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ABSTRACT
It is often debated whether a problem presented in a straight-
forward minimalist fashion is better, or worse, for learn-
ing than the same problem presented with a “real-life” or
“concrete” context. The presentation, contextualization, or
“problem description” has been well studied over several
decades in disciplines such as mathematics education and
psychology; however, little has been published in the field of
computing education. In psychology it has been found that
not only the presence of context, but the type of context
can have dramatic results on problem success. In mathe-
matics education it has been demonstrated that there are
non-mathematical factors in problem presentation that can
a↵ect success in solving the problem and learning. The con-
textual background of a problem can also impact cognitive
load, which should be considered when evaluating the e↵ects
of context. Further, it has been found that regarding cogni-
tive load, computer science has unique characteristics com-
pared to other disciplines, with the consequence that results
from other disciplines may not apply to computer science,
thus requiring investigation within computer science.

This paper presents a multi-national, multi-institutional
study of the e↵ects of problem contextualization on novice
programmer success in a typical CS1 exercise.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

Keywords
context, novice programmers, CS1

1. INTRODUCTION
Elliot Soloway, one of the earliest computing education

researchers, tested novice programmers’ ability to problem
solve and write programs using the Rainfall Problem [48].
The Rainfall Problem asks students to write a program that
calculates the average of a set of daily rainfall measurements
(hence the name of the problem). The Rainfall Problem is
still attractive to programming instructors as a novice pro-
gramming assignment because it is well written, and seems
to be of appropriate di�culty. Nevertheless, as discussed
in Section 2, Soloway’s experimental results show that few
students were able to successfully write a program to solve
this problem.

One author of this paper used the Rainfall Problem in an
introductory course. One particular detail of the Rainfall
Problem stumped a novice programmer, who asked: “What
does a daily rainfall value of zero represent?” The answer
to the question is that it is a day without rainfall. However
awkwardly, this student was trying to make a connection
between the numerical problem and the context. Had it not
been for the problem description, the student wouldn’t have



questioned a value of zero. That question inspired this in-
vestigation into the role of context, or “problem description”
in the success of novice programmers.

On one hand, context might be motivating to students.
Computing an average that corresponds to something real
is likely more interesting than just crunching the numbers.
On the other hand, understanding the background story,
determining which details are relevant and which are not,
and what the implications are (for example, that a rain-
fall amount is never negative), all impose cognitive load on
novices, particularly if the language of instruction is not
their first language.

Novice programmers are challenged by the combination of
problem understanding, finding a solution to the problem,
expressing the solution in a programming language, and the
environment (development tools, operating system, etc.) in
which this is all taking place. The description of the problem
could be a significant factor in student success, or failure.

The research question posed here is:

Does providing context for a programming as-
signment help novice programmers to solve it?

where “novice programmers”means students in a CS1 class,
and “context” means more than a minimal description of
input and output – some kind of “real-world” story.

Note the research focus is on the design of individual
programming assignments. Adding context and real-world
applications to the design of an entire CS1 course (for ex-
ample, the media computation approach [22]) raises much
larger issues such as e↵ect on drop-out rates, e↵ect on under-
represented groups, etc. These are interesting and impor-
tant questions, but outside the scope of this work. More-
over, with the research question isolated from the course
design, the result could have broader implications for com-
puting instructors; that is, an instructor can choose to use
real world problem descriptions in assignments relatively in-
dependently of other course design issues.

Section 2 presents earlier work on context, from both in-
side and outside of computing education research. Sections 3
and 4 give the details of this experiment and how the data
are analyzed. Sections 5 and 6 describe and discuss the
results of the experiment. Finally, Section 7 presents con-
clusions and suggestions for future work.

2. RELATED WORK
A significant number of publications in various disciplines

address the question of context; some research indicates con-
text is helpful, and some points in the opposite direction. A
summary of the closely related literature follows.

2.1 Psychology: the Wason Selection Task
The psychology literature suggests that context helps (or

in their terms, there is a “thematic facilitation e↵ect”). A
well-known problem illustrating this e↵ect, the Wason Selec-
tion Task, is the most intensively researched problem in the
history of the psychology of reasoning [15, 20, 50]. In the
original Wason study, participants were given a no-context
version:

[T]he subject might be presented with four cards
showing, respectively, A, 4, D, and 7, and the
rule“If there is a vowel on one side of a card, then
there is an even number on the other side”. The

subject is told that each card has a letter on one
side and a number on the other side and asked
to select just those cards which it is necessary to
turn over in order to find out whether the rule is
true or false.

The answer is the card with “A” on it – to see if there’s an
even number on the other side – and the card with “7” on it
– to make sure there is not a vowel on the other side. In this
version of the problem, which has been replicated numerous
times, typically less than 10% of the participants give the
correct answer [20, p. 407]. This is consistent with work
in computing education research that has found that even
students who have completed a digital logic course still have
misconceptions about logical implication [23].

Later replications added di↵erent kinds of context to the
Wason rules, for example: “If it rains, the street is wet”; “If I
travel to Manchester, I go by car”; “If a letter is sealed, then
it has a 50 lire stamp on it”; “If there is L.B.MILL on one
side of the envelope, then there is PRINTED PAPER RE-
DUCED RATE ON THE OTHER SIDE”; and “If a person
is drinking legally, then the person must be over 19 years of
age”. [20] Some of these studies found that context made a
significant di↵erence, some studies found a small di↵erence,
and some found none. Some replication studies arrived at
non-confirmatory results (for example, traveling to Manch-
ester).

Griggs and Cox [20] hypothesized that context works if it’s
related to the participant’s own experience: “Performance on
the selection task is significantly facilitated when the presen-
tation of the task allows the subject to recall past experience
with the content of the problem, the relationship expressed,
and a counter-example to the rule governing the relation-
ship.” [20, p. 417] Thus, a completely arbitrary rule like
“If someone is wearing purple, they must be over 18” would
not help; a rule such as “If it’s winter, it’s cold out” would
be most helpful for participants who have lived in a place
where it’s generally true but not always; and a rule about
the drinking age would help the large majority of college stu-
dents. (In the United States, where much of this experiment
was run, the drinking age is generally 21, so some students
can drink legally and some cannot.) Griggs and Cox ran a
carefully-designed experiment with three di↵erent rules, in-
cluding the drinking-age rule, that convincingly supported
their hypothesis.

2.2 Education: Cognitive Load Theory
Cognitive load can be defined as “the load imposed on

an individual’s working memory by a particular (learning)
task” [40]. The widely accepted assumption is that working
memory only possesses limited capacity and can only deal
with a very limited number of information elements at a
time [34]. For novices of a domain who have not committed
knowledge to long-term memory, working memory is used
for fundamental knowledge, reasoning, and problem solv-
ing. Thus, it is especially important that learning materials
do not overload the available working memory. According
to Cognitive Load Theory there are three components of
cognitive load - intrinsic, extraneous, and germane [52, 53].
Intrinsic cognitive load is determined by the inherent nature
of the learning tasks themselves, while extraneous cognitive
load is determined by the manner in which the tasks are
presented.



Intrinsic cognitive load cannot be altered by instructional
interventions because it is determined by the interaction be-
tween the nature of the materials being learned, and the
expertise of the learner [53]. Extraneous cognitive load, on
the other hand, depends on the format of instruction and
can be manipulated with the appropriate instructional de-
sign [4]. When designing instructional material, care should
be given to eliminate any possible extraneous load [28]. Ger-
mane cognitive load is conscious processing using domain
schemas guided by instructional design that can take place
when both intrinsic and extraneous cognitive load levels are
low enough so that some working memory capacity remains
unused [52].

Adding context gives students learning to program more
to read, requires them to abstract the relevant information
from the problem description, and then requires them to
translate the relevant information into code. This is a nec-
essary skill for professional programmers, but for novices it
may be “extraneous cognitive load”.

