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Abstract: 

Identification of inertia properties (mass, location of the center of mass and inertia tensor) 

is essential for designing of engineering structures. Using modal testing is a possibility for 

estimation of the inertia properties in which they can be identified using the orthogonality 

property of mass-normalized rigid body mode shapes. However, identification of rigid body 

mode shapes using modal testing is not always possible, because it is not possible to excite 

the structure at all degrees of freedom. In this paper, output-only modal analysis in which 

the structure can be excited in different directions is used to identify the rigid body modes 

of the structure. It is shown that all of the rigid body modes of the structure can be extracted 

using the data extracted from output-only modal analysis. As the obtained rigid body mode 

shapes from output-only modal analysis are not scaled, a new method is proposed for 

scaling them using rigid body stiffness matrix. The inertia properties of the structure are 

obtained from the scaled mode shapes. The accuracy of the proposed method is studied 

using a numerical case study of a steel structure as well as an experimental case study of a 

steel frame. 
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1 Introduction 

The evaluation of the inertia properties of a structure is necessary for static and dynamic 

designing process (Eicholtz et al., 2012; Loyd et al., 2010; Okuma et al., 2001). Finite 

Element (FE) Method can be used for estimation of the inertia properties as a theoretical 

method. But, it is not always possible to establish an accurate model in practice (especially 

in complicated structures). Modal testing is an experimental alternative to estimate the 

inertia properties of structures using their real conditions. 

The experimental methods for estimation of the inertia properties from vibration testing are 

categorised in two main groups; time domain methods and frequency domain methods 

(Almeida et al., 2007). Pendulum method (Holzweissig and Dresig, 1994; Hughes, 1957) is 

a time domain method that uses the period of oscillation of hanged structure to evaluate the 

inertia properties. However, this method may not be reliable due to the friction, the air force 



and etc. A simple and less expensive extension of the Pendulum method was proposed in 

(Zhi-Chao et al., 2009). Another time domain method was proposed in (Pandit and Hu, 

1994) that uses transformation of the translational motion to the rotational and translational 

motion in order to identify the inertia properties. Pandit et al. used time domain data in six 

axes for identification of the inertia properties from impact data (Pandit et al., 1992). 

Inertia Restrain Method (IRM), Method of Direct Physical Parameter Identification 

(MDPPI) and Modal Methods (MM) are three main groups of frequency domain methods. 

The dynamic response of a structure in free-free condition in low frequency ranges used in 

IRM or Mass Line method (Fregolent and Sestieri, 1996; Fullekrug and Schedlinski, 2004; 

Urgueira, 1995; Wei and Reis, 1989). 

Measured Frequency Response Functions (FRFs) are directly used in the MDPPI method to 

estimate the inertia properties (Huang and Lallement, 1997; Mangus et al., 1993). 

Orthogonality properties of mass-normalized rigid body mode shapes are used in the Modal 

Methods such as Bertl and Conti method for estimation of the inertia properties (Bretl and 

Conti, 1987; Conti and Bretl, 1989). All of the six rigid body modes should be identified 

using a modal identification method In Bertl and Conti method. But it is not always 

possible to excite all the six rigid body modes during an experimental test (Almeida et al., 

2007). Therefore, many exciting points in different directions are required to significantly 

excite all the six rigid body modes (Almeida et al., 2008). A comparative study for 

estimation of the inertia properties using two different frequency domain methods from 

experimental modal testing is carried out in (Ashory et al., 2010) and the accuracy of 

methods are investigated.  

Measuring the excitation forces is difficult or even impossible in many cases. The modal 

parameters can be identified using only measured responses in the output-only modal 

methods without the knowledge of inputs. Therefore, it is possible to excite the structure in 

any directions. As the excitation is not measured in output-only modal analysis, the 

extracted mode shapes are not scaled. Therefore, the mode shapes obtained should be 

scaled using a scaling method. Some methods have been proposed for scaling of the 

operational mode shapes such as; mass change method (Brincker and Andersen, 2003), 

mass-stiffness change method (Khatibi et al., 2012) and receptance based method (Bernal, 

2011). 

