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Abstract Regression analysis is performed on a dataset of temperature-dependent material
properties of several ceramic materials. The materials considered are alumina, aluminium ni-
tride, beryllia, fused quartz, sialon and silicon nitride. The properties considered are density,
Young’s, bulk and shear moduli, Poisson’s ratio, tensile, flexural and compressive strength,
thermal conductivity, specific heat capacity, and thermal expansion coefficient. The dataset,
previously reported by the current authors [1], was compiled to facilitate the materials selec-
tion and design of a ceramic component for the Variable Specific-Impulse Magnetoplasma
Rocket (VASIMR®). Temperature-dependent material property data are required for accu-
rate thermo-structural modelling of such ceramic components which operate over a wide
temperature range. The goal of this paper is to calculate a set of regression coefficients to
reduce this dataset to a tractable format for use in the materials selection and design of such
components. Regression analysis could not be performed for all material properties for all
of these materials, due to a lack of data in the literature, and these gaps in the available data
are highlighted.

Keywords regression analysis · ceramics · thermal properties · mechanical properties

1 Introduction

Representative material property data, given as a function of temperature where possible,
have been gathered from the literature, reviewed, and previously reported by the current
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authors for material specifications of alumina, aluminium nitride, beryllia, fused quartz,
sialon and silicon nitride [1]. The material specifications have been chosen to best reflect
advanced commercially available material grades. The compiled dataset is not a review of
all existing data, but a representative summary of data for commercially-available material
grades. Property data in the open literature is sparse for some material properties for certain
materials; in particular for fused quartz and sialon materials, and for tensile and compressive
strength properties.

These material property data have been collated to aid in the materials selection and
design of a gas containment tube (GCT) for the helicon section of the Variable Specific-
Impulse Magnetoplasma Rocket (VASIMR®) [2–5], an advanced electric propulsion rocket
currently being developed by the Ad Astra Rocket Company, Houston, Texas. This dataset
can be used in the engineering design of ceramic component with complementary material
requirements, such as the selection of materials for microwave and RF waveguide windows,
dielectric components in ion engines and hall thrusters, dielectric heat spreaders in electron-
ics, as well as components for other advanced plasma devices such as ITER [6, 7].

For ceramic components which may experience high temperatures during operation,
consideration of the variation of material properties with temperature is essential for accu-
rate modelling and materials selection. Regression analysis is performed on the tempera-
ture dependence of material property data from this dataset for alumina, aluminium nitride,
beryllia, fused quartz, sialon and silicon nitride. The goal of the regression analysis is to
calculate a set of regression coefficients which, in conjunction with the regression functions,
form a simplified, self-consistent representation of the material property dataset. Reducing
the dataset to regression data allows design engineers to efficiently use the data. Such data
are particularly useful for use in numerical simulations; e.g. such as [7–9]. The resulting
regression data can be used by design engineers in the initial stages of design, to model the
performance of systems containing these materials over a wide range of temperatures.

The material properties which are independent of each other are analysed independently.
The related material properties of Young’s, bulk, and shear moduli and Poisson’s ratio are
analysed simultaneously in order to yield a self-consistent dataset. The procedure used to
analyse related material properties simultaneously is described in Section 2.3. Regression
analysis was not possible for every material property for each material, due to the limited
data available,but have been presented where possible. The material properties considered
here are listed in Table 1. Representative room temperature values, are given in Table 2 for
ease of reference.

Table 1 Material properties considered.

Mechanical Thermal

Density Thermal Conductivity
Young’s Modulus Specific Heat Capacity

Bulk Modulus Thermal Expansion Coefficient
Shear Modulus
Poisson’s Ratio
Tensile Strength
Flexural Strength

Compressive Strength

It is recognised that some observed quantities, such as density, elastic moduli, Poisson’s
ratio, specific heat capacity and thermal expansion coefficient, are directly related to inter-
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Table 2 Representative room temperature (20 ◦C) material property values. Values given in this table may
differ somewhat from values calculated from the curve fit equations. Due to the nature of the fitting procedure
the curve fit line does not always pass directly through the value for the best estimate of the room temperature
property value.

