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Self-Balancing Decentralized Distributed
Platform for Urban Traffic Simulation
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Abstract—Microscopic traffic simulation is the
most accurate tool for predictive analytics in urban
environments. However, the amount of workload
(i.e., cars simulated simultaneously) can be chal-
lenging for classical systems, especially for scenarios
requiring faster than real-time processing (e.g., for
emergency units having to make quick decisions on
traffic management). This challenge can be tackled
with distributed simulations by sharing the load be-
tween simulation engines running on different com-
puting nodes, hence balancing the processing power
required. This paper studies the performance of
dSUMO, a distributed microscopic traffic simulator.
dSUMO is fully decentralised and can dynamically
balance the workload between its computing nodes,
hence showing important improvements against clas-
sical, centralised and not dynamic, solutions.

I. INTRODUCTION

Simulation of urban dynamics is a popular topic
in the literature and in industry. Traffic predic-
tion [1-3], crowd management [4], [5], evaluation
of V2X solutions [6], [7], all benefit from using
fine-grained simulation which is why the area has
been studied widely and has led to numerous tools,
such as SUMO [8], CityFlow [5] or DynaTAI-
WAN [9].

In particular, microsimulation, i.e., simulation
of individual agents, such as, drivers and pedestri-
ans, gives the most accurate results and is hence
widely used [10]. The challenge with this type of
simulation is that it requires important computing
resources to process typical city-scale scenarios
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which easily involve hundreds of thousands of
vehicles simultaneously. On top of that, other el-
ements, such as, pedestrians, communications be-
tween agents and the infrastructures, can increase
significantly the running time of the computation.

Distributed systems are a common way to tackle
processing power issues: load is divided over
computing nodes called Logical Processes(LPs)
with each LP processing its part and sharing
information about its state. Distributed simulations
rely on partitioning algorithms to distribute the
load, synchronization and communication algo-
rithms to share information, and the simulator
itself. While the necessity of partitioning, com-
munication and synchronization mechanisms is
straightforward, it is also globally accepted that,
for efficient distributed simulations, dynamic load-
balancing algorithms are required to balance fairly
the amount of loads between the LPs [11-13]. If
one LP has more load to compute than its peers,
it will take it longer to update its share of the
simulated environment. The other LPs will have to
wait for the slower nodes to pursue the simulation,
therefore the performances of the entire distributed
simulation will be hampered by the slowest LP. In
order to achieve a large-scale, fine granularity sim-
ulation in a decent amount of time, a distributed
simulation would need to be scalable but also self-
balancing and accurate, i.e., give the same results
a single simulator would give.

In a previous paper [14] we described dSUMO,
a platform for distributed microscopic traffic simu-
lation. We interfaced it with SUMO, the Simulator
for Urban MObility, a microscopic vehicle simu-
lator developed by the DLR [8]. We also showed
that the accuracy of dSUMO when comparing
the distributed version and the single-simulator
version, i1s almost 100%.

In the current paper, we add synchronisa-
tion and self-balancing mechanisms to dSUMO,
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and we do a thorough performance evaluation
of dSUMO on a realistic scenario. The results
showed that dSUMO is scalable and significantly
reduced the simulation time (by up to 55% simu-
lation time saved).

In the remainder of the paper, we first do a lit-
erature study (Section II); we then detail dASUMO
(Section III); Section IV explains the dynamic
synchronization and dynamic load-balancing algo-
rithms implemented; then (Sections V and VI) we
present the experiments and show the performance
of our platform on a realistic city-scale scenario;
Section VII discusses the difference between load-
balancing in traffic microscopic simulation con-
texts and in other behavioural simulation. Finally,
Section VIII concludes this paper.