Estimation of the inertia properties using the output-only modal data first was proposed in 

(Malekjafarian et al., 2013). It was shown that all the rigid body modes are available from 

the output-only modal data while the mode shapes obtained are not scaled. Malekjafarian et 

al. (2013) used the mass change method for scaling of the rigid body mode shapes by 

adding some extra masses to the structure and repeating the test. Although the method can 

detect the rigid body modes much easier than the conventional methods, but it includes 

some errors and difficulties due to the scaling process.  

In this paper a new method is proposed for scaling the rigid body mode shapes obtained 

from the output-only modal testing. The method does not need either adding extra masses 

to the structure and repeating the test. It is shown that the rigid body mode shapes can be 

scaled, when the rigid body stiffness matrix of the suspension system of the structure is 



well determined. A numerical case study of a simple structure is investigated to validate the 

accuracy of the proposed method. The inertia properties of the structure are obtained using 

both the conventional modal method and the output-only modal method showing good 

accuracy for the proposed method. An experimental case study of a frame structure is used 

to show the efficiency of the method for a real case study. The rigid body stiffness matrix 

of the suspension system is obtained using testing of all the springs attached to the structure 

and finally the rigid body properties are obtained using the proposed method. It is 

demonstrated that the proposed method is as accurate as the traditional method, while has 

less complexities and difficulties in extracting all the six rigid body mode shapes. 

 

2 Theory 

2.1 Identification of inertia properties from output-only data using rigid body 

stiffness matrix 

For a completely free-free structure, the structure can move to any direction without any 

resistance showing that the rigid body frequencies of this structure are zero. In the other 

hand, if the structure is suspended from stiff springs in all directions, then for any rigid 

body movement, there would be a resistance from the springs that makes a real rigid body 

movement for the whole structure. Depending on the effective mass and spring of the rigid 

structure in each direction, there is a rigid body frequency for the structure. The structure is 

usually suspended from some springs to figure the real rigid body vibrations which lead to 

rigid body modes (including rigid body frequencies and rigid body mode shapes). Depends 

on the magnitude of the spring stiffness, the rigid body frequencies could be determined, 

but they are usually in a low frequency range. To excite all of the six rigid body modes 

(three corresponding to the translational motions and three to the rotational motions of the 

structure), the structure should be excited in all directions. As the input forces are not 

measured in output-only modal analysis, the structure can be excited at any arbitrary point 

and direction. Therefore, all the rigid body modes are detectable in a single test. Although 

the output-only modal methods have no difficulties in measurement of the excitation forces, 

but in absent of inputs of the system, the obtained mode shapes are not scaled. Usually 

some methods such as mass change method (Brincker and Andersen, 2003), mass-stiffness 

change method (Khatibi et al., 2012) and receptance based method (Bernal, 2011) and etc., 

are used for scaling of the operational mode shapes that are based on mass or stiffness 

modification of the structure. Therefore, all the existing scaling methods are based on 

modification of the structure that always causes some difficulties and errors. 

In this work a new method is proposed for scaling of the mode shapes from output-only 

modal analysis that is just working for the rigid body modes. The proposed method does 

not use any modification in the structure which can improve the accuracy of the estimation 

of the inertia properties from output only modal analysis. 

 



2.1.1 Scaling of rigid body mode shapes using rigid body stiffness matrix 

For a structure with total mass of m that is suspended from stiff springs (Fig. 1), the 

equations of motion of the structure under a free-free condition are given in a linear form 

by (JIN et al., 2013; Okuma and Shi, 1997): 

 

[
 
 
 
 
 
 

𝑚 0 0 0 𝑚𝑧𝑐𝑚 −𝑚𝑦𝑐𝑚
0 𝑚 0 −𝑚𝑧𝑐𝑚 0 𝑚𝑥𝑐𝑚
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where 𝑥𝑐𝑚, 𝑦𝑐𝑚 and 𝑧𝑐𝑚 are the coordinates of the centre of mass, J is the moment of inertia 

of the structure, �̈� is the linear acceleration of the structure and �̈�𝜃𝑥 is the rotational 

acceleration of the structure at the location of centre of mass and 𝐹 and 𝑀 represent the 

external forces applied to the structure. Eq. (1) can be written in a simple form as: 

 

𝑴𝒓𝒃�̈�𝑟𝑏 = 𝐹𝑟𝑏 (2) 

 

𝑴𝒓𝒃 is the rigid body mass matrix of the rigid structure including its inertia properties 