Property Units Alumina Aluminium Beryllia Fused Sialon Silicon
Nitride Quartz Nitride

Density g·cm-3 3.91 3.28 2.85 2.20 3.32 3.21
Young’s Modulus GPa 400 320 – 72.5 – –
Shear Modulus GPa 160 130 – 31.0 – –
Bulk Modulus GPa 255 195 – 37.0 – –
Poisson’s Ratio - 0.24 0.23 – 0.17 – –
Flexural Strength MPa 380 320 225 – – 775
Tensile Strength MPa 265 – – – – 660
Compressive Strength GPa 3.0 – – – – –
Specific Heat Capacity J·kg-1·K-1 765 715 990 730 725 680
Thermal Conductivity W·m-1·K-1 32.0 170 270 1.35 11.5 31.5
Instantaneous CTE ×10−6 K-1 5.28 2.29 5.50 0.43 1.34 1.35
Average CTE ×10−6 K-1 5.13 2.16 5.40 0.41 1.23 1.27

atomic bonding. These may be referred to as ‘intrinsic material properties’. Other observed
quantities, such as flexural, tensile and compressive strength, and thermal conductivity are
strongly dependent upon external factors such as processing, forming, finishing, environ-
mental conditions, and the details of the testing procedure. These may be referred to as
‘extrinsic material quantities’, due to their dependence on external factors. However in this
paper both intrinsic material properties and extrinsic observed quantities are referred to as
‘material properties’ for simplicity.

2 Regression Procedure

All curve fitting in this work is done on a least-squares basis. Regression models are used
which represent a mathematical relationshp between the independent variable and the ob-
servations. A residual εi is defined as the difference between the observed data value yi and
the predicted data value ŷi from the regression model f :

εi = yi − ŷi (1)

The sum-of-squares method seeks to find the coefficients of the regression model by min-
imising SS, the sum of the square of the residuals:

SS(a,b . . .) =
N

∑
i=1

ε
2
i =

N

∑
i=1

(yi − ŷi)
2 (2)

=
N

∑
i=1

(
yi − f (xi,a,b . . .)

)2 (3)

where a,b . . . are the curve fit coefficients used in this particular curve fit model; the number
used depends on the model. yi is an observation value, observed at independent variable
value xi, and f is the curve fit model. This form of the sum of squares is termed the un-
weighted sum of squares.
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Non-linear regression models are used in this study, requiring the use of an iterative
solver. The trust-region algorithm implemented in MATLAB® (The MathWorks®, 3 Apple
Hill Drive, Natick, MA 01760-2098, USA; MATLAB® Version 7.4.0.0287 (R2007a)) is
used in this study for this purpose.

No claim is made of the regression models representing the underlying physics of the
variation of the material properties with temperature; they simply act as convenient mathe-
matical expressions. For each material property, the simplest curve fitting model available
that adequately describes the data is used. A summary of the regression functions used is
given in Table 3, and their individual use will be justified in Sections 2.2.2 to 2.2.5 and in
Section 2.3 of the current paper.

Table 3 Summary of regression functions used. The units of temperature used for all regression fits are
degrees Celsius (◦C).

Property Materials Function Equation

Young’s Modulus Alumina, Aluminium Nitride E (T ) = aT 2 +bT + c 22
Fused Quartz E (T ) = aT 3 +bT 2 + cT +d 19

Shear Modulus Alumina, Aluminium Nitride G(T ) = aT 2 +bT + c 22
Fused Quartz G(T ) = aT 3 +bT 2 + cT +d 19

Bulk Modulus Alumina, Aluminium K (T ) = aT 2 +bT + c 22
Fused Quartz K (T ) = aT 3 +bT 2 + cT +d 19

Flexural Strength Alumina σ (T ) = a− b
1+ cexp(−dT )

9

Aluminium Nitride, Silicon Nitride σf (T ) = a−bT 2 11
Beryllia σf (T ) = a−b(T − c)2 12

Tensile Strength Alumina σt = a−b
(

1√
1+ cexp(−dT )

)
10

Silicon Nitride σt (T ) = a−bT 2 11
Compressive Strength Alumina σc (T ) = aT 2 +bT + c 22
Specific Heat Capacity Alumina, Aluminium Nitride, cP (T ) = a+bT − cexp(−dT ) 13

Beryllia, Sialon, Silicon Nitride
Fused Quartz cP (T ) = aT 4 +bT 3 + cT 2 +dT + e 15

Thermal Conductivity Alumina λ (T ) = a+
bexp(−cT )

T +d
16

Aluminium Nitride, Beryllia λ (T ) =
aexp(−bT )