Computer science has a significant intrinsic cognitive load
[19, 35], related to the programming languages used and
to understanding and controlling an external computational
agent. This kind of problem does not occur frequently in
other disciplines, but occurs from the beginning in computer
science. As a result, it may be even more important to avoid
extraneous cognitive load.

On the other hand, the combination of this intrinsic load
and the di↵erence between computer science and other disci-
plines means that findings from studies in other disciplines
might not apply in computer science [35, 36]. Therefore,
studies within computing education are warranted [35].

2.3 Math Education: word problems
Mathematical word problems are “presented in the form

of a short narrative rather than in mathematical notation”
[9]. Compared to numerical computation problems, word
problems have “context” in the sense used in this paper.

Word problems are notoriously di�cult for students [8].
Language complexity, the use of unfamiliar words, and even
the placement of the question (before or after the narrative)
all contribute to that di�culty [9]. Wording and semantic
factors have been demonstrated to heavily influence problem
di�culty. Wording factors refer to the linguistic surface or
presentational structure of problems [42]. Even minor vari-
ations in the use of specific linguistic elements may have a
significant impact on problem di�culty that is not explained
by the logico-mathematical structures [41]. Semantic factors
include non-mathematical action or situational structure un-
derlying word problems. Studies have shown that problem
di�culty varies with this structure which can be static or dy-
namic, realistic or artificial, intuitively meaningful or more
abstract, and familiar or unfamiliar [42].

2.4 Computing Education: context
In computing education, many have argued that context

helps. For this purpose, Guzdial [21, p.4] defines “context”
broadly, as “the use of a consistent application or domain
area, which e↵ectively covers the core areas of a computer
science course, provides a source for explanations and a basis
for student projects”. As examples, he cites media compu-
tation and robotics. Esper’s magical “code spells”metaphor
might also be an example, if used throughout a course [14].

A variety of reasons are given in support of context, in-
cluding student motivation [12, 18]; enabling students to
engage with subjects and concepts they may otherwise have
found uninteresting [54]; allowing students to better perceive
the relevancy of the material being taught [21, 24, 43]; re-
cruitment and retention of women [43]; retention more gen-
erally [21]; connecting students with practitioners [12]; show-
ing students their e↵orts can positively impact a broader
user community [3]; and enabling students to explore broader
social and ethical issues [12].

Guzdial [21] has argued that both contextualized and de-
contextualized courses have value. Contextualized courses
help with retention, but students, particularly weak stu-
dents, can be distracted by the contextual information. Fur-
ther, de-contextualized information is important for trans-
fer. Few novices can perceive the underlying structural sim-
ilarity between two problems presented with di↵erent con-
texts. Students eventually need de-contextualized material,
except in the unlikely event they can count on spending
their whole careers working in the same domain. Thus,
Guzdial argued for a contextualized CS1, followed by later
de-contextualized courses.

This is a broader definition of context than the one used
here, but it is quite plausible that some of these arguments,
particularly those involving student motivation, also apply
at the level of an individual assignment. Esper et al. [14]
presented results on some individual contextualized assign-
ments using CodeSpells, an IDE designed for Java novices.
The CodeSpells programs allow students to write “spells”
– Java methods that allow the programmer’s avatar to do
magical things such as levitate or set things on fire. This
is a more immersive form of context than simply changing
the wording of an assignment. In a small pilot study, stu-
dents showed high motivation and notable achievement in a
45-minute lesson.

The arguments for and against context raised by Guz-
dial are echoed in the response to Lister et al. [29]. This
paper addressed the question of whether students can read
code. Like this study, Lister et al.’s project involved specific
questions, but all of their questions were deliberately de-
contextualized. For example, students were asked to read
the following code and identify the contents of array x after
execution.

int[] x = {0, 1, 2, 3};

int temp;

int i = 0;

int j = x.length - 1;

while(i < j)

{

temp = x[i];

x[i] = x[j];

x[j] = 2*temp;

i++;

j--;

}

The author(s) of this code avoided using meaningful variable
names, etc., in order to control for linguistic issues and focus
narrowly on students’ abilities to read and trace code.

Parsons et al. [37] argue that students’ failure to correctly
answer questions such as this one is not the students’ fault:



“Not being able to answer this question doesn’t necessar-
ily demonstrate that one is unable to write code to iterate
over and modify the contents of an array, it merely indicates
that this abstract and tortuous piece of code is di�cult to
understand.” [37, p. 120] They did not address the issue of
transfer, however, or the possibility that students might be
distracted or hindered by the added di�culty of processing
a program’s context.

McCracken et al. [33] raised the question of whether con-
text might make a di↵erence to an individual programming
assignment. They asked over 200 students from four institu-
tions in three di↵erent countries to write a simple calculator.
While they provided three variations on the calculator task,
all had context.

After finding that the students did much worse than ex-
pected, they conjectured that the context might be a partial
explanation [33, p. 136]:

The specifications of the exercises in this study
included details that were not relevant to the
solution, which made it di�cult for many stu-
dents to achieve the first learning objective in
our framework (abstracting the problem from the
description)... [M]any students [...] did not get
seem to get [sic] past that point in the problem-
solving process.

2.5 Computing Education: Rainfall
Rather than looking at context, Soloway wanted students

to be able to see through the context and identify problems
with a similar structure. He focused on the underlying pat-
terns in code and how students could learn to recognize and
use them.

Soloway viewed student learning through an idea rooted
in cognitive theory [31]. In cognitive theory a schema is a
chunk of information that has been successfully learned and
is contained in memory. Essentially, it is basic knowledge
that a student or programmer can recall and use in a con-
structive way. Once attained by the learner, a schema acts as
a single information element in working memory incorporat-
ing symbols and relations between them [38]. Recognizing a
schema thus temporarily eliminates the need for immediate
understanding of the context. Processing a schema actively
reduces intrinsic cognitive load and allows the application
of relevant knowledge across contexts. In order to recog-
nize a schema, the learner must first be able to abstract it
from worked examples, resulting in germane cognitive load
which has to be kept low to ensure success [19]. As com-
puter science has inherently high and hard to reduce intrin-
sic cognitive load, care should be taken to not additionally
overburden novices’ working memory. Schemas committed
to long term memory by appropriate and timely application
of germane cognitive load during instruction with carefully
chosen materials can result in reduction of extraneous cog-
nitive load. Enhancing schema construction in instructional
design reduces learners’ overall cognitive load [4].

Soloway’s schemas are called plans and goals. A program-
mer’s job is to know how to combine the appropriate plans
and goals into working programs. For example, students
who learned the plan for finding the average of a generic list
of numbers could apply that plan to any problem in which
one of the goals is to find the average of some numbers re-
gardless of the problem’s context.

In an empirical study, Soloway et al. [49, p.854] explored
the relationship between the choices and decisions that novices
make to solve a problem and programming language struc-
ture. Specifically, they examined the looping strategies that
students employ in code submissions. The study involved
asking the students to solve the Averaging Problem:

Write a program that repeatedly reads in inte-
gers, until it reads the integer 99999. After see-
ing 99999, it should print out the correct average.
That is, it should not count the final 99999.

Although this problem seemed to be easy, students did “sur-
prisingly poorly on this and related problems” [49, p. 854].

Soloway later introduced a version of the Averaging Prob-
lem with context:

Read in integers that represent daily rainfall, and
print out the average daily rainfall; if the input
value of rainfall is less than zero, prompt the user
for a new rainfall. [48, p. 853]

This was a simple version of what has come to be known
as the Rainfall Problem, simpler than the one used in this
work.