(Malekjafarian et al., 2013). Considering the free vibration of such a structure (when 

damping is ignored), the equation of the rigid body motion for free vibration (which is 

different from the elastic motion) can be written as: 

 

𝑴𝒓𝒃�̈� + 𝑲𝒓𝒃𝑞 = 0 (3) 

 

where 𝑲𝒓𝒃 is the rigid body stiffness matrix of the rigid structure that is related to the 

stiffness of the attached springs. An eigen value solution for Eq. (3) is: 

 

𝑴𝒓𝒃𝜙𝑛𝜔𝑛
2 = 𝑲𝒓𝒃𝜙𝑛 (4) 

 

 

where 𝜙𝑛 is the scaled rigid body mode shape vector and 𝜔𝑛 is the nth rigid body natural 

frequency where n=1~6. 

 



 

Figure 1: A structure on the elastic supports  

Pre-multiplying Eq. (4) by 𝜙𝑛
𝑇
 : 

 

𝜙𝑛
𝑇𝑴𝒓𝒃𝜙𝑛𝜔𝑛

2 = 𝜙𝑛
𝑇𝑲𝒓𝒃𝜙𝑛 

 
(5) 

Considering orthogonality of the mode shapes with respect to the mass matrix 

𝜙𝑛
𝑇𝑴𝒓𝒃𝜙𝑛 = 1, Eq. (5) becomes: 

 

𝜔𝑛
2 = 𝜙𝑛

𝑇𝑲𝒓𝒃𝜙𝑛 (6) 

 

Considering that all the unscaled rigid body modes can be obtained using the output-

only data, we have: 

𝚿 = [𝜓1 𝜓2 ⋯ 𝜓6] (7) 

 

where 𝜓1, 𝜓2,… and 𝜓6 are the unscaled rigid body mode shape vectors obtained from the 

output-only data. The relation between 𝜓 the unscaled mode shape vector and 𝜙 the scaled 

mode shape vector can be given by: 

 

𝜙 = 𝛼𝜓 (8) 

where 𝛼 is the scaling factor. By substituting Eq. (8) into Eq. (6), the following equation is 

obtained: 

 

𝜔𝑛
2 = 𝛼2𝜓𝑛

𝑇𝑲𝒓𝒃𝜓𝑛 (9) 

Therefore, the scaling factor can be obtained using the following equation: 

 



𝛼 = √
𝜔𝑛

2

𝜓𝑛
𝑇𝑲𝒓𝒃𝜓𝑛

 (10) 

 

The obtained equation is used only for rigid body modes. The rigid body stiffness 

matrix 𝑲𝒓𝒃 (that is related only to the suspension configuration of the structure) can be 

calculated from the stiffness of all the springs attached to the structure. The scaling factors 

can be estimated using the rigid body stiffness matrix, the natural frequencies and the 

unscaled mode shapes. 

Finally, the inertia properties can be estimated by applying the scaled mode shapes in the 

modal method. Consequently, the inertia properties can be estimated from the results of 

output-only modal analysis without any modification to the structure with acceptable 

accuracy.  

 

2.1.2 Identification of inertia properties from scaled mode shapes 

From the output-only identification method that applied to the measured responses, the 

rigid body mode shapes are obtained with respect to the physical coordinate system where 

the measurements are taken. When N three-axial accelerometers are used, dimension of the 

mode shape matrix 𝚽 (that includes all the modes shapes obtained from the output-only 

modal methods) is 3N×6. All elements of this matrix are translational degrees of freedom.  
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 (11) 

 

In order to identify the inertia properties, it is necessary to transform the matrix 𝚽 to a 6×6 

mode shape matrix 𝚽𝟎 which is defined using the following equations (Malekjafarian et al., 

2013): 

𝚽𝟎 =

[
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where 𝚽𝟎 is the 6×6 mass-normalized mode shape matrix which contains the six rigid body 

modes of the structure with respect to the selected origin. Transformation can be done using 

the following equation (Malekjafarian et al., 2013): 

𝚿𝜶 = 𝑹𝟎𝚽𝟎 (13) 

 

where 𝑹𝟎 is the transformation matrix of the rigid body modes corresponding to the N tri-

axial accelerometers (Ashory et al., 2010) 

𝑹𝟎 =

[
 
 
 
 
 
 
 
[

1 0 0 0 𝑧1 −𝑦1
0 1 0 −𝑧1 0 𝑥1
0 0 1 𝑦1 −𝑥1 0

]

⋮

[

1 0 0 0 𝑧𝑁 −𝑦𝑁
0 1 0 −𝑧𝑁 0 𝑥𝑁
0 0 1 𝑦𝑁 −𝑥𝑁 0

]

]
 
 
 
 
 
 
 

 

 (14) 

where ix , iy and iz are the coordinates of the ith accelerometer. The first three rows of the 

mode shape matrix 𝚽𝟎 are related to the translational motions of the structure and the next 

three rows are related to the rotational motion of the structure.  