T + c
17

Fused Quartz λ (T ) = aT 4 +bT 3cT 2 +dT + e 15

Sialon, Silicon Nitride λ (T ) = a+
b

T + c
18

Instantaneous CTE Alumina, Aluminium Nitride, α (T ) = a+bT − cexp(−dT ) 13
Beryllia, Sialon, Silicon Nitride
Fused Quartz α (T ) = aT 3 +bT 2 + cT +d 19

Average CTE Alumina, Aluminium Nitride, ᾱ (T ) = a+bT − cexp(−dT ) 13
Beryllia, Sialon, Silicon Nitride
Fused Quartz ᾱ (T ) = aT 3 +bT 2 + cT +d 19

2.1 Weightings

The dataset analysed contains experimental observations from numerous different exper-
iments [1], and differing numbers of observations are reported from each experiment. A
procedure is required to ensure that experiments reporting observations at closely spaced
temperature intervals do not unduly influence the calculation of the regression coefficients
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over those experiments reporting observations at fewer temperatures. This is done by calcu-
lating weightings for each observation.

For each material property, data is obtained from J different experiments. Some experi-
ments report many data points as a function of temperature, while others report a single data
point at a single temperature. The assumption is made that each experiment, whether yield-
ing one or many data points, is of equal validity, and thus should be given equal weighting
in the curve fitting process. If each individual data point were given equal weighting, exper-
iments reporting data at closely spaced temperature intervals would predominate over those
reporting data more sparsely with temperature.

The number of observations in each of the J experiments is denoted K j, 1≤ j ≤ J, where
K j will in general be different for each experiment. The total number of observations from
all experiments is denoted N. The weight assigned to each observation w j

k is given by:

w j
k =

N
J×K j (4)

For the weighting w j
k, the superscript j indicates that the weighting pertains to data from

experiment j, 1 ≤ j ≤ J, while the subscript k indicates that the weighting is for the ob-
servation k from that experiment, 1 ≤ k ≤ K. The total weighting given to the experiment
j—that is, the sum of the individual weightings for all observations in the experiment—is:

w j =
K j

∑
k=1

w j
k = K j ×

(
N

J×K j

)
=

N
J

(5)

Therefore, the experiment has the same total weighting of N/J, independent of the number
of observations in each experiment. The sum of all weightings wtot is given by:

wtot =
J

∑
j=1

w j = J×
(

N
J

)
= N (6)

The un-weighted sum-of-squares is equivalent to having a weighting of 1 for all observa-
tions, in which case the sum of all weightings would also be N.

Thus, we will use weighted least-squares regression, minimising the following sum of
squares:

SS(a,b . . .) =
N

∑
i=1

wi (yi − ŷi)
2 (7)

=
N

∑
i=1

wi
(
yi − f (xi,a,b . . .)

)2 (8)

Here wi are the weightings of each observation, 1 ≤ i ≤ N.

2.2 Independent Curve Fitting

Density, flexural, tensile and compressive strength, specific heat capacity, thermal conduc-
tivity and coefficient of thermal expansion are considered independently in this work. The
details relating to the regression analysis of these material properties are discussed in this
section.
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2.2.1 Density

Density measurements come from both X-ray diffraction measurements and direct density
estimates [1]. These two measurements are used together for some but not all materials to
estimate density.

Density variations with temperature are related to thermal expansion coefficients. How-
ever, in general the change in density with temperature is very small, and in any case for
numerical simulations, changes in density may be calculated automatically by numerical
software from thermal expansion coefficients.

For density, the variation with temperature is not considered, and the average of room
temperature density data is taken for each material. Thus, a curve fitting procedure is not
required.

2.2.2 Flexural, Tensile and Compressive Strength

Munro [10] uses the following regression model for the flexural strength of alumina:

y(T ) = a− b
1+ cexp(−dT )

(9)

and uses the following one for the tensile stregth of alumina:

y(T ) = a−b
(

1√
1+ cexp(−dT )

)
(10)

where T is temperature (◦C). For the compressive strength of alumina, Munro uses a
quadratic polynomial. For the flexural, tensile and compressive strength of alumina, only
a small number of additional sources could be found over those identified in the Munro
review. Therefore, the regression functions and coefficients recommended by Munro for
these properties are used here also, and are given in Table 3 and Table 4, respectively.