Ebrahimi [13] conducted an experiment in which he, like
Soloway, looked at the way students combine plans to solve
problems. In his experiment, he used a more complicated
version of Soloway’s Rainfall Problem:

Write a program that will read the amount of
rainfall for each day. A negative value of rain-
fall should be rejected, since this is invalid and
inadmissible. The program should print out the
number of valid recorded days, the number of
rainy days, the rainfall average over the period,
and the maximum amount of rain that fell on one
day. Use a sentinel value of 9999 to terminate the
program. [13, p. 470].

This is essentially the same as the first task studied in this
work (the Satellite Program, see Section 3.1): it asks for the
number of positive data items (the rainy days), the average,
and the maximum.

Seppälä et al. [45] provided a useful survey of previous
Rainfall Problem literature. Recent projects have used vari-
ants of the Rainfall Problem in a functional programming
language [17], in C# [47], and examined the role of test writ-
ing in solving the problem [26]. However, none of these have
focused on the role of context in solving the problem.

2.6 Computing Education: problem-solving
Novices lack many rudimentary problem-solving strate-

gies needed to write programs, like the identification of basic
problem elements, the relationship between them, and the
steps necessary to construct a solution (appropriately rep-
resenting information describing the problem and designing
algorithms to transform that information from one represen-
tation to another). When successful in solving one problem,
they frequently fail to apply the same solution techniques
to similar problems [46]. These weaknesses are commonly
recognized as one of the barriers or di�culties students face
while learning to program [2, 25, 44].

Lavonen et al. [27] argue that context helps students with
problem-solving: when students create solutions while solv-
ing real-world problems, the products created during the



development process become original and appropriate. In
light of these findings, several institutions are trying to in-
still and develop these skills in students implicitly [1, 10, 16]
by requiring them to observe “worked examples” and apply
them to new but similar problems.

However, the context associated with worked examples
may also cause di�culties. Context increases the cognitive
load on students, as learners must comprehend all of the
secondary information described in the context even if it is
not essential to the main problem [51]. This drawback has
recently led to a line of work that revisits Soloway’s idea
of teaching the underlying subgoals and task structure of
programs [5, 6, 7, 11, 30, 36, 39].

3. METHODOLOGY
Given the lack of consensus across scientific domains re-

garding the e↵ect of problem context on performance and
the possible non-transferability of results to the field of Com-
puter Science education, we arrive at the research ques-
tion of whether the context of a programming assignment
helps students solve the assignment. We thus postulate
the null hypothesis: the contextualization of an individual
programming task assignment in a non-themed course will
have no significant impact on the performance of novice pro-
grammers. The alternate hypothesis is that the context of
the programming problem assignment has an e↵ect on stu-
dents’ performance. Our hypothesis testing, therefore, will
be based on two-tailed tests, comparing the alternatives of
no e↵ect versus some e↵ect: either the mean (or median)
performance measures are equal, or they are not equal. This
section describes the experiment used to test the hypothesis.

3.1 The Two Tasks
In order to determine the di↵erences in student perfor-

mance that might result from contextualization of a prob-
lem, two tasks were designed. The first task, the Satellite
Problem, is essentially Soloway’s Rainfall Problem expressed
in the context of astronomy. This task requires students to
accept a series of inputs, reject negative numbers, stop in-
put on a sentinel value, and report five values – the count of
satellites, the sum of all satellites, the average satellites per
planet, the maximum number of satellites orbiting a planet,
and the number of planets with at least one satellite. The
exact English wording of the Satellite Problem is shown in
Figure 1.

The Satellite Problem is di↵erent from the simple version
of Soloway’s Rainfall Problem in significant ways. First, it
requires the student to calculate more than just the average
rainfall. Similar to Ebrahimi’s Plan Composition experi-
ment [13], this problem also asks for the maximum value
input and the number of values that are greater than zero,
which requires the student to collect more information – and
combine more goals and plans (using Soloway’s terminology)
while designing a solution. Second, the Rainfall Problem
measures rainfall over a month, which implies the number
of rainfall values will never exceed 31 (the maximum number
of days in a month). As a result, a student could solve the
problem using an array of size 31, resulting in a less general
solution. The Satellite Problem doesn’t present a limit on
the length of the list of input data values. Third, the Rain-
fall Problem is open to di↵erent interpretations: for exam-
ple, the amount of rainfall per hour, instead of per day. The
number of satellites orbiting a planet has an unambiguous

You are writing a program for use by an astronomer
studying a distant galaxy. The astronomer will look
through a telescope at each planet in a solar system,
and will use the keyboard to enter the number of nat-
ural satellites (or moons) that are observed orbiting
that planet. The number of satellites is an integer
and cannot be negative, although it can be zero. If
a negative number is entered, your program should
display an error message and ask for a new number.
When the astronomer has finished entering the data
for a solar system, she will signify the end of the data
by entering 9999. At this point, your program should
print its results. The number 9999 should not be
included in the calculations. When your program
finishes, it should print the following results to the
screen:

(a) The total number of planets in the solar system

(b) The total number of satellites observed (for all
planets)

(c) Average number of satellites per planet

(d) The number of satellites orbiting the planet with
the most satellites

(e) The number of planets that have at least one
satellite.

Figure 1: The Satellite Problem.

meaning. Fourth, the number of satellites is always an inte-
ger, unlike the measurements in the Rainfall Problem, which
were all floating-point numbers. Thus, our students, unlike
those attempting the Rainfall Problem, needed to avoid in-
teger division errors.

The second task, as shown in Figure 2, is identical to the
Satellite Problem, except that all references to context –
astronomy, satellites, etc. – have been stripped out. This
task is referred to as the“Just the Numbers”Problem (JTN).

Like Soloway’s original problem, the instructions for the
tasks in this experiment included hints for the participants.
Soloway provided basic loop code; the two tasks of this ex-
periment included sample while, foreach and for loops, and
code for reading data from a keyboard. An example of the
hints given to participants programming in Python is shown
in Figure 3. Hints for other programming languages were
similar. In addition, the Visual Basic participants were given
code for the GUI input/output form. They were asked to
write a separate file that contained the program data and
logic, which was comparable to the work asked of the C,
Java, and Python participants.

In addition to instructions and hints, the tasks included
two sample runs of the program. The sample runs provided
the desired output of the program for two example input
datasets; one in which all of the values entered were positive,
and a case where two negative numbers were entered along
with positive values. The output examples in English are
shown in Figure 4.

Students from six di↵erent institutions in four countries:
China, Slovakia, the United Kingdom, and the United States,
participated in this experiment. English was the language of
instruction in China, the United Kingdom, and the United



Your program should read a succession of positive in-
tegers from the keyboard. If a negative number is
entered, your program should display an error mes-
sage and ask for a new number. When 9999 is en-
tered, your program should end and print its results.
The number 9999 will signify the end of data entry
– this number should not be included in the calcu-
lations. When your program finishes, it should print
the following results to the screen:

(a) How many numbers have been read

(b) The sum of the numbers that have been read

(c) The average value of the numbers that have been
read

(d) The largest value that was read

(e) The number of values that are greater than zero

Figure 2: The Just the Numbers Problem.

Hints:
Using input() to read from the keyboard:
name = input("Please enter name: ")

age = int(input("Please enter age: "))

Loops in Python:
while(condition):

# do something

for w in word:

# iterate over word

for i in range(5):

# do something 5 times

Figure 3: Hints given to participants programming
in Python.

States. American and British students represent about 60%
of participants, Chinese students receiving instruction in En-
glish represent another 26%. In Slovakia, the language of
instruction was Slovakian. The instructions for the exper-
iment were given in the language of instruction: the tasks
shown here in English in Figure 1 and Figure 2 were trans-
lated into Slovakian for the Slovakian participants.