II. MOTIVATION AND RELATED WORK

[15], [16] show that one of the main issues for
distributed microscopic urban traffic simulation
is the synchronization. The central unit used in
Suzumura and Kanezashi [15] becomes a bot-
tleneck when the number of partitions increases.
Cetin et al. [16] try to limit the synchronization
cost by using faster network connexions, which
is expensive, both for researchers and most urban
authorities, while their scenario was of limited
scale and probably not realistic. dSSUMO [14] is
a distributed and decentralised microscopic simu-
lation and overcomes both problems: there is no
central entity, the bottleneck element for the syn-
chronisation, and it does not need to run on dedi-
cated powerful servers — any commodity machine
could run dSUMO. Our scenario is also derived
from a real observation of the traffic condition in
the city of Cologne. Note that the synchronisa-
tion problem is not limited to traffic simulations:
air traffic management, another computationally
expensive process, is also moving towards using
decentralized and distributed engines [17], [18].

In [19] Lee and Chandrasekar present a parallel
version of Paramics [20] using the shared memory
on a multi-core system. They note the importance
of load-balancing while not implementing such
a mechanism (not even a static one) and they
work on small systems (2 or 3 cores) and on
simple urban scenarios (grid like generated road
network). On the contrary, dSUMO has a dynamic
load-balancing mechanism and in this paper we

propose large scale simulation, with up to 16 LPs
and a real scenario.

Barcel6 et al. [21] use a multi-core architecture
as well for their parallel microscopic simulator.
The limitations of their approach are that the
speed-up is logarithmic and the accuracy (i.e., how
close it is to the results obtained with a single
engine) of the parallel simulator is not 100%. On
the contrary, dSUMO shows a linear speed-up and
a perfect accuracy [14]. Another point worth men-
tioning is that the workload partitioning in [21]
is not the usual space partitioning but a driver
partitioning: the agents (drivers) are distributed
over the different computing nodes. This has been
proven inefficient for microscopic traffic simula-
tions given the complexity of the car following
models (how each driver makes a decision based
on the car before them) which requires a lot of
communication between partitions [22].

Nagel and Rickert [23] propose a parallel ver-
sion of Transims implementing a master/slave
model of communication and an interesting
pseudo-load-balancing — they use a heuristic to
adapt the load at each turn. Their results, although
the authors admit their solution does not scale,
are very good and interesting. dSUMO is differ-
ent on three aspects: it is fully decentralised, it
has an explicit load balancing mechanism and it
can accommodate different microscopic simulator
systems running the same global simulation.

dSUMO is a multi-engine distributed traffic
simulator, i.e., it can ,in theory, run various micro-
scopic simulators together in a single distributed
simulation. What dSUMO requires is only that the
simulators provide APIs that allow to dynamically
instrument the simulation engine (e.g., SUMO’s
Traci, VISSIM’s COM interface). So far we have
focused on SUMO, a very popular [10] open-
source microscopic traffic simulator. SUMO has
been used extensively in research projects with
high visibility, such as, iTetris [24] or CityMo-
bil [25]. We have shown [14] that the accuracy of
dSUMO is almost 100%, which means that there
is no difference between running a distributed
simulation and the same simulation on a single
node in terms of the results obtained. In the current
paper, we address the other main challenge of dis-
tributed traffic simulations: the performance of the
distributed system. We show that the decentralised
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nature of dSUMO (i.e., there is no central entity
for the synchronisation) and the load-balancing
technique implemented make dSUMO scalable
and improve the running time of the simulation.

ITII. DSUMO

In this section, we describe the architecture of
our solution and the different choices we have
made to ensure the scalability of dSUMO: a
dynamic load-balancing and a conservative local
synchronization mechanisms.
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Fig. 1: Software architecture of our decentralized dis-
tributed platform.
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A. Architecture

