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Abstract

This paper presents a comprehensive electromechanical study of an electrostatic kinetic energy harvester (eKEH)
biased with a continuous voltage. This simple circuit refers to any capacitive transducer with an in-built voltage
source, such as an electret, or DC biased transducer connected directly to a resistive load. It is commonly used
for the characterisation of experimental transducers. However there is a void of any unified discussion focusing on
the circuits influence on the transducer, due to electromechanical coupling in the transducer. The electromechanical
coupling causes numerous nonlinear e↵ects, any of which can result in inconsistent results and disjointed conclusions
of experimental devices. This article seeks to present analytic tools which can be employed for systems of this type
and discusses some of the results obtained from these techniques. Along with analysis and characterisation of the
circuit dynamics, the results are compared with an experimental device and presented in terms of design of the system
and conclusions drawn relating to the optimum operation point.

Keywords: electromechanical e↵ects, electrostatic kinetic energy harvester, MEMS energy harvesters, energy
conversion

1. Introduction

Throughout the last decade, small scale mechanically
driven electricity generators have continued to receive
increasing attention as autonomous power sources for
low power electronic devices. Mechanical energy har-
vesting devices are generally referred to as kinetic en-
ergy harvesters (KEH). Electrostatic kinetic energy har-
vesters (eKEH) convert kinetic energy of the environ-
ment into electrical energy using a capacitive trans-
ducer. EKEH are particularly suitable for microscale
implementation due to the ease with which they can be
incorporated into existing MEMS fabrication technolo-
gies [1, 2, 3, 4].

The structure of eKEHs includes a mechanical part,
an electrical component and a capacitive transducer in-
terfacing them. The mechanical part and the transducer
are usually implemented as a single miniature device.
Many authors have made novel advances in the area of
eKEH with di↵erent geometries of the mechanical part
and of the transducer: dual cavity MEMS resonators [5],
3 degree of freedom MEMS transducers [6, 7], multi-
layer comb geometries [8] and devices employing me-

Table 1: Nomenclature
x Mobile Mass Displacement
q Instantaneous Charge on Transducer

Ct(x) Transducer Capacitance Characteristic
ft Transducer Force

Aext Acceleration Amplitude of External Vibrations
!ext Frequency of External Vibrations

d Approximated Gap between fingers
C0 Transducer Capacitance at rest
RL Resistive Load
⌧ Normalised Time
y Normalised Displacement
Q Normalised Charge
a0 Normalised Steady-State Resonator Displacement
Ft Normalised Transducer Force
� Normalised Dissipation
⌦ Normalised External Driving Frequency
↵ Normalised External Acceleration Amplitude
� Normalised Frequency Mismatch
 Mechanical Impedance
Ḟ Phasor of Sinusoidal Force
U̇ Phasor of Velocity

chanical impacts [9]. The goal of these devices is to ob-
tain the largest possible time variation of the transducer
capacitance when the device is submitted to external vi-
brations.
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A capacitive transducer requires a biasing in order
to generate electrical energy, achieved by the electrical
conditioning electronics. In comparison with the me-
chanically elaborate MEMS for eKEH, there has been
much less attention given to the problem of the con-
ditioning electronics. Most MEMS eKEH devices are
characterised using a resistive load and continuous volt-
age source, called the ”continuous conditioning circuit”,
whose topology is presented in Fig. 1. The continuous
conditioning circuit was first discussed in [10, 11]. It
was proposed as an electric interface between a resistive
load and a capacitive transducer with an electret layer:
this is a charged dielectric layer biasing the capacitor
plates [12]. Indeed, a large pre-charged capacitor Cres or
a DC voltage source in series with a variable capacitor
Ct represents, exactly, a lumped model of a capacitive
transducer biased by an electret (Fig. 1b). The name
of the circuit comes from the fact that all voltages and
currents of the circuit are continuous functions of time,
which is not true for more sophisticated circuits that use
switches or diodes [2, 13, 14, 15].