The Flesch-Kincaid Grade Level score for the JTN Prob-
lem description is 5.3, representing a U.S. Grade 5 level of
reading di�culty. The corresponding score for the Satel-
lite Problem description is 6.8 due, in part, to the presence
of multi-syllable words like astronomer and satellite. The
Satellite Problem description contained words used to de-
scribe the context not necessary in the JTN Problem de-
scription. Because of this, the Satellite Problem description
contained 235 words, while the JTN Problem description
contained only 167. The Satellite Problem description is
therefore (68 words, 41%) longer and more di�cult to read
than the JTN Problem description, but the reading ability
required in both cases should be well within the abilities of
a collegiate student.

3.2 Protocol and Participants
As detailed in Table 1, students from six di↵erent institu-

tions participated in the study, which have been labeled A
through F for convenience of reference. The programming
language of instruction varied by institution. Institution F
gave the task in both Python and Visual Basic to two dif-
ferent sets of participants. Participants at institutions A to
E were given the instructions of their appropriate task on
paper and all copies of the paper instructions were collected
after the session. Participants from institution F received
the instructions online. Participants were not allowed to
use any outside resources such as the text, notes, previous
lab assignment solutions, or the Internet. They were not
allowed to discuss the problem with each other.

Submitted programs were collected from participants elec-
tronically and anonymized before analysis. Each researcher
obtained the appropriate Institutional Review Board ap-
proval from his or her institution, as required.

Table 1 gives the number of participants in each treat-
ment group for each institution. It also includes the maxi-
mum time allowed for the task, the percentage of women,1

and whether or not the participants were volunteering to do
the programming activity or received course credit for their
submission.

3.3 Institution and Course Descriptions

3.3.1 Institution A

Institution A is a fully accredited Master’s level public
university with a high undergraduate enrollment profile.

Introduction to Computing is a 4 US credit-hour (equiv-
alent to 6.68 ECTS hours - European credit transfer and
accumulation system) Java CS1 course taught in English.
The course is structured as 150 minutes per week of lec-
tures augmented by a weekly 110 minute lab section, for 15
academic weeks. In the semester in which the experiment
was conducted, there were three lecture sections of approxi-
mately 40 students each taught by two di↵erent instructors.
The lecture sections varied in format from extemporaneous
lecture, to prepared lectures, to peer instruction with elec-
tronic response devices. In most lab sessions, students solved
programming problems in pairs using an IDE. Topics were
organized in a fundamentals-first or objects-last approach in
Java.

The experiment was conducted during the 15th, and last,
lab session as an individual assignment. Students seated
next to each other were to be given di↵erent tasks, with
the goal that the two versions would be distributed approx-
imately evenly in each lab section and overall. Students
had 110 minutes to complete their assigned task. Teaching
assistants supervised, but did not answer questions or give
programming help. The finished programs were submitted
electronically.

All participants in the experiment were enrolled in the
course. 29 (31%) of the 94 participants majored in Com-
puter Science or Computer Engineering, 27 (29%) majored
in Electrical or Mechanical Engineering, 31 (33%) hadn’t yet
declared a major, and the remaining 7 had majors in various
other disciplines.

1IRB restrictions did not allow the collection of this infor-
mation from Institution F.



Sample	output: 
The	red	text	in	the	examples	below	indicate	user	input 
Enter number of satellites (9999 to quit): 5
Enter number of satellites (9999 to quit): 15 
Enter number of satellites (9999 to quit): 3 
Enter number of satellites (9999 to quit): 2 
Enter number of satellites (9999 to quit): 14 
Enter number of satellites (9999 to quit): 7 
Enter number of satellites (9999 to quit): 9999

Number of planets in solar system: 6
Total satellites observed: 46
Average satellites per planet: 7.666666666666667
Satellites orbiting planet with most satellites: 15
Number of planets with at least one satellite: 6

Enter number of satellites (9999 to quit): -5
Negative numbers not allowed!
Enter number of satellites (9999 to quit): 10 
Enter number of satellites (9999 to quit): 3
Enter number of satellites (9999 to quit): 2 
Enter number of satellites (9999 to quit): 0 
Enter number of satellites (9999 to quit): 0
Enter number of satellites (9999 to quit): -6 
Negative numbers not allowed!
Enter number of satellites (9999 to quit): 1 
Enter number of satellites (9999 to quit): 9999

Number of planets in solar system: 6
Total satellites observed: 16
Average satellites per planet: 2.6666666666666665
Satellites orbiting planet with most satellites: 10
Number of planets with at least one satellite: 4

Figure 4: Example Input and Output Given in Satellite Task. (Note: Text originally displayed in red is
shown in italics.)

Institution Country Volunteer Programming Time %age of Participants

Language (minutes) women Satellite JTN Total

A United States Java 110 7 46 47 93

B United Kingdom X Python 3 120 10 9 14 23

C China C 90 33 28 39 67

D Slovakia C 90 5 10 12 22

E United Kingdom X Java 110 40 5 5 10

F United States Python 3 50 5 5 10

F United States Visual Basic 50 2 5 7

Total 17 107 125 232

Table 1: Participants in the Study by Institution

3.3.2 Institution B

Institution B is a new public university o↵ering courses
ranging from foundation to postgraduate courses.

Foundations of Computer Programming is an introduc-
tion to the design and implementation of programs using a
high-level computer programming language (Python). The
module lasts for one academic semester and is intended for
foundation students enrolled in a one year course designed
to improve their general skills in computing, mathematics
and information technology. Upon successful completion,
the students can progress directly to their choice of an under-
graduate degree in Computer Science, Engineering, Digital
media Production or Information Technology Management
for Business.

Student volunteers were recruited via email. They were
randomly divided into two groups and asked to complete a
programming task depending on the group they belong to
within an allocated time (two hours). The instructions were

in English and no further questions or explanations were
allowed during the experiment. Most of the participants
finished within an hour and the solutions were electronically
submitted to the instructors.

3.3.3 Institution C

Institution C o↵ers programs which draw from Electri-
cal and Communications Engineering, Mathematical Science
and Statistics, Computer Science and Electronics, and Busi-
ness.

Introduction to Programming 2 is a 5 ECTS credit course
that follows on from the 5-credit course Introduction to
Computer Programming 1. The language of instruction is
English and the programming language is C. The course
is structured as 90 minutes per week of lecture augmented
by a weekly 90 minute lab for 16 academic weeks. In the
semester in which the experiment was conducted, there was
one lecture section of approximately 150 students and 2 lab
sections of approximately 75 students each supervised by



graduate students, who assisted students by answering pro-
gramming questions. The lecture sections consisted of pre-
pared lectures. In each lab session, students were tasked
with programming problems which reflected lecture topics.

The experiment was conducted during the last lab session
of a 16 week semester as an individual assignment. Teaching
assistants supervised, but did not answer questions or give
programming help.

All participants in the experiment were enrolled in the
course. 28 (36%) of the 77 participants are first-year Soft-
ware Engineering majors and 49 (64%) are first-year Internet
of Things Engineering majors.

3.3.4 Institution D

Institution D is a fully accredited Master’s level public
university.

Programming 1 is a 6 ECTS credit CS1 course taught
in the Faculty of Natural Sciences in the first year of the
Applied Computer Science program. The language of in-
struction is Slovak, the programming language is C. The
course includes 80 minutes per week of lecture and a weekly
80-minute lab for 13 academic weeks. In the semester in
which the experiment took place, there was one lecture sec-
tion of approximately 40 students and 2 lab sections of ap-
proximately 20 students. The whole course was taught and
supervised by one teacher (T1). In each lab session, students
were tasked with programming problems and developed pro-
grams using an IDE. The experiment was conducted by an-
other teacher (T2) who taught the same students, within the
subject “Semestral Project 1”. This second course prepares
students for academic writing in computer science topics.