Considering that the matrix 𝑹𝟎 is not square, matrix 𝚽𝟎 should be obtained using the 

concept of Pseudo inverse (Malekjafarian et al., 2013): 

𝚽𝟎 = (𝑹𝟎
𝑻𝑹𝟎)

−𝟏
𝑹𝟎

𝑻𝚿𝜶 (15) 

where (𝑹𝟎
𝑻𝑹𝟎)

−𝟏
𝑹𝟎

𝑻 is the Pseudo inverse of matrix 𝑹𝟎. 

The classic eigenvalue equation of motion for a structure with the elastic supports (Fig 1) 

(Malekjafarian et al., 2013): 

𝑴𝒓𝒃𝟎
𝜙0𝑛𝜔𝑛

2 = 𝑲𝒓𝒃𝟎𝜙0𝑛 
(16) 

where 𝑴𝒓𝒃𝟎
 and 𝑲𝒓𝒃𝟎 are the mass and the stiffness matrices about the selected origin, 

𝜙0𝑛is the nth rigid body mode shape vector at the selected origin and 𝜔𝑛 is the nth rigid 

body natural frequency (Malekjafarian et al., 2013). 

Using the orthogonally property of the mass-normalized mode shape, Eq. (17) could be 

obtained (Almeida et al., 2007): 



𝜙0
𝑇𝑴𝒓𝒃𝟎

𝜙0 = 𝐼 (17) 

As the rigid body mode shapes are linearly independent, the mode shape matrix is 

invertible and the mass matrix can be derived as (Almeida et al., 2007): 

𝑴𝒓𝒃𝟎
= 𝚽0

−𝑇𝚽0
−1 (18) 

The resulting matrix 𝑴𝒓𝒃𝟎
 (Eq. (2)) represents the mass matrix related to the origin 

based on the six extracted mode shape vectors at the N measured response locations. 

The mass of the structure can be calculated by averaging the first three diagonal 

elements of the mass matrix. From the upper right quadrant and the lower left quadrant of 

the mass matrix in Eq. (19), the mass center of structure can be calculated (Almeida et al., 

2007).  

𝑥𝑐𝑚 =
𝟏

𝟐𝒎𝟎
 (19) 

𝑥𝑐𝑚 =
1

2𝑚
(𝑀0

26 −𝑀0
26), 𝑦𝑐𝑚 =

1

2𝑚
(𝑀0

34 −𝑀0
16), 𝑧𝑐𝑚 =

1

2𝑚
(𝑀0

15 −𝑀0
24) 

 (20) 

where 𝑴𝒓𝒃𝟎
𝒊𝒋 is the ijth element of the estimated mass matrix 𝑴𝒓𝒃𝟎

 and 𝑥𝑐𝑚, 𝑦𝑐𝑚 and 𝑦𝑐𝑚 

are the coordinates of the centre of mass.  

In addition, using the lower right quadrant of mass matrix, the elements of inertia tensor 

are calculated. In order to determine the inertia tensor with respect to the center of mass, the 

matrix in Eq. (18) is transferred to the center of mass of the structure. 

2.2 Frequency Domain Decomposition (FDD) method 

Frequency Domain Decomposition (FDD) is a non-parametric output-only modal 

method which was first suggested by (Brincker et al., 2000). If the system has r input x and 

m output y, then: 

𝑮𝑦𝑦(𝑗𝜔) = 𝑯(𝑗𝜔)𝐻𝑮𝑥𝑥(𝑗𝜔)𝑯(𝑗𝜔)
𝑇   (21) 

where 𝑮𝑥𝑥(𝑗𝜔) is the Power Spectral Density (PSD) matrix of the input, 𝑮𝑦𝑦(𝑗𝜔) is the PSD 

matrix of the responses, 𝑯(𝑗𝜔) is the Frequency Response Function (FRF) matrix, the 

superscript “T” indicates the transpose of the matrix, the superscript “H” indicates the 

complex conjugate of the matrix and j is equal to 1 . If the input force is assumed to be a 

white signal, the PSD matrix of the output can be given by (Brincker et al., 2000): 