Figure 1 presents the software stack of dSUMO.
At the top of the stack are the objects used for
the communication between nodes: Client and
Receiver. When a connection is made with a
neighbour, a Client and a Receiver are created
to respectively send and receive information from
this neighbour. Messages exchanged contain syn-
chronization information, vehicles data and load
exchange. Incoming data is parsed and then in-
serted into the shared memory. Shared objects
are managed by the singleton Memory Manager
which ensures their consistency and manages con-
current access. Simulation Manager is the core of
dSUMO and handles the simulation at a high level.
The Simulation Manager initiates the simulation
and executes sequentially the following phases:
processing of new steps, transferring vehicles data
to Clients (i.e., sending them to the neighbours

when they cross the borders between partitions),
applying vehicles data from Receivers (i.e., new
vehicles arriving from neighbouring nodes), and,
if required, triggering dynamic synchronization
and dynamic load-balancing. The Border Manager
is a singleton handling the links between Clien-
t/Receiver and incoming/outgoing borders. Other
objects request the Border Manager when they
receive or send vehicles data. When the load is
balanced during the simulation, the Border Man-
ager ensures that the borders remain consistent.
Graph Manager stores the sub-graph of the road-
network representing the partition as well as road
data (e.g., speed limits). When the load-balancing
mechanism is triggered, the Graph Manager pro-
vides the different exchangeable roads and their
connections. Graph Manager also ensures the con-
sistency of the sub-graph throughout the simula-
tion. Finally, Vehicle Manager provides a broad
range of high level functions: retrieving vehicles’
and borders’ data and adding, removing and mod-
ifying simulation elements such as vehicles. At
a lower level, Simulation Interface manages the
connection with the simulator. We developed our
own interface based on TraCI4J, a Java adaptation
of SUMO communication interface TraCI. Finally,
the simulator SUMO processes the simulation.
However, dSUMO is extensible and can easily be
interfaced with others traffic simulators.

B. Conservative Local Synchronization

As explained by Fujimoto [26], two types of
synchronization mechanisms can be used in dis-
tributed simulations: conservative and optimistic.
A synchronization is conservative when all LPs
know when they can process safely the next step
or event, while a synchronization is optimistic
when LPs process steps/events that may lead to
inconsistencies (they then need to roll-back to a
coherent state). There is no consensus on which
mechanism is the best and it is suggested to be
scenario dependent. However, while the optimistic
mechanism prevents some waiting time, it requires
a roll-back mechanism which can be expensive
in terms of processing time as well as memory
consumption; especially in the context of traffic
simulation where reversing a step is not easy or
even possible.
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C. Borders Management

In order to compute the next position of a vehi-
cle on a road, SUMO needs information about the
preceding vehicle such as speed and acceleration.
To make sure that the simulator has this informa-
tion, the borders between two LPs are duplicated
and processed by both. When a vehicle arrives at
an outgoing border, it is sent to the next LP but the
original LP keeps the vehicle in its simulation. At
the following step, the next LP processes the new
position, speed and acceleration of the vehicle and
send them to the original LP which corrects the
position of the vehicle on its part of the shared
border. Therefore, if a traffic jam appears on one
side, it will grow properly through the border if
needed. The duplication of the borders creates
some difficulties and constraints but this is the
price to pay to have an accurate distributed simu-
lation. For instance as if dSUMO needs to ensure
that vehicles do not ’jump” over a border when
the simulator runs step-by-step (e.g., SUMO). In
dSUMO this is solved by an algorithm that makes
sure that the length of the road at the border
between partitions is long enough to see every
vehicle crossing the border (avoiding the jumping
risk): checking both the length of and speed limit
on roads when partitioning.

IV. DYNAMIC LOAD-BALANCING

As mentioned in the introduction, a load-
balanced simulation is desirable as it makes better
use of the resources provided by the different
LPs. However, as a simulation progresses, the
workload on each LP may evolve and the system
is likely to become unbalanced. In this section
we present a Dynamic Synchronization (DS) and
Dynamic Load-Balancing (dLB) mechanisms for
decentralized simulations. The algorithm is trig-
gered by an LP that we call here tLP when the
difference between its load and its neighbours’
loads is greater than a defined threshold (in our
scenario, the threshold is set at 40%).

A. Dynamic Synchronization

Two algorithms [27], TaSyn and GenSyn, per-
form dynamic synchronization in a decentralized
distributed simulation. Most distributed simula-
tions rely on central entities for synchronization,

creating a risk of bottlenecks when the number of
LPs increases. dSUMO synchronizes only locally
to tackle this risk, which makes a global synchro-
nization more complicated: for instance when all
LPs need to decide which simulation step is the
deadline before a load-balancing. TaSyn and Gen-
Syn have different mechanisms to address this:
TaSyn uses the eccentricity of the graph formed
by the interconnected LPs to suggest to each LP a
step to stop at (this use the fact that an LP can only
be a step ahead of its neighbours).GenSyn does not
require any topological information to perform the
same task but is a bit slower than TaSyn. GenSyn
starts by sending a request to its neighbours to
know which LP is the most advanced in their
surrounding. The request is propagated in every
LP which stops its simulation and gets back with
the step of the most advanced LP. GenSyn then
sends a second message including the step where
everyone should synchronize. It is a bit slower as
two ‘waves’ of messages need to be sent and LPs
cannot continue the simulation during this time.

B. Dynamic Load Balancing

In a prior work [28], we presented a global dy-
namic load-balancing (DLB) algorithm, working
on a simulation of flocks of birds, to show its
efficiency against common local load-balancing.
Figure 2 shows the theoretical differences between
dynamic global load-balancing (a) and dynamic
local load-balancing (b). In Fig. 2 (a), the simula-
tion stops longer than in Fig. 2 (b) but produces a
better result and has an immediate impact, while in
Fig. 2 (b) the load needs to be propagated through
several LPs before an approximated balance is
reached. The general idea is to gather topological
information during the global synchronization and
spread the load evenly among the LPs in one shot.
The algorithm introduced in [28] was presented
as a proof-of-concept and, after further analyses,
showed some limitations in the context of traffic
simulations. First of all, the algorithm can only
send load currently on the borders between the
sender and the receiver (excluding, for instance,
crossroads connected to the sender, the receiver
and a common neighbour). This limitation reduces
the amount of exchangeable parts and, in the
long term, creates complex and communication-
inefficient regions. Second, when the number of
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Fig. 2: Theoretical evolution of global load-balancing (a) and local load-balancing (b) techniques.

LPs increases, circular exchanges (LP A gives
load to LP B, which gives to LP C, which gives
load to LP A, etc.) generate deadlocks. Finally,
the algorithm was designed to balance space-
partitioned environments, which has been demon-
strated inefficient for traffic simulation [23], [29].
However, the new DLB algorithm we present in
this paper comes from the same general ideas, but
removes the risk of deadlocks, works on graph-
like environment and allow mores freedom in the
exchanges.

When LPs answer to the dynamic synchroniza-
tion, they send information about their current
load as well as which LPs are their neighbours
to tLP, the LP triggering the synchronization. tLP
then generates a matrix of loads to be exchanged
between any two LPs in the system. The matrix is
simplified until at maximum only one exchange
remains between any two LPs and circular ex-
changes are removed. Next, rLP establishes an
order in which loads are going to be exchanged to
maximize the number of exchangeable roads. This
slows down the load-balancing process a little but
improves the quality of the results. Finally, tLP
sends exchange orders which are propagated over
to every LP. Locally, the load balancing is done
by transferring crossroads, roads and vehicles,
from one LP A to one of its neighbours B, with
the goal to minimize the number of borders and
maximize the balance. The algorithm is based on
a region-growing mechanism. It starts by ranking
all exchangeable crossroads at the border between

A and B. Next, the algorithm spreads selecting
crossroads and adding their neighbours into the
list of exchangeable crossroads. The process is
repeated until the required amount of vehicles to
be sent is reached. The heuristic used to rank the
crossroads is an average of a crossroads’ values
and their surrounding’s values, following those
equations:

hs(c) +Zﬁi1 hs(ni)
N+1

h(c) = (1)

hs (C) _ Bborders (2)
Rnormal

with ¢ the current crossroad, n the list of
neighbours of ¢, N the number of neighbours,
Bporders and Ryopmar, respectively the number of
roads connected to ¢ which are borders and the
ones which are normal. Therefore, the stronger a
crossroad and its surrounding are connected to the
neighbouring LP, the higher its value will be.