For the experiment, task instructions were translated by
T2 to the Slovak language and printed. The experiment
was conducted during the last lab session as an individual
assignment for which students did not receive any kind of
help. The finished programs were submitted electronically.

All participants in the experiment were enrolled in the
course “Programming 1” (and “Semestral Project 1”). All
22 (100%) of the participants majored in Applied Computer
Science.

3.3.5 Institution E

Institution E is a large public university awarding degrees
ranging from Bachelor’s to PhD level.

Software Design and Development (first-year) and Object
Oriented Software Design (second-year) are both 30-credit
(15 ECTS) courses which are taught subsequently over the
first two years at the School of Computing Science and Digi-
tal Media. Each course lasts a year across the Computer Sci-
ence and Computing Graphics and Animation BSc degrees.
The language of instruction is English, with JavaScript used
as the introductory language, and Java used as the main
programming language.

An e-mail was circulated to students from both modules,
asking for voluntary participation for the experiment. Stu-
dents were invited to an empty lab were they were randomly
allocated tasks. Teaching assistants supervised, but did not
answer questions or give programming help. The submitted
programs were e-mailed to the lecturer in charge.

All participants in the experiment were enrolled in one of
the two degrees described above.

3.3.6 Institution F

Institution F is a fully accredited Master’s level urban
public college.

Data were gathered from two di↵erent courses, Algorith-
mic Thinking and Introduction to Visual Basic in Business,
both taught in English. The two courses had two di↵erent
instructors, both full-time faculty. Neither was a researcher
on this project.

Algorithmic Thinking is a 4 US credit-hour Python CS1
course for CS majors in the Faculty of Arts and Sciences,
designed for students who have not had any previous pro-
gramming experience. While it is intended for CS majors,
some of the students are Mathematics Education majors, for
whom it is a requirement.

The course is structured as 200 minutes per week of lec-
ture, which varies in form during the semester from lecture
to group work to lab sessions, at the instructor’s discretion.
In the lab sessions, students are assigned problems to solve
using an IDE. The course lasts 14 academic weeks. In the
semester in which the experiment was conducted there was
one section of approximately 24 students.

Introduction to Visual Basic in Business is a 3 US credit-
hour introductory programming course for Computer and
Information Systems majors in the School of Management.
The course is structured as 150 minutes per week of lecture
and lasts 14 academic weeks. In the semester in which the
experiment took place, there was one section of 15 students.

The Python experiment was conducted during the 13th
week of classes; the Visual Basic experiment was conducted
during the 14th and final week of classes. In each class, half
of the students were given one task and half were given the
other. Following the requirements of the local Institutional
Review Board (IRB), each student was given a consent form
outlining the experiment, and data were collected only from
those students who consented. Instructors supervised, but
did not answer questions. Neither instructor gave program-
ming help.

All participants in the experiment were enrolled in the
course from which their data were gathered. The researcher
at institution F was not authorized by the local IRB to col-
lect demographic information. It is highly likely, however,
that the Visual Basic students intended to major in Com-
puting and Information Systems, and the Python students
intended to major in either Computer Science or Mathemat-
ics Education.

4. ANALYSIS
The data collected include 246 submitted files and demo-

graphic information about their authors (where permitted
by the IRB), identified by institution and task version. Of
these 246 submissions, 14 were excluded: two where the stu-
dent submitted the wrong file (one from Institution A and
one from Institution D) and 12 for suspected plagiarism (10
from Institution C and two from Institution F).

This left a total of 232 programs in our final dataset. As
shown in Table 2, slightly more than half (54.3%) of these
programs were Just the Numbers programs, and slightly less
than half (45.7%) were Satellite Problem programs. In each
group, there were some programs that compiled (the “com-
piles”), and some that did not (the “non-compiles”).

Two di↵erent analyses of this dataset were performed.
First, the compiles were analyzed by using grey-box test-



Treatment Compile Non-Compile Total

Satellite 91 15 (14.2%) 106

JTN 109 17 (13.5%) 126

Table 2: Numbers of submissions that compile and
do not compile by treatment group (Satellite Prob-
lem or Just The Numbers)

Analysis 1: Grey-box Analysis 2: White-box
(Compiles Only) (Sample & Non-compiles)

Successfully reads se-
quence of integers

1 Reads all data up to
sentinel

1

Stops on sentinel 1 Stops on sentinel 1

Sentinel value not in-
cluded in calculations

1

Warns against negative
numbers

1 Doesn’t use negatives
and prints warning

1

Prints correct non-
negative count

1 Counts at least one
(positive, zero, non-
negatives) correctly

1

Prints correct count of
positives

1 Counts at least two
(positive, zero, non-
negatives) correctly

1

Prints correct sum 1 Sums values correctly 1

Prints correct average
(given sum and non-
negative count)

1 Calculates average
(correct in terms of
sum and non-negative
count)

1

Prints correct maxi-
mum

1 Calculates maximum
correctly

1

Avoids crashing on
divide-by-zero

1 Tests for divide-by-zero 1

Has code to print re-
sults

1

Possible points 10 Possible points 10

Table 3: Point assignments for scoring. (Note: ital-
ics indicate a black-box test.)

ing: as shown in Table 3, most items were black-box tested,
but for some features, white-box testing was used. Second, a
sample of 25% of the programs, including both compiles and
non-compiles, was tested using a more extensive white-box
testing scheme.

These complementary analyses triangulate the results, as
in McCracken et al. [33] and McCartney et al. [32] The
remainder of this section describes each of these analyses in
more detail.

4.1 Analysis 1: Grey-box Testing of Compiles
Analysis 1 used grey-box testing as shown in Table 3.

White-box tests were used for successfully reading in a se-
quence of integers, which would normally involve the cre-
ation of a loop; stopping the reading of input when the sen-
tinel value was entered, with (for example) an appropriate
loop condition or selection statement; and excluding the sen-
tinel value from the calculations.

Black-box tests were performed using two test sequences.
The first test sequence included several positive numbers, a
negative number, a zero, and the sentinel value. For this
test sequence, the submission received one point each for
correctly calculating the number of values entered (excluding
the sentinel), their sum, their average, the largest number
and the number of values entered that were greater than
zero.

In the case of the average, the point was awarded if the
program divided the sum by the count regardless of whether
or not those two values were themselves correct.

The absence of typecasting to avoid integer division was
not considered an error and did not a↵ect the score since the
problem is not present in all of the programming languages
used in the study.

The second test sequence was an edge case which included
only negative numbers and the sentinel. The calculation of
the average would run into a division by zero problem, which
could cause abnormal termination (in some languages). If
the code guarded against division by zero, either implicitly
or explicitly, and avoided a crash or invalid result, it was
awarded one point.

We continued the analysis in two ways. First, we assigned
a score of 0 to the non-compiling solutions and included
them in the sample. Second, we re-ran the analysis including
only the compiling programs in the data set.

4.2 Analysis 2: White-box testing of a sample
The Grey-box analysis approach, depending on black-box

testing, assigned the same zero score to all non-compiling
submissions regardless of the completeness or correctness of
the submission. In order to be able to consider the cor-
rectness of the submissions that did not compile, a strictly
white-box analysis methodology was developed to score the
structural features in the programs, as in McCartney et al.
[32]. The abstract (language independent) structure of a
successful solution to these tasks involves iterating over a
number of inputs until the sentinel value is read; during
the iterations the program skips negative values, and keeps
running totals for the sum of values, the number of values
read, and the number of zero (alternatively positive) val-
ues, as well as a running maximum value. Once the sentinel
is read, the program prints out the required outputs, some
stored (sum, number read, maximum) and some calculated
(average).