For the flexural strength of aluminium nitride, and the flexural and tensile strength of
silicon nitride, the following regression function is used:

y(T ) = a−bT 2 (11)

For beryllia there are large difference between the data of Beaver et al. [11], Carniglia et
al. [12] and Fryxell & Chandler [13]. This leads to there being no satisfactory way to fit one
function to all the data. Due to the fact that the experimental method of Fryxell & Chandler
is described very clearly, and the fact that the data of Fryxell & Chandler is intermediate to
that of Beaver et al. and Carniglia et al., the data of Fryxell & Chandler alone is used for the
current regression analysis of beryllia. Unlike alumina, aluminium nitride or silicon nitride,
it is clear from the data that there is an increase in flexural strength in beryllia at intermediate
temperatures. Thus, the regression functions used for alumina, aluminium nitride or silicon
nitride are not suitable. Instead, the following quadratic function is used:

y(T ) = a+b(T − c)2 (12)

For fused quartz no temperature-dependent data exist in the original dataset. For sialon
only one RT flexural strength value and one value at elevated temperatures is given. There-
fore, no regression analysis is performed for flexural or tensile strength for these materials.

The absence of intermediate temperature data for ceramics leads to uncertainty in the
form the regression model should take. In this work regression functions which yield the
lowest sum of error estimate (SEE) are chosen.
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2.2.3 Specific Heat Capacity

The regression function used by Munro [10] for alumina is:

y(T ) = a+bT − cexp(−dT ) (13)

For fused quartz a polynomial is used. In order to choose the polynomial degree to use for
fused quartz, polynomials of increasing degree were fit to the data. The fit order at which
the variance σ2, as computed below, showed no further statistically significant decrease,
provides the best model [14]:

σ
2 =

N
∑

i=1
ε2

i

N −m−1
(14)

where σ2 is the variance, ε are the residuals, N is the number of data points and m is the
degree of the polynomial. For this dataset, the variance was a minimum for a fourth degree
polynomial:

y(T ) = aT 4 +bT 3 + cT 2 +dT + e (15)

2.2.4 Thermal Conductivity

For alumina the following regression function, used by Munro [10], is used:

y(T ) = a+
bexp(−cT )

T +d
(16)

For aluminium nitride and beryllia a modified form of Equation (16), without the constant
term, is used here:

y(T ) =
aexp(−bT )

T + c
(17)

This provides a fit with a lower SEE than the un-modified equation, yielding a better fit for
these materials than Equation (16).

For fused quartz, curve fits are presented for both the true and effective thermal conduc-
tivity. All data up to 350 ◦C is used in the regression analysis of both true and effective ther-
mal conductivity. For the effective thermal conductivity, above 350 ◦C data of Sugawara [15]
is used. For the true thermal conductivity, above 350 ◦C data of Sergeev et al. [16] is used.
Fourth-degree polynomials, Equation 15 are used for both properties. For fitting sialon, the
following function was found to provide a fit with a lower SEE than either Equation 16 or
Equation 17, and was thus used:

y(T ) = a+
b

T + c
(18)

This is in essence a simplified version of the Munro equation without the exponential term.
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2.2.5 Coefficient of Thermal Expansion

In this work regression analysis is performed independently on coefficient of thermal expan-
sion (CTE) data. For crystalline materials, the macroscopic CTE and the lattice parameters
are inter-related properties. Where lattice parameter data are also available, global regres-
sion analysis can be performed on these and macoscopic CTE data in order to yield the best
overall data set.

Data for mean and instantaneous CTE, definitions of which may be found in [1], must
be clearly distinguished. In this work 0 ◦C is taken as the reference temperature for the mean
CTE. Curve fitting is first performed for instantaneous CTE data. A corresponding curve fit
for the mean CTE is then calculated from this using the relevant equation.

One form of fitting function that can be used for CTE is Equation 13, the functional form
used by Munro [10] for CTE, (the same as the functional form used by Munro for specific
heat capacity). This functional form can be used either for the mean or instantaneous CTE.
For alumina, Equation 13 is used in this work. The data of Munro [10] is for the mean
CTE, so this has been converted to instantaneous CTE values. For aluminium nitride and for
beryllia the data presented by Slack & Bartram [17], not included in the preceeding work by
the current authors [1], are considered the most reliable are used as the recommended curve.
The regression coefficients in Table 4 for aluminium nitride and beryllia are for a curve fit
of these data.