In spite of the frequent use of this circuit, to the best
knowledge of the authors, there has been no complete
study of the system from the perspective of the designer,
presented in the literature. The three following basic
questions are still not fully answered:

i) Optimal load resistance and converted power.
Given the parameters of the capacitance Ct variation and
the bias voltage V0, what value of the load resistance
yields a maximal dissipated (converted) power and what
is the corresponding converted power?

ii) Electromechanical coupling. The last two ques-
tions are asked under the simplified hypothesis of a
known and fixed transducer capacitance variation. In
the case when there is electromechanical coupling, the
underlying question is: how does the conditioning cir-
cuit impact on the resonator of the MEMS device used
in the harvester, and in turn a↵ect the optimum parame-
ter and converted power

iii) Resonance frequency shift. It is known that a
mechanical resonator experiences a modification of its
resonance frequency, when interfaced with a capaci-
tive transducer biased by a voltage source [16]. This
phenomenon is well studied and described in literature.
However, the same system biased with a voltage source
in series with a resistance as in Fig. 1a highlights a
di↵erent resonance frequency shift, which may go from
zero to the value observed in a configuration with a sin-
gle voltage source. No quantitative characterisation of
this phenomenon in the continuous conditioning circuit
has been presented to date.

There are few responses to these questions even in

the case of very simple configurations, e.g., a lin-
ear resonator, sinusoidal external vibrations, and a
transducer with a simple characteristic ”capacitance-
displacement”. However, many modern studies on KEH
focus on nonlinear mechanical subsystems, considering
the nonlinearity as a tool for widening the frequency re-
sponse [17, 18, 19]. Also, many works use sophisticated
capacitive transducers (symmetrical gap closing, saw-
tooth, etc.). When such devices are inserted into the
continuous conditioning circuit, no existing tool o↵ers
an insight into the dynamics of the whole system, and,
excluding numerical simulation, no method predicts its
operational performances. Such voids existing in the
comprehension of very frequently used configurations
are explained by a high mathematical complexity in the
analysis of the circuit. Indeed, even in the case when
only the electrical domain is considered, the circuit is
described by a linear equation with variable coe�cients,
which is not integrable in closed form.

While not abundant, tools for analysing systems of
this type exist in the literature [20, 21, 22]. This article
presents a fundamental study of the coupled electrome-
chanical behaviour of an eKEH employing a continu-
ous conditioning circuit. The originality of the study is
twofold. First, an insight is proposed into phenomena
which have never been discussed before: (i) the rela-
tionship existing between the resonance frequency shift
and the value of the load resistance, (ii) the influence
of the capacity-displacement function of the transducer
on the system dynamics. Secondly, we propose a set of
analytical and semi-analytical tools allowing a rapid as-
sessment of the circuit performance as a function of the
system parameters, without performing time consuming
simulations which provide only particular results.

Section 2 presents the electrical and mechanical mod-
els describing the system, shown in Fig. 1. Semi-
analytic methods are employed for analysis and design
in Section 3 and Section 4. Finally, results from the dif-
ferent semi-analytic electromechanical models are com-
pared with the experimental device in Section 5.

2. Statement of the Problem

2.1. Primary Electromechanical Model
A high-Q mechanical resonator, driven by ambient

vibrations, causes a variation in the capacitance, Ct, of
the variable transducer. The resonator frame moves due
to the external vibrations. The displacement x of the
mobile mass with respect to the frame is also a↵ected
by the transducer force ft.

ẍ + (b/m)ẋ + !2
0x = Aext cos(!extt + #0) + ft/m (1)
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Figure 1: a) Block diagram of the continuous conditioning circuit. In
this study the continuous circuit represents all circuit configurations
which employ a capacitive transducer, resistive load and some internal
or external voltage to provide the initial bias on the transducer. b)
Equivalent schematic of a capacitive transducer biased by an electret
layer.

where m is the mass of the resonator, b is the damping
coe�cient, !0 =

p
k/m is the natural frequency, k is

the spring constant, Aext is the acceleration amplitude of
external vibrations, !ext is the external frequency and #0
is the initial phase of the external vibrations. The quality
factor is estimated from experiments. The system can
be considered high-Q as it is underdamped. Typically a
quality factor greater than 5 would be considered high.

The actual model of a harvester is composed of elec-
trical and mechanical models connected through the
equations of coupling. These equations come from the
physics of the transducer. For the capacitive transducer,
the transducer force ft can be expressed as a function
of the charge on the transducer (q) and the mobile mass
position (x):

ft(x,Vt) =
1
2

q2

C2
t (x)

dCt(x)
dx

(2)

where Ct(x) is the capacitance-displacement character-
istic of the transducer given by the chosen transducer
geometry and dCt/dx is a known function of the dis-
placement, x. The force ft expresses the influence of
the electrical behaviour on the system in the mechanical
domain.