Adding some control information, this can be expanded
to:

loop: read in number (1)

if (read in sentinel) (2)

exit loop (3)

else if (number < 0) (4)

print error message (5)

else (6)

count = count + 1 (7)

sum = sum + number (8)

if (number > max) (9)

max = number (10)

if (number > 0) (11)

posCount = posCount + 1 (12)

if (count > 0) (13)

average = sum/count (14)

print stats (15)

else print error message (16)



Programs would optimally check errors, particularly when
reporting the average and the maximum when the count of
numbers read is zero.

Given this structure, one can extract a number of di↵erent
structural features:

• Code to iterate through all of the data (the loop struc-
ture with enclosed read statement (lines 1-12),

• Code that checks for the end of data (lines 2-3),

• Code that processes each data item within the loop,
including code to process negative inputs (line 4-5),
non-negative inputs (lines 7-10), and positive inputs
(lines 11-12),

• Code to check for no data (line 13),

• Code to calculate results (line 14),

• Code to print out the desired stats (line 15), and

• Code to print out “No data” message (line 16).

The arrangement of these features can vary – there may
be a read and sentinel test preceding the loop and at the end
of the loop, e.g., but the overall features define what needs
to be done within the task. These features also describe an
alternative structure for this problem: first read all of the
data into a data structure, such as an array or list, then
process the data items from the data structure.

To capture these features, two researchers agreed on a set
of eleven structural elements to tag in each program. They
individually tagged a sample of 29 programs from the com-
plete dataset for presence/absence of each attribute, then
resolved their di↵erences through discussion; these discus-
sions helped identify and remove ambiguities from the tag
definitions, including an identification of near-miss condi-
tions – logically incorrect versions of attributes that should
still be accepted.

The resulting list of attributes is as follows:

Reads Input A program has the potential to read in and
use all the data entered by the user. A near miss may
fail to use one of the data items in calculations, gen-
erally the first one. A program that reads data into a
fixed size array counts as correct only if the array can
store at least 400 values.

Stops on Sentinel The program will always recognize the
sentinel value (9999) and stop accepting inputs. Near
miss if the program tests whether numbers are greater
than or equal to 9999 instead of equal to 9999.

Deals with Negatives For every non-sentinel input, the
program must check whether it is negative, and if so
print a message and exclude it from the computations.
Near miss when the program correctly handles indi-
vidual negative numbers but not more than one in a
row.

Counts Zeros The program counts the number of zeroes
entered.

Counts Positives The program counts the number of pos-
itive inputs entered.

Counts Non-negatives The program counts the number
of non-negative inputs entered.

Sums values The program correctly calculates the sum of
the non-negative numbers, which requires adding up
all of the positive or non-negative inputs.

Calculates average The program correctly calculates the
average of the non-negative numbers based on the sum
and non-negative count (which do not have to be cor-
rect). Near miss if the program does integer division
or divides by zero if the sentinel is the first input.

Calculates maximum The program correctly calculates
the maximum value entered (excluding the sentinel).
Near miss if it reports a maximum of zero for empty
sets of numbers.

Prints results Te program displays the results calculated
(regardless of whether or not the results themselves
are correct) using labels from the problem description.
Near miss if the program either does not print or prints
label only for values that were not calculated.

Checks for Divide-by-zero The program avoids dividing
by zero when the sentinel is the only number entered,
and does not attempt to compute the average in this
case.

The di↵erent count tags correspond to di↵erent ways the
program might obtain the necessary information for the re-
sults: the number of numbers greater than or equal to zero
and the number greater than zero. Counting any two of ze-
roes, positives, or non-negatives is su�cient to obtain the
necessary results.

Given these tags, a point assignment was developed to
enable comparison of this analysis with the Analysis 1 scor-
ing. One point was given per attribute except for the three
counts – for the three counts a maximum of two points were
awarded, since the third count can be obtained from the
other two. This assignment maps a set of tags to a value
between 0 and 10, the same range as the Analysis 1 scores.
The Analysis 1 and Analysis 2 schemes are comparable, as
shown in Table 3.

After finalizing the white-box tagging scheme, a sample
of 58 programs were selected, 25% of the entire dataset, for
tagging. The sample was created by selecting from among
the randomized file names assigned to submissions when the
programs were anonymized. An equal number of Satellite
and Just the Numbers programs were chosen from each of
the institutions. The tagging was done by three researchers,
two for each program; di↵erences were resolved through dis-
cussion.

The number of items by institution and problem type in
the resulting sample is given in Table 4. The sample also
included both compiles and non-compiles: 14 of the 58 pro-
grams in the sample were non-compiles, with at least one
non-compile from each institution except E (which had no
non-compiling submissions).

5. RESULTS
Figure 5 presents the distribution of the grey-box testing

scores from Analysis 1. Figure 6 presents the distribution
of the white-box testing scores from Analysis 2. Recall that
the grey-box testing was applied to the 200 submissions that
compiled without error; the 32 non-compiles were given a
score of -1, so they are represented by the left-most bars of



Institution Just the Satellite Sample Population
Numbers Size Size

A 8 12 20 93

B 3 4 7 23

C 5 5 10 67

D 5 3 8 22

E 3 3 6 10

F 2 1 3 10

F 3 1 4 7

Total 29 29 58 232

Table 4: Our sample, by program type and by insti-
tution.
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Figure 5: Distribution of Grey-box Testing Scores
by Treatment Group. All programs, n = 232.

the graph. The white-box testing was applied to our sam-
ple of 25% (58) of the programs; the same test was applied
to both compiles and non-compiles. Both distributions are
clearly not normal – approximately a third of each group
has a score of 9.

In the following sections, we will discuss the analyses done
using these data.

5.1 Results 1: Compiled Programs
We compared the distributions of the grey-box scores in

two ways. First, non-compiling programs were included with
a score of zero. In this case, we ran a t-test on the scores.
The mean score for the Satellite treatment group was 5.44
(out of 10) and for the Just the Numbers group was 5.31. A

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10

White-box	Test	Score	Frequencies

Just	the	Numbers Satellite

Figure 6: Distribution of White-box Testing Scores
by Treatment Group. Sample of programs, n = 58.

t-test confirms that these are not statistically significantly
di↵erent (p = 0.798).

Second, we ran the same analysis on the compiling sub-
missions only. This gave analogous results with mean scores
of 6.33 for Satellite and 6.15 for Just the Numbers, which
are not statistically significantly di↵erent (p = 0.707).

In both cases, the students in the Satellite group per-
formed marginally better, but the di↵erence is not statisti-
cally significant. In addition, the score distributions of the
two institutions with the most submissions (Institutions A
and C) showed no statistically significant di↵erence in per-
formance between the Satellite and the Just the Numbers
groups. (See Table 5 for details.)

5.2 Results 2: White-box Testing of a Sample
The distributions of white-box testing scores for the sam-

ple programs look remarkably similar for the Satellite and
Just the Numbers submissions, as can be seen in Figure 6.
Indeed, in a comparison of the 29 Satellite programs and
the 29 Just-The-Numbers programs in the sample, both a
two-tailed Mann-Whitney test (U = 389, p = 0.62) and t-
test (t(56) = 0.49, p = 0.63) find no statistically significant
di↵erences.

A Shapiro-Wilk test verifies that neither the distribution
of the Just the Numbers group nor the distribution of the
Satellite group is normal, with a 9.89 variance for Just the
Numbers and 10.89 for Satellite.

5.3 Comparing the White-Box and Grey-Box
Score Distributions

The grey-box and white-box testing can be used to tri-
angulate the analysis. A comparison of Figures 5 and 6
shows the score distributions are very similar for the two
measures. Considering the 58 programs in the 25% sample
where both scores exist, the average grey-box score is 4.74,
while the average white-box score is 5.83. A significant cause
of that di↵erence is due to the 14 non-compiling programs
that grey-box analysis scores as zero; their average white-
box score is 2.71. The average grey-box and white-box scores
for the 44 compiling programs are much closer in value: 6.82
and 6.25, respectively. A one-tailed paired t-test for the
compiling programs resulted in an insignificant di↵erence:
t(43) = 1.68, p = 0.091. Given the non-normality of the
distributions, we ran a Wilcoxon paired test on the compil-
ing program scores as well; the results were consistent with
the t-test: insignificant di↵erence, V = 201, p = 0.141. Not
surprisingly, including the non-compiling program scores in
this analysis finds a significant di↵erence.

A Pearson’s correlation test on the grey-box and white-
box scores for the 44 compiling submissions shows the scores
are highly correlated (cor(42) = 0.77, p < 0.001).

5.4 Results 3: Combining the Analyses
Given the lack of statistically significant di↵erence be-

tween the white-box and grey-box testing (as discussed above
in Section 5.3), we did a third, combined analysis in which
the grey-box scores were used for the compiled programs
and the white-box scores were used for the non-compiles.
We will call this the combined score.

Analyzing the combined score is equivalent to rerunning
our original tests from Results 1 except that instead of either
omitting or assigning zero to each non-compiling submission,



we use its white-box testing score. The thought was that
by assigning a more meaningful score to the non-compiling
submissions in the larger data set, we would expose any real
di↵erence that was previously masked by the lack of data
from the non-compiles.

In order to do this, we required white-box testing (Anal-
ysis 2) scores for all of the non-compiles. Using the same
process, the three researchers who did the 25% sample also
tagged the remaining 18 non-compiling submissions that
were not included in that sample.

Again, we found no statistically significant di↵erence be-
tween the treatment groups. The means of the combined
scores (out of 10) were 5.91 (Just the Numbers) and 5.78
(Satellite). This small di↵erence is not statistically signifi-
cant (t(230) = 0.30, p = 0.76). Given that the data are not
normally distributed, it can be argued that a non-parametric
test would be more appropriate. A Wilcoxon rank sum
also finds the di↵erence not to be statistically significant
(W = 6582, p = 0.83).

5.5 Results: Gender
Table 1 includes percentages of women within each insti-

tution. In total there were 36 females, 175 males and 21 par-
ticipants for whom the gender was unspecified. Of those who
identified as females, 15 were assigned to the Satellite Prob-
lem group and 21 were assigned to the Just the Numbers
group. A chi-squared test (� = 0.1486, df = 1, p = 0.6999)
confirmed that the random assignment to treatment group
was not biased by gender.

Table 5 includes the results comparing performance of
only the women and only the men. As with the entire pop-
ulation, no significant di↵erences were found in the perfor-
mances on the di↵erent tasks.

5.6 Results: Proportion of Non-Compiles
The numbers of submissions which did and did not com-

pile for the Satellite and Just the Numbers programs are
shown in Table 2. Here again there is no statistically signif-
icant di↵erence between the two groups. A chi-squared test
(�(1) = 0.021, p = 0.885) confirms the distributions between
the two groups are not statistically significantly di↵erent.

5.7 Results: Summary
All of the above analyses agree: there is no statistically

significant di↵erence between student performance on the
Just the Numbers programs and on the Satellite programs.
Thus, we failed to reject the null hypothesis. It is our belief
that the data show that novice programmers exhibit equiva-
lent rates of success on contextualized and generic problems.

6. DISCUSSION

6.1 A Multi-Institutional Global Study
Students participating in this study spanned six institu-

tions in four countries from three continents. This strength-
ens the negative result of the study because the outcome
– no di↵erence between the Satellite Problem and Just the
Numbers treatment groups – was observed in several di↵er-
ent situations: di↵erent classrooms, di↵erent types of CS1
courses, di↵erent types of students and di↵erent cultural
backgrounds.

6.1.1 Different CS1 Courses and Student Populations

The CS1 courses included in the study di↵ered in many
facets including schedule, programming language, and course
content – for instance, some of the participating CS1 courses
may have introduced more advanced data structures than
others. All students were completing a CS1 course, but not
all students were enrolled specifically in a Computer Science
degree – some were enrolled in related degrees such as Soft-
ware Engineering, Internet of Things Engineering, Mathe-
matics Education or Digital Media. The motivation for in-
cluding such a diverse set of institutions and students was to
give a representative sample of CS1 courses o↵ered globally,
but whether the students and institutions who participated
in this study are, in fact, representative of students in gen-
eral is di�cult to determine.

Not only did the majors of the students vary across insti-
tutions, their skill level was di↵erent as well. Some of the
students were true novices and the CS1 course they were
enrolled in at the time was their first. Others were in their
second year of instruction. It is di�cult to find a measure
to accurately rank students across institutions. In addi-
tion, the courses themselves di↵ered significantly – from the
course structure and focus, through the programming lan-
guage to the credit weight. Also, the gender balance varied
drastically, ranging from 5% to 40% for the five institutions
reporting (for one institution these statistics could not be
reported).

In two institutions students were non-native English speak-
ers. In one of these the language of instruction was English,
while in the other the language of instruction was the stu-
dents’ native language. This is discussed in more detail later
in this section.

6.1.2 Different computer languages

The observed performance varied across computer lan-
guages. In terms of the percent of programs that did not
compile, Java (4.9%) was much lower than C (20.2%) and
Python (24.2%) (all of the Visual Basic programs compiled,
but there were only 7 of them). These di↵erences are hard
to isolate to language, however: they also correspond to the
institutions that use those languages, and they may be a
function of the development environments used. There was
no apparent di↵erence for the two tasks.

The di�culty of white-box testing did seem to vary with
language as well – the C programs were often more di�cult
to analyze than the Java or Python programs. It may be
that C programs are just harder to read, especially when
written by novices who can write correct code that violates
convention, such as using a stack to store data, using push

to store the input data, then accessing the data of the stack
as an array when processing the input set. The di�culty of
reading the code seemed unrelated to the task, however.

6.1.3 Challenges of a Multi-institutional Study

Multi-institutional, multi-national studies have inherent
challenges. While they do have advantages – a larger pool
of students from a variety of institutions, making the results
potentially more generalizable – they introduce significant
problems of coordination and communication. As one of the
first multi-national, multi-institutional studies in computing
education, McCracken et al. [33] encountered these issues
head-on and discussed them in their report. The researchers
in their group were allowed to choose any or all of three



Group Mean
Satellite

Mean
JTN

Confidence
Interval

p Significant?

All submissions
Non-Compiles
Scored as Zero

5.44 5.31 (-0.85, 1.11) 0.798 No

All submissions
Compiling Only

6.33 6.15 (-0.75, 1.11) 0.707 No

Women submissions
Non-Compiles
Scored as Zero

5.53 5.52 (-2.61, 2.63) 0.994 No

Women submissions
Compiling Only

6.92 6.11 (-1.57, 3.19) 0.488 No

Men submissions
Non-Compiles
Scored as Zero

5.78 5.67 (-1.00, 1.23) 0.841 No

Men submissions
Compiling Only

6.58 6.67 (-1.11, 0.94) 0.866 No

Group A Only
Non-Compiles
Scored as Zero

6.50 6.66 (-1.52, 1.20) 0.816 No

Group A Only
Compiling Only

7.12 6.96 (-1.08, 1.40) 0.794 No

Group C Only
Non-Compiles
Scored as Zero

6.00 5.23 (-1.10, 2.64) 0.410 No

Group C Only
Compiling Only

7.30 7.56 (-1.70, 1.20) 0.729 No

Table 5: Mean scores and confidence intervals for di↵erent groups of participants

variations on the calculator problem; some students did the
problem voluntarily, some didn’t; whether students had help
from the instructor, textbooks, or other resources may have
varied; there was no centralized approval for translations
of the instructions into other languages; and the problem
was significantly harder in Java than in other programming
languages. (Java did not yet have a Scanner class.)