𝑮𝑦𝑦(𝑗𝜔) = ∑ (
dk𝝍𝒌𝝍𝒌

𝑻

𝑗𝜔−𝝀𝒌
+
d̅k�̅�𝒌�̅�𝒌

𝑻

𝑗𝜔−�̅�𝒌
)𝒏

𝒌=𝟏          (22) 



where dk is a scalar, 𝝍
𝒌
 is the kth unscaled mode shape vector, 𝝀𝒌 is the kth complex 

resonance frequency, n is the number of modes and the over bar "-" indicates the complex 

conjugate. 

The dynamic behaviour of a structure is dominated by one of its mode close to the 

corresponding natural frequency. Therefore the response of the structure in this frequency 

is similar to the mode shape of the structure at this mode (Khatibi et al., 2011; Khatibi et 

al., 2012). The PSD of the response in each frequency can be decomposed to the singular-

values and singular-vectors using the following equation:  

𝑮𝑦𝑦(𝑗𝜔𝑖) = 𝑈𝑖𝑆𝑖𝑈𝑖
𝐻    (23) 

where 𝑈𝑖 is the ith singular-vectors matrix, 𝑆𝑖 is the ith singular-values matrix and 𝜔𝑖 is the ith 

frequency. 

As the singular-values are directly related to modal participation factors, the number of 

non-zero singular-values indicates the number of modes which contribute to the response of 

the system at that frequency. The peaks of the first singular values of system correspond to 

the natural frequencies of system. The singular-vectors corresponding to the peaks of the 

first singular-values estimate the mode shapes.  

3. Numerical case study 

3.1 Introducing the case study 

A cubic structure that is suspended using 12 springs is considered for the numerical case 

study. Boundary condition of the structure with 12 springs and stiffnesses of the springs are 

given in Fig. 2. Dimensions, exact inertia properties of the structure, locations of the 

measurement and the input forces are given in Fig. 3.  

 
Figure 2 : Suspension condition of the case study. 



 

Figure 3 : Inertia properties and density of the case study. 

 

In order to show the efficiency of the new proposed method, the inertia properties of the 

structure are obtained using both conventional modal analysis and output-only modal 

analysis. Finally, the errors of the results obtained from two methods are compared to 

confirm the accuracy of the proposed approach. 

3.2 Identification of inertia properties using conventional modal analysis 

In order to estimate the inertia properties of the numerical example using conventional 

modal analysis, the FRFs of the structure are obtained using different excitation points 

(which are shown in Fig. 3) in a simulated test. It is known from the conventional modal 

testing that the peaks in FRFs are related to the frequencies which are dominant in the 

response. Therefore, the rigid body modes can be detected from the FRFs peaks. The FRFs 

obtained are shown in Fig. 4. It is shown that all the six rigid body modes cannot be 

detected in one FRF. As it is mentioned in (Almeida, 2006) when conventional modal 

analysis is used, it is necessary to estimate the FRFs in different points to detect all the rigid 

body modes of the structure. Many independent tests should be conducted and some pre-

analysing processes are required to know which FRF gives better results. 

The first six natural frequencies of the structure that are related to the six rigid body modes 

are estimated from the FRFs are given in Table 1.  

 

Table 1: Natural frequencies of the rigid body modes from the conventional modal analysis. 

Mode # 1 2 3 4 5 6 

Natural frequencies (Hz) 1.46 2.74 3.73 4.40 5.91 6.12 

 

The rigid body mode shapes obtained from the conventional modal method are used in Eq. 

18 to find the rigid body mass matrix. The ten rigid body properties then are estimated 



using equations 19 and 20. The error of the estimation of the inertia properties will be 

compared with those of the output-only modal method in Section 3.3. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 4: Receptance functions obtained for each excitation point; (a) excitation at point 1, (b) excitation 

at point 2, (c) excitation at point 3.  

 

3.3 Identification of inertia properties using output-only data 

In order to obtain the inertia properties from the proposed method, the structure is excited 

in a simulated test by random forces at arbitrary points. The FDD method was applied to 

the measured responses. The SVD diagram of the FDD method is shown in Fig. 5. 