The governing equations describing the electrical be-
haviour of the simple conditioning circuit are given by
Kirchho↵’s voltage law and the element equations:

RL
dq
dt
+

q
Ct(x)

= V0, (3)

where q is the instantaneous charge on the transducer,
RL is the resistive load and Ct(t) is the time evolution
law of the transducer’s capacitance.

In the electrical analysis, it is assumed that the evolu-
tion of Ct is defined and is independent of the dynamics

Table 2: Dimensional and Dimensionless Parameters

Transducer AO GC SGC

Ct(x) C0 + x� C0
1�(x/d)

2C0
1�(x/d)2

Ctran(y) (1 + y) 1
1�y

2
1�y2

ft
V2

t
2 �

V2
t

2
C0d

(d�x)2
V2

t
2

4C0d2 x

(d2�x2)2

Ft
⌫AOQ2

(y+1)2 ⌫GCQ2 ⌫SGCQ2y

⌫t
V2

0 �
2

2mC3
0!

4
0R2

L

V2
0

2mC0!
4
0d2R2

L

V2
0

2mC0!
4
0d2R2

L

of the electrical process. It is only defined by the time
variation of the transducer geometry. In the electrical
domain, ultimate validation of the analytical methods
describing the circuit can be realised using a Spice sim-
ulator (e.g., Eldo, Hspice, Pspice etc.), whose libraries
include a macro model of a variable capacitor.

The function Ct(x) is an important characteristic of
the system. The three most common transducer config-
urations, namely the area-overlap transducer (AO), the
gap-closing transducer (GC) [23] and the symmetrical
gap-closing (SGC) transducer, can be modeled using the
methods in this article. The capacitance-displacement
characteristic for each configuration is detailed in Ta-
ble 2, where C0 is the capacitance value at rest when the
displacement of the movable electrode is zero, d is the
rest gap for the gap-closing transducer and � is a char-
acteristic coe�cient of the area-overlap transducer.

2.2. Normalised Model
In order to reduce the number of parameters of the

complete electromechanical model and outline only es-
sential ones, a standard normalisation is applied to equa-
tion (1)-(3) [24]. We introduce the following normalised
variables: time ⌧ = !0t + #0, dissipation � = b/(2m!0),
normalised external vibration frequency ⌦ = !ext/!0,
normalised charge Q = q/Q0 where Q0 = V0/(!0RL),
and the coe�cient ⇢ = (C0!0RL)�1. We also will intro-
duce a normalisation parameter ⇠ (that will be di↵erent
for each particular geometry) such that y = x/⇠ is the di-
mensionless displacement. The term ⇠ is simply ⇠ = d
for the gap closing and symmetrical gap closing trans-
ducers, and ⇠ = C0/� for the area overlap transducer.
Thus, the normalised model of the system is:

y00 + 2�y0 + y = ↵ cos⌦⌧ + ⌫tFt(y,Q) (4a)

Q0 = 1 � ⇢QC�1
tran (4b)

where the dimensionless external acceleration am-
plitude is ↵ = Aext/(!2

0⇠) and we symbolically
denote Ctran as a dimensionless function describing
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the capacitance-displacement characteristic. Table 2
includes the dimensionless capacitance-displacement
characteristic (Ctran(y)) and corresponding transducer
forces for both dimensional ( ft) and normalised descrip-
tions (Ft), where ⌫t denotes the dimensionless coe�-
cient of Ft.

2.3. Accounting for Parasitic Capacitance

Parasitic capacitance, for the transducer in Fig 1(a),
is easily incorporated into the electrical model (3) and
transducer force.

RL
dq
dt
+

q
Cp +Ct(x)

= V0 (5)

The analysis of this circuit is also applicable to electret
devices. The e↵ect of the parasitic capacitance is dif-
ferent for electret devices, as the parasitic capacitance
is across the terminal including the transducer and bias,
Fig 1(b).

RL
dq
dt

 
1 +

Cp

Ct(x)

!
+

q
Ct(x)

= V0. (6)

Note that (6) is the fusion of a system of di↵erential
equations describing the network in Fig 1(b). The de-
vice presented in this article does not include an elec-
tret. Thus while the intention of this study is not the
description of an electret device, the analysis and results
of electromechanical coupling are common to both con-
figurations of the continuous circuit.

3. Coupled Analysis of the System using Multiple
Scales

This section describes and employs a perturