRP Results

resulting G-VRP solution is compared to the sum of the original mTSPs.

We see the gains in solving a (G-)VRP instead of anmTSP with a reduction
-17.91% (158.43 Km vs 130.05 Km) in distance travelled using a distance-based
objective function. Emissions are also affected with a reduction of -15.22%
(36,360.07 g vs 42,885.85 g) for GD-EM. Furthermore, the VRP solution used
just two drivers to visit all stops within a seven hour shift. This has implica-
tions for the business practice.

5 Conclusions

This work presents a novel approach to the G-VRP. By focusing on CO2

reductions, not only are green house gases reduced but resulting routes may be
financially more cost effective. Savings arise through reduced fuel consumption
and can be measured by the emission models when road speed and gradient
data are available. The mTSP provides a useful practical approach to solving
small VRPs for three or four drivers but our work shows that further emissions
savings can be achieved using G-VRP approaches. Our results proved useful to
the business in terms of care of the environment, and also allows the company
to gain a valuable competitive advantage by using green credentials.
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