For fused quartz, a cubic polynomial is used as the regression model:

y(T ) = aT 3 +bT 2 + cT +d (19)

For sialon, only the thermal expansion data of Swab et al. [19] is available. It is deemed
that there is insufficient data to perform a curve fit.

2.3 Global Curve Fitting of Elastic Properties

For isotropic materials the Young’s modulus (E), bulk modulus (K), shear modulus (G) and
Poisson’s ratio (ν) are inter-related by simple relations. Although the crystals of ceramics
considered here are anisotropic, the macroscopic polycrystalline material may be consid-
ered pseudo-isotropic. In this work, curve fits are created simultaneously for these material
properties. The advantage of this approach is that it ensures self-consistent curve fits, as the
inter-relations are built into the fitting procedure. An additional advantage is to provide a
better curve fit for each property, by leveraging experimental data from all properties.

Although some variation in Poisson’s ratio does occur with temperature, this variation
is typically small. Thus, here the Poisson’s ratio is assumed to be constant with respect to
temperature. This assumption greatly simplifies the temperature-dependent inter-relations
between the elastic properties. The assumption makes the variations in E, K and G with
respect to temperature linearly proportional to each other. The same form of fitting equation
is used for these three properties. Each curve fit has three coefficients: z0, z1, z2 for Young’s
modulus; k0, k1, k2 for bulk modulus; and g0, g1, g2 for shear modulus. These coefficients
are not independent and are related by the proportionality between E, K and G. However, the
numerical value of the proportionality is not known a priori, and is determined implicitly
in the least squares minimisation. We have four independent variables to optimise: z0, z1,
z2 and ν . We minimise an objective function—a sum of squared error terms. The problem
is re-configured as a constrained optimisation problem, subject to the constraints imposed
by the elastic moduli equations. An equation is constructed for each data point of each
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material property to characterise its deviation from the curve fit equation for that material
property. The deviation measures for all data points from the four material properties are
then simultanesouly minimised in the least-squares sense.

As was done for the independent regression analysis discussed in Sections 2.1–2.2, the
assumption is made that each experiment is of equal validity, and is thus assigned equal
weighting. Here, the weightings used are wν , wE , wG and wK , for Poisson’s ratio, Young’s,
shear and bulk moduli, respectively. These account for the differing numbers of data points
reported from each experiment, ensuring that experiments for which a large number of data-
points are reported, are not given disproportionate influence. Additionally, these weightings
used for the global regression analysis of the elastic properties account for the different
numerical magnitudes of ν , E, G and K. The weighting used for each data-point is:

w j
k =

(
N

J×K j

)(
1

y j
k

)2

(20)

Here y j
k is the observation k, 1 ≤ k ≤ K from experiment j, 1 ≤ j ≤ J, while w j

k is the
weighting relating to that observation. The residuals which are minimised thus characterise
the deviation from each data-point as a fraction of the value of the data-point.

The Wachtman equation [20] has been shown to work well to describe the temperature
dependence of Young’s modulus or bulk modulus over a wide range of temperatures:

Y (T ) = Y0 −B ·T · exp
(
−T0

T

)
(21)

wherere Y0 is the Young’s or bulk modulus at 0 K, and both T0 [K] and B [GPa.K-1] are
empirical fitting parameters, related to the Debye temperature and Grüneisen parameter. The
parameter T0 is relatively sensitive to small variations or errors in Young’s or bulk moduli
data [21].

For the polycrystalline ceramics, the simultaneous curve fitting procedure was initially
attempted using the Wachtman equation. However, it was found that the parameter T0 was
too sensitive to scatter in the data. Therefore, a simple quadratic polynomial regression
model is used here instead:

y = aT 2 +bT + c (22)

In contrast to polycrystalline ceramics, the elastic moduli of fused quartz increase with
increasing temperature. For fused quartz a simple cubic polynomial (Equation 19) is used,
as per the approach previously discussed in Section 2.2.3:

In order to define the error functional, expressions are written for the deviation from the
curve fit equation:

εν ,i = νi −ν (23)

εE,i = Ei −
(
z0T 2

i + ziTi + z2
)

(24)

εG,i = Gi −
[(

z0T 2
i + z1Ti + z2

)( 1
2+2ν

)]
(25)

εK,i = Ki −
[(

z0T 2
i + z1Ti + z2

)( 1
3−6ν

)]
(26)

Here νi, Ei, Gi and Ki are the value of the regression function for Poisson’s ratio, Young’s
modulus, shear and bulk moduli, respectively, at the value of independent variable corre-
sponding to data point i, 1 ≤ i ≤ N. The objective function for minimisation is:
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SS(z0,z1,z2,ν) =
Nν

∑
i=1

wi (εν ,i)
2 +

NE

∑
i=1

wi (εE,i)
2 +

NG

∑
i=1

wi (εG,i)
2 +

NK

∑
i=1

wi (εK,i)
2 (27)

Here Nν , NE , NG and NK are the number of data-points for Poisson’s ratio, Young’s, shear
and bulk moduli respectively.