To balance between the constraint of minimiz-
ing the communication and maximizing the load-
balance, the algorithm also uses two thresholds,
a lower threshold It and an upper threshold Iu,
calculated as a percentage of the load to exchange.
When It is reached, the algorithm starts recording
the crossroads selected and stores the crossroad at
which the number of borders is minimized. When
lu is reached, the algorithm stops and roll-backs to
the last stored crossroads between It and [u. This
method allows a trade-off between the number of
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borders generated and the load balance. See Figure
3 for a graphical description of the algorithm used
for dynamic load-balancing in dSUMO. Empirical
results show that, in our scenarios, 60% and 140%
of the original load to exchange are efficient lower
and upper thresholds.

Select list of suitable
crossroads

Rank the list with the
cost-function

Select best crossroad
and add the surrounding
crossroads to the list

No Low threshold
reached?

Yes

BILGE S Yes [ store crossroad
configuration so D
far?
No
No
High threshold
reached?
Yes

Rollback until best
configuration

Fig. 3: Flowchart of the dynamic load-balancing algo-
rithm.

V. EVALUATION

Our experiments have been conducted on Vir-
tual Machines (VMs) with dual cores at 2.2GHz,
3GB of RAM running Windows 7. VMs are
inter-connected with a 100Mb/s and communicate
through Java sockets using TCP.

The environment we simulate is the city of
Cologne, Germany, using the TAPASCologne sce-
nario[30]. It is composed of 30,356 nodes and
68,642 edges representing intersections and road
segments. In total 252,007 vehicles run on the sim-
ulation with a maximum of 130,000+ simultane-
ous vehicles. The simulation models the evolution
of the traffic from 6am to 8am. The traffic starts
appearing slowly all over the city and converges
to the city centre leading to important traffic jams.

We partitioned the environment into 4, 8, 12
and 16 partitions using three different parti-
tioning techniques: Quad-Tree, Smart Quad-Tree
and SParTSim [29], [31]. Quad-Tree and Smart
Quad-Tree are space partitioning algorithms, while

SParTSim uses a region growing technique. Quad-
Tree divides the space into four partitions of equal
size. Then it keeps dividing the largest partition
by four until a specific number of partitions is
reached. Smart Quad-Tree, on the other hand,
starts by dividing the space into a large number
of small tiles. Then, it chooses n tiles to be the
starting points of the n partitions requested. One
after the other, partitions choose surrounding tiles
with the goal to minimize the number of roads at
the border. As long as tiles are available, partitions
keep growing. SParTSim is an algorithm designed
to partition environments for traffic simulation and
works in three phases. First, the algorithm chooses
nodes on the road network, called seeds, according
to their importance (based on the number and the
hierarchy level of incoming and outgoing roads).
The seeds grow by merging with surrounding
nodes until no node is free (i.e., does not belong
to any partition). The second phase consists in
load balancing the partitions. Overloaded parti-
tions send nodes to under-loaded partitions until
the partitioning is balanced. During the last phase,
the algorithm sacrifices a part of the balance to re-
establish the connectivity within the partitions in
case it is lost during the balancing phase.