We have tried to avoid these problems as much as possi-
ble. As McCracken et al. [33] recommended, we had a single
coordinator for the project, the working group leader. The
leader had run pilot versions of the experiment before dis-
tributing it to the group. All the student programs were
anonymized and kept in a single online repository, accessi-
ble to all the members of the group. In addition, we took
steps to ensure that the problem was comparable in di↵er-
ent languages (for example, giving the Visual Basic students
the GUI code they needed). All institutions used the same
instructions, with only the modifications necessary to trans-
late the instructions into the students’ language of instruc-
tion or to fit the assignment to a particular programming
language. All students completed the task in a supervised
setting, without any resources or assistance. We tested the
programs for evidence of student collaboration, and where
we found suspected plagiarism, we excluded those programs
from the data, as previously noted.

Nevertheless, there were still some unavoidable variations.
Some students were volunteers; some were not. They wrote
the program in the context of di↵erent courses, taught by

di↵erent instructors, using di↵erent books, emphasizing dif-
ferent topics, and – due to local constraints – they had di↵er-
ent amounts of time to solve the problem. Even though we
believed that it would be interesting to capture how much
time individual students spent working on their solution, not
all of the institutions were able to collect that data. Most of
the students did the English-language version of the prob-
lem; for many of them, English was not their first language.

6.2 Threats to Validity
While a number of threats to validity such as dependence

on a particular institutional situation, are partially miti-
gated by the inclusion of a number of varied situations, other
threats are inherent to the study design itself and present
regardless of the classroom setting.

6.2.1 Are students giving their best?

The performance of students on either task can be strongly
influenced by their motivation. Some of the students in our
population received course credit, while others were volun-
teers. Regardless of their situation, the question of whether
their e↵ort was representative of their actual skill remains.
As the experiment took place at the end of the semester, it is
possible that students who had already achieved the desired
grade in the course did not strain to deliver their best per-
formance. Volunteers, on the other hand, might have lacked
the motivation of course credit to do their best.



6.2.2 Are the tasks different enough?

It is possible that the two taskss completed by students
were not di↵erent enough to a↵ect student performance.
Our Just the Numbers task was designed to be as “context-
free” as possible without being vague or ill-defined, but a
completely context-free task is, in practice, not achievable.

Similarly, our Satellite task was designed to have a “real-
world” context, but it is possible that the particular Satel-
lite context we employed was not dissimilar enough from the
Just the Numbers task to make student performance signif-
icantly di↵erent from that on the Just the Numbers task.
Both of these threats could be contributors to the lack of
significant di↵erence between the submitted solutions.

6.2.3 Is the Satellite context the right choice?

It is also possible that the Satellite context is not of a
type that will a↵ect student performance, compared to the
Just the Numbers task. As discussed in Section 2.3, word-
ing and semantic factors have been demonstrated to heavily
influence problem di�culty of mathematical word problems.
Similarly, as discussed in Section 2.1, it has been shown in
psychology that context can contribute positively to suc-
cessfully completing a task if the context is related to the
participant’s own experience. We expected that all our stu-
dents would be equally unfamiliar with astronomy. Possibly
that lack of familiarity meant that the context did not help
our students; or possibly some of them did have some back-
ground in astronomy, and entering data about satellites is
not an authentic astronomers’ task. Authenticity and re-
latability, and the lack thereof, may a↵ect motivation and
performance.

We don’t really have a way of classifying context. It would
make sense to repeat the experiment with several equivalent
tasks wrapped in context drawn from di↵erent domains, to
test whether the contextualization subject influences novice
programmers’ performance. It would also be interesting
to collect and analyze students’ self-reported assessment of
their engagement, e↵ort, and ability to relate to a problem,
as well as their perception of the di�culty of the task in the
form of one or more survey questions. These data would
provide a subjective way to measure cognitive load. Data
for objective measures can be collected by behavioral obser-
vations coupled with the performance on the tasks. Ideally,
we would be able to find one, or more, contexts that achieve
the thematic facilitation e↵ect of a relatedly contextualized
Wason Selection Task that doesn’t increase extraneous cog-
nitive load.

6.2.4 Are results affected by non-native

English speakers?

Institution C’s language of instruction is English, but all of
the students are non-native speakers. Some of the students
who submitted programs from other institutions were likely
also non-native speakers, although we do not have that data.

Conceivably, for non-native English speakers who were be-
ing taught in English, increased extraneous cognitive load
could have been a factor. We believe that the cognitive
load would be higher for the Satellite context – the Flesch-
Kincaid Grade Level of the Satellite Problem was 6.8 com-
pared to 5.3 for the Just the Numbers task.

For non-native speakers there would thus be two sources
of extraneous cognitive load: the context plus a foreign lan-
guage. It is possible that this excess cognitive load con-

tributed to non-native English speakers performing worse
on the Satellite program. Additionally, the students who
are non-native English speakers but being instructed in their
native language could also be experiencing a higher cogni-
tive load due to the fact that they were programming in a
language with English keywords.

6.3 Implications for Teaching
If our results are correct – that in a CS1 course, problem

context does not help students solve a given problem – it
would have profound implications for teaching. Developing
and marking assessment is time-consuming and developing
relevant, interesting, and “real-world” context adds to devel-
opment overhead. If this overhead has no benefit to learning,
CS1 educators could simply not bother with context.

However, context may have benefits beyond simply solving
a given problem correctly. For instance we did not specif-
ically measure the e↵ect of context on student motivation
or engagement. Obviously these factors may be intertwined
with problem success, but measuring engagement and mo-
tivation on their own is a di↵erent question than the one
we sought to answer. Nonetheless, it is possible that con-
text does contribute positively to student motivation and
engagement. If this is the case, then CS1 educators would
have a reason for adding context to assignments.

Another possible reason that context may be beneficial
is its relationship to authentic assessment, which has been
shown to have positive learning benefits. If the results of
this study hold, and context does not have an e↵ect on stu-
dents’ ability to solve a given problem, more answers on the
e↵ects on motivation, engagement and the role of context
in authentic assessment need to be sought – in a computer
science setting – before CS1 educators decide if including
context in their assessments is worthwhile.

Additionally, we only investigated CS1 courses. The role
and e↵ect of context in other computer science courses and
levels needs to be explored. Finally, the additional cognitive
load that context brings (and the fact that this load could be
di↵erent for di↵erent students) needs to be carefully consid-
ered if contextual assessments are used by computer science
educators.

7. CONCLUSIONS AND FUTURE WORK
The evidence found in this study fails to reject the null

hypothesis postulating that the context of a problem leads
to no significant di↵erence in novices’ success in writing the
specific programs we studied. As discussed above, the va-
lidity of the results is possibly influenced by a variety of
factors. An instructor introducing novices to programming
could take this study’s outcome to support a decision to
limit time and e↵ort spent creating contextualized problems
in favor of devoting resources to other aspects of the course.
However, as the e↵ects of individual problem context on stu-
dent motivation and engagement are not fully known, these
should be weighed as carefully as possible before deciding
not to include context in CS1 problems.

Another interpretation of our results is that while context
does not help students write better programs, it also does not
hurt. Thus, if the inclusion of context is found to positively
influence student motivation and engagement, then the time
spent to contextualize programming tasks may be time well
spent.



Replications of this experiment could conceivably shed ad-
ditional light on our research question. Not all replications
of psychology experiments investigating this topic confirmed
the prior work. Perhaps more interesting work lies in vari-
ations on this experiment. Specifically, it may be possible
to construct computing problems that achieve the e↵ect of
the Wason Selection Task with a positive impact on pro-
gramming tasks. Coupled with the potential for increasing
student motivation and engagement, finding such a result
would provide a compelling reason to use context in indi-
vidual programming assignments in CS1.
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