One limitation of the global curve-fitting method is that it does not work well for sparse
datasets. In this work, global curve fitting of the elastic properties has been performed for
alumina, aluminium nitride and fused quartz. However, for beryllia, sialon and silicon ni-
tride there were insufficient data in the available dataset to successfully perform global curve
fitting. Another limitation of the global curve-fitting method, particularly when used in con-
junction with a weighting system, is that outlier data values can have a significant effect on
the calculated curve fit. For the elastic properties of alumina and aluminium nitride, outlier
values were omitted from the global regression analysis. This resulted in the calculation of
a better fit for the remaining data.

3 Results

Curve fit coefficients are given in Table 4, along with cross-references to the applicable
equation from the preceeding analysis. Representative material property values at 20 ◦C are
given in Table 2. Representative property values at 20 ◦C may differ slightly from the value
calculated from the curve fit equation at 20 ◦C.

Values of Poisson’s ratio calculated from global curve fitting of the elastic properties are
as follows: alumina ν = 0.2401, aluminium nitride ν = 0.2250, fused quartz ν = 0.1723.
These values are used as the representative values of Poisson’s ratio at 20 ◦C, and are given
in Table 2, rounded to two significant figures.

Data values and calculated regression fits for five material properties for fused quartz
are plotted in Figure 1. Data values and calculated regression fits for thermal conductivity
of the six materials considered in this study are plotted in Figure 2.

All coefficients determined here are given to four significant figures in order to ensure
accurate reconstruction of the curve fit.

4 Conclusions

Regression analysis has been performed, where possible, on several material properties for
the six materials of interest. Insufficient data were available to allow for reliable curve fitting
of all material properties for all materials. A paucity of data exists for tensile strength, bulk
modulus, and in particular compressive strength of these materials. Clearly, experimental
work is required to address this lack of material property data in the peer-reviewed open
literature.
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Regression Fit, (Eqn. 16)

(a) Thermal conductivity of alumina.
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Regression Fit, (Eqn. 17)

(b) Thermal conductivity of aluminium nitride.
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(c) Thermal conductivity of beryllia.
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Regression Fit, True
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(d) Thermal conductivity of fused quartz.
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Regression Fit, (Eqn. 18)

(e) Thermal conductivity of sialon.
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(f) Thermal conductivity of silicon nitride.

Fig. 2 Data values and calculated regression fits for thermal conductivity of the six materials considered in
this study: (a) alumina, (b) aluminium nitride, (c) beryllia, (d) fused quartz, (e) sialon, (f) silicon nitride.
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Table 4 Regression coefficients for material properties. An entry of ‘–’ for all coefficients indicates that no
recommended curve fit can be given, due to insufficient data for this material. *Effective thermal conductivity
for fused quartz; includes effects of heat transfer enhancement due to radiation. †Regression coefficients
recommended by Munro [10]. The temperature range over which the curve-fit is valid is given. Units for
individual coefficients are not stated, but may be derived from the regression function, if required. The units
of temperature used for all regression fits are degrees Celsius (◦C).

Property Material Fit a b c d e Valid Range
Unit Equation [°C]

Young’s
Modulus
GPa

Alumina 22 −18.50×10−6 −13.78×10−3 398.5 0–1400
Aluminium Nitride 22 −10.46×10−6 −19.92×10−3 319.0 0–1700
Beryllia – – – – – – –
Fused Quartz 19 7.455×10−9 −19.04×10−6 18.19×10−3 72.31 0–1400
Sialon – – – – – – –
Silicon Nitride – – – – – – –

Shear
Modulus
GPa

Alumina 22 −7.459×10−6 −5.557×10−3 160.7 0–1400
Aluminium Nitride 22 −4.269×10−6 −8.131×10−3 130.2 0–1700
Beryllia – – – – – – –
Fused Quartz 19 3.180×10−9 −8.122×10−6 7.759×10−3 30.84 0–1400
Sialon – – – – – – –
Silicon Nitride – – – – – – –