The experiments focus on evaluating (i) the

time gained thanks to the dynamic load-balancing
mechanism, (ii) the cost of the synchronisation
between the LPs, (iii) the speed-up gain with the
distributed simulation.
The time gain with the dynamic load-balancing
mechanism is measured by subtracting the time
required to run the simulation with the mechanism
to the time required without. The synchronization
time is measured by subtracting the simulation
time to the time it would have required to run the
heaviest region on SUMO. The difference includes
the time required to scan the borders, extract the
vehicle data and send them to the neighbours,
receive neighbours data and treat them. Finally
the speed-up is measured by dividing the time
required for a single instance of SUMO to run
the scenario by the time required by dSUMO on
the same scenario.

VI. RESULTS

We refer to every experiment in this Section
using three elements: dLB if the dynamic load-
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4SPS 4SQT 4QT

No dLB (3) || 244722 | 2,895.13 | 2,638.69

dLB (s5) 2,16597 | 2,022.96 | 2,043.29
Gain (%) 11.53 30.13 2252
8SPS 8SQT 8QT

No dLB (5) || 1,879.96 | 1,553.61 | 2,722.82

dLB () 1,514.87 | 1,186.19 | 1,515.31
Gain (%) 19.42 23.65 1434
12SPS | 12SQT 12QT

No dLB (s) || 1,487.41 | 1,483.08 | 2,687.86

dLB () 1,076.78 | 1,089.80 | 1,202.73
Gain (%) 27.60 26.51 55.26
16SPS | 16SQT 16QT

No dLB (s) || 1,030.12 | 1,987.76 | 1,346.56
dLB (s) 89499 | 1,04821 | 919.24
Gain (%) 13.12 7727 3173

Table 1: Simulation time gain with Dynamic Load-
Balancing

balancing has been used, the number of partitions
(i.e., 4, 8, 12 or 16) and the partitioning scheme
used (i.e., QT, SQT or SPS, for QuadTree, Smart-
QuadTree and SParTSim, respectively).

Figure 4 represents the time required by the
slowest LP to simulate one step when the
dynamic load-balancing mechanism is disabled
(curve named Time per Step - no DLB), and when
it is enabled (curve named Time per Step - DLB).
On the other hand Figure 5 represents the time
required by the time the fastest LP has to wait at
each step when the load-balancing mechanism is
disabled (curve named Waiting time per Step - no
DLB), and when it’s enabled (curve named Waiting
time per Step - DLB). The graphs show the curves
as well as their trends to improve readability.
Figure 4 presents a clear reduction of the time
required to simulate one step; however the load-
balancing mechanism has a bigger impact on the
maximum waiting time per step. Figure 5 shows
that the mechanism maintains an almost constant
waiting time through the simulation. The steps
when the load-balancing mechanism is triggered
are easily identifiable around the steps 1000, 2050
and 5250, as the waiting time increases dramati-
cally for one step but then gets back lower than it
was previously.

Tablel presents the time gained when using the
dynamic load-balancing mechanism throughout
the simulation. The gains in percentage vary from
11.53% to 55.26% with an average of 29.42%. The
dynamic load-balancing mechanism is highly de-

pendent on the original partitioning scheme: when
the original partitioning is good, the effect is small
(e.g. 11.53% for 4SPS) and when the original
partitioning is bad, the effect is important (e.g.
55.26% for 12QT). The time required to perform
the dynamic synchronization is directly dependent
on how strongly connected the distributed simu-
lation is. The more connected it is, the faster the
messages will propagate to the furthest LPs and
come back. The time required for the dynamic
load-balancing, on the other hand, is dependent on
how much unbalanced the distributed simulation
is. If important amounts of workload need to be
exchanged, the dynamic load-balancing process
will take more time.

Figures 6 show the evolution of the total syn-
chronization time required by the different sce-
narios. The time required to perform the synchro-
nization is dependent on the number of borders
to scan and the number of vehicles which need
to be transferred between partitions or updated.
When the number of partitions increases, to keep
the load balanced, the size of the borders increases
as well. While a distributed simulation with a
central unit would have to deal with the increasing
amount of data exchanged, in our decentralized
platform, the synchronization process is shared
among all the LPs. Therefore, as shown in our
results, the synchronization time remains stable,
or even decreases, when we increase the number
of neighbours.