 



 

Figure 5 : SVD diagram for the FDD method. 

 

The natural frequencies (Table 2) and unscaled mode shapes are obtained using the FDD 

method.  

 

Table 2: Natural frequencies of the rigid body modes from output-only modal analysis. 

Mode # 1 2 3 4 5 6 

Natural frequencies from FDD 

method (Hz) 

1.46 2.74 3.74 4.40 5.91 6.11 

 

The rigid body stiffness matrix is calculated using the equation of motions of the rigid body 

(T. and D, 2004) from the stiffnesses of the springs attached to the structure (a=0.4, b=0.15 

and c=0.2).  

𝑲𝒓𝒃 = [
𝑘11 ⋯ 𝑘16
⋮ ⋱ ⋮

𝑘61 ⋯ 𝑘66

] (24) 

 

xkk 811  , 0141312  kkk , akk x415   , ckk x416   

0252321  kkk , ykk 822  , akk y424  , bkk y426   

0363231  kkk , zkk 833  , ckk z434  , bkk z435   

041 k , akk y442  , ckk z443  , 
22

44 44 ckakk zy  , bckk z245  , abkk y246   

akk x451  , 052 k , bkk z453  , bckk z254  , 
22

55 44 bkakk zx  , ackk x256   



ckk x461  , bkk y462  , 063 k , abkk y264  , ackk x265  ,
22

66 44 ckbkk xy   (25) 

 

The scaling factors for all modes are estimated using Eq. (11) and the scaled rigid body 

mode shapes are estimated. The inertia properties are estimated using the scaled rigid body 

mode shapes. The errors of the inertia properties calculated from the proposed approach are 

compared with those of conventional modal analysis in Fig. 6. It is shown that both 

methods include same level of error which confirms the accuracy of the approach. In 

addition, the errors of the results obtained from conventional modal analysis are less than 

those of the output-only modal analysis in some cases. But, it should be considered that 

differences of the errors are not significant, while user can take advantages of the output-

only data.  

 

 

Figure 6: Errors of the inertia properties obtained from the conventional method and the output-only method. 

4. Experimental case study 

4.1 Introducing the case study 

In order to validate the proposed technique experimentally, the method is applied to a 3D 

structure made of steel. The structure is suspended from another structure which plays a 

support role for the main structure using 24 springs shown in Fig. 7. The 3D models of the 

main structure without its support and with its support are separately shown in Fig. 8. The 

inertia properties of the structure that are obtained from the theory are given in Table 3. 

Table 3: The inertia properties of the experimental case study obtained from theory. 

M  
cx  cy  cz  xxJ  yyJ  zzJ  

xyJ  
xzJ  yzJ  



6.750 0.265 0.191 0.161 0.699 1.020 1.160 0.345 0.288 0.209 

 

 

Figure 7: The experimental case study (green structure) is suspended from its support (gray structure) using 
12 springs. 

 

 

(a)  



 

(b) 

Figure 8: (a) The 3D model of the main case study. (b) The 3D model of the main case study when is 
suspended from the support structure. 

 

4.2 Estimation of inertia properties using conventional modal analysis 

The structure is excited in different excitation points. The excitation signal is measured 

using force transducer type BK 8200 and the signal is amplified using amplifier type 

2647A. The responses of the structure are measured using three accelerometers type 

DJB/130V. The measuring points are selected using the suggestions in (Lee et al., 1999) 

and are shown in Fig. 8 (a). The FRFs of the structure are obtained from different excitation 

points using Pulse8 software (Brüel & Kjær, 2003) and are shown in Fig. 9. 

 



 
Figure 9: The obtained FRFs from the test. 

 

It is shown that all the six rigid body modes cannot be detected in one FRF. Many 

independent tests are conducted and some pre-analysing process is done to know which 

FRF gives better results. The rigid body natural frequencies are estimated using the FRFs 

(Table 4). 

Table 4: Natural frequencies of the rigid body modes from the conventional modal testing. 

Mode # 1 2 3 4 5 6 

Natural frequencies from FRF 

(Hz) 
9.54 11.09 13.39 13.56 15.79 17.13 

The inertia properties of the structure are estimated using the method explained in Section 

2. The errors of the inertia properties obtained from conventional modal testing will be 

presented in Section 4.3 when they will be compared to the output-only results. 

4.3 Identification of inertia properties using output-only modal analysis 

4.3.1 Estimation of rigid body stiffness matrix of the case study 

As it is stated in the section 2.1.1, the rigid body stiffness matrix of the suspension of the 

structure should be identified to scale the operational rigid body mode shapes. For the 

presented case study, the rigid body stiffness matrix is estimated using the equation of 

motion of the rigid body using the method presented in section 3.3 (T. and D, 2004). 

Stiffnesses of all the springs are estimated using a simple 1DOF free vibration test of a 

mass-spring system as shown in Fig. 10. 



 

Figure 10: Test procedure for estimation of exact stiffness of the used springs. 

A specified mass is hanged from the considered spring and the FRF of the system is 

obtained using hammer modal testing (Fig. 11). Stiffness of each spring can be calculated 

from the obtained natural frequency of the system and the well-known formula 
m

k
 . 

 



 

Figure 11: FRF obtained from modal testing of the springs using the procedure shown in Fig. 10. 

 

The magnitudes of stiffnesses of the springs are obtained and given in Table. 5. Location of 

each point is shown in Fig. 7. Finally the rigid body stiffness matrix of the case study is 

constructed using Eq. (24) while the preload effect caused by the weight of the structure is 

neglected. 

 

Table 5: Amounts of stiffnesses of 24 springs in 8 attaching points. 

Point  / mx Nk   / my Nk   / mz Nk  

1 1304.2 2494.9 6028.5 

2 1305.3 2490.3 6145.3 

3 1304.6 2502.4 6147.3 

4 1312.5 2501.1 6632.4 

5 1304.5 2489.6 6273.8 

6 1308.9 2494.4 6145.3 

7 1303.3 2499.8 6028.5 

8 1304.1 2490.0 6145.3 

 

4.3.1 Identification of inertia properties 

The structure is excited in different points by random forces. The responses of the structure 

are measured using three accelerometers type DJB/130V.The FDD method is applied to the 



responses. The SVD diagram of the FDD method is obtained and shown in Fig. 12. The 

natural frequencies (Table 6) and the mode shapes are obtained using the FDD method. 

 

 

Figure 12: The SVD diagram of the FDD method.  

Table 6: Natural frequencies of the rigid body modes from the output-only modal testing. 

Mode # 1 2 3 4 5 6 

Natural frequencies from FDD 

method (Hz) 
9.53 11.09 13.25 13.56 15.81 17.12 

 

The scaling factors for each mode are estimated using Eq. (11) and the rigid body stiffness 

matrix obtained earlier. The inertia properties have been estimated using the scaled rigid 

body mode shapes obtained using the scaling factors.  



 

Figure 13: The errors of the obtained inertia properties from output only modal testing. 

 

The error of the estimated inertia properties are shown in Fig. 13. It is shown that the 

proposed method estimated the mass of the structure more accurate in compared to the 

conventional method. In addition, the proposed method shows more accuracy in estimation 

of centre of mass of the structure in most items. On the other hand, using the output-only 

data caused more error compared to the conventional method, but the obtained results could 

be still acceptable. Finally, it can be concluded that the proposed method is able to estimate 

the inertia properties with acceptable accuracy in compared to the conventional methods. 

4. Conclusion 

In this paper a previously proposed approach for estimation of the inertia properties of a 

structure using output only modal analysis is improved. The advantage of the approach is 

that by using output-only modal analysis, it is possible to excite the structure in many 

different directions. Consequently, the all rigid body mode shapes can be excited and the 

data are enough to detect and identify all the rigid body modes. A new scaling method is 

proposed to scale the obtained rigid body mode shapes from output only modal analysis. 

Then the mass-normalized mode shapes are used in Bertl and Conti for identification of the 

inertia properties of the structure. It is shown that if the rigid body stiffness matrix that is 

related to the suspension conditions could be defined, the obtained results from new 

proposed method is accurate enough for estimation of the inertia properties. The accuracy 

of the scaled mode shapes from output-only modal analysis is an important parameter in the 

accuracy of the whole approach that is related to the accuracy of estimated rigid body 

stiffness matrix of the suspension. Therefore, despite the measurement errors seem not too 

low, special applications could benefit from the proposed mass properties measurement 

approach. 
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