Bulk
Modulus
GPa

Alumina 22 −11.86×10−6 −8.839×10−3 255.5 0–1400
Aluminium Nitride 22 −6.340×10−6 −12.07×10−3 193.4 0–1700
Beryllia – – – – – – –
Fused Quartz 19 3.791×10−9 −9.683×10−6 9.250×10−3 36.77 0–1400
Sialon – – – – – – –
Silicon Nitride – – – – – – –

Flexural
Strength
MPa

Alumina† 9 380.5 137×103 176×103 3.9×10−3 20–1500
Aluminium Nitride 11 322.0 99.19×10−6 0–1400
Beryllia 12 244.0 117.9×10−6 436.9 0–1200
Fused Quartz – – – – – – –
Sialon – – – – – – –
Silicon Nitride 11 777.6 215.6×10−6 0–1300

Tensile
Strength
MPa

Alumina† 10 267 256 5.8×109 18×10−3 20–1500
Aluminium Nitride – – – – – – –
Beryllia – – – – – – –
Fused Quartz – – – – – – –
Sialon – – – – – – –
Silicon Nitride 11 661.9 251.7×10−6 0–1400

Compressive
Strength
GPa

Alumina 22 1.1×10−6 −3.5×10−3 3.1 20–1400
Aluminium Nitride – – – – – – –
Beryllia – – – – – – –
Fused Quartz – – – – – – –
Sialon – – – – – – –
Silicon Nitride – – – – – – –

Specific
Heat
Capacity
J·kg-1·K-1

Alumina 13 1.159×103 111.1×10−3 436.1 5.271×10−3 0–1800
Aluminium Nitride 13 1.093×103 222.5×10−3 429.8 5.859×10−3 0–1400
Beryllia 13 1.915×103 173.5×10−3 996.0 3.800×10−3 0–1800
Fused Quartz 15 −3.523×10−10 1.509×10−6 −2.236×10−3 1.610 700.5 0–1700
Sialon 13 1.152×103 94.48×10−3 465.4 4.177×10−3 0–1000
Silicon Nitride 13 1.237×103 14.69×10−3 592.4 3.140×10−3 0–1400

Thermal
Conductivity
W·m-1·K-1

Alumina 16 5.527 9.829×103 1.406×10−3 339.8 0–1800
Aluminium Nitride 17 92.29×103 490.5×10−6 513.9 0–600
Beryllia 17 48.35×103 515.8×10−6 158.2 0–1600
Fused Quartz 15 −2.122×10−12 5.433×10−9 −4.872×10−6 2.344×10−3 1.294 0–800
Fused Quartz* 15 −1.702×10−12 9.503×10−9 −6.502×10−6 2.479×10−3 1.291 0–650
Sialon 18 7.732 896.6 213.6 0–1000
Silicon Nitride 18 4.983 12.78×103 458.0 0–1200

Instantaneous
CTE
×10−6 K-1

Alumina 13 8.264 1.354×10−3 3.323 4.965×10−3 0–1600
Aluminium Nitride 13 8.112 −1.240×10−3 6.092 2.486×10−3 0–1000
Beryllia 13 51.39 −9.918×10−3 46.09 432.8×10−6 0–1500
Fused Quartz 19 3.917×10−9 −6.030×10−6 2.233×10−3 390.8×10−3 0–1050
Sialon 13 2.000 2.199×10−3 900.1×10−3 12.56×10−3 0–1000
Silicon Nitride 13 3.669 387.1×10−6 2.484 3.172×10−3 0–1300

Mean
CTE
×10−6 K-1

Alumina 13 7.481 918.1×10−6 2.519 3.010×10−3 0–1600
Aluminium Nitride 13 6.028 −86.47×10−6 4.008 1.750×10−3 0–1000
Beryllia 13 33.47 −3.983×10−3 28.18 319.3×10−6 0–1500
Fused Quartz 19 979.2×10−12 −2.010×10−6 1.117×10−3 390.8×10−3 0–1050
Sialon 13 1.819 1.215×10−3 707.7×10−3 7.122×10−3 0–1000
Silicon Nitride 13 2.905 407.6×10−6 1.719 2.144×10−3 0–1300