Figures 7 show the speed-up gain in the differ-
ent scenarios. As the synchronization and the sim-
ulation processing are distributed over all the LPs,
the speed-up grows linearly when we increase the
number of partitions for QT (Figure 7(a)) and SPS
(Figure 7(b)). The linearity of SQT, Figure 7(c),
is broken due to better-than-expected results for 8
partitions and lower-than-expected results for 16
partitions. The values in table 1 show that the
original partitioning for 8SQT and the dynamic
load-balancing mechanism achieve results much
better than 8QT and 8SPS. On the other hand,
the values show that 16SQT performs worse than
16QT and 16SPS.

VII. DISCUSSION

In distributed simulations, the overall simulation
time is impacted by three elements: the processing
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time of each individual simulators, the commu-
nication time and the synchronization time. The
first element is defined by the simulator used
and issues such as unbalancing are solved with a
load-balancing algorithm. The second element is
limited by the network connection used. The last
element is the synchronization cost (in other words
the overhead due to the distribution) and can be
unfairly spread among the LPs in a decentralized
context. The complexity required to balance the
synchronization cost over the LPs can dramati-
cally change depending on the type of environ-
ment simulated: space or graph. In our previous
work[28], we simulated a flock of birds in a 2D
environment, partitioned with space-partitioning
algorithms producing square tiles. The regularity
of the tiles (each tile has exactly 8 neighbours)
strongly links the size of the borders with the
circumferences of the partitions. Border-balancing
algorithms can use this regularity to improve their
efficiency, but the regularity is absent in graph-
like environments such as road networks. Road
networks are represented by an oriented graph
with each nodes having x incoming edges and
y outgoing edges. Graph partitioning algorithms
such as METIS [32] or SParTSim [29] can balance
the number of edges at the borders, however they
require knowledge of the entire graph to process
the partitioning. In the context of decentralized
distributed simulation, each partition has by defini-
tion only a local knowledge, limiting the efficiency
of traditional graph partitioning algorithms. As far
as we know, the problem of borders-balancing
has not thoroughly been addressed in the context
of decentralized distributed simulation and we
believe that it would be an interesting and useful
research topic.

VIII. CONCLUSION

We have presented in this paper our Self-
Balancing Decentralized Distributed Platform for
Urban Traffic Simulation to address the following
problems: how can we distribute a microscopic
traffic simulator, such as, SUMO, over several
LPs? How can we improve the synchronization
mechanism to increase the scalability of a dis-
tributed traffic simulator? And how can we bal-
ance a distributed simulation in a decentralized
context?

We showed that our solution has a speed-up of
5.5 with 16 LPs. More importantly, the speed-
up keeps improving at a linear pace while we
increase the number of LPs in the distributed
simulation up to 16 LPs. The dynamic load-
balancing algorithm we propose is able to deal
with both the evolution of the load and the defect
of the original partitioning. Finally, we showed
that the decentralized synchronization mechanism
is scalable as the time required to synchronize
the LPs is constant when we increase the number
of LPs. It is important to notice that while the
experiments in this paper have been conducted
on SUMO only, dSUMO is microscopic simulator
agnostic: as long as the simulator engine comes
with APIs allowing to dynamically instrument the
simulation (e.g., add/remove vehicles at run time),
it can be added to dSUMO easily. In our future
work, we would like to (i) test our platform on a
larger and more complex scenario to verify that
equivalent results can be obtained independently
of the simulated environment, (ii) run our platform
on a multi-core machine to test the improvement
of the simulation time when the communication
are reduced to a minimum and (iii) include the
possibility to add and remove new LPs at runtime
to adjust the number of LPs according to the
global load, therefore making our platform more
dynamic and fault-tolerant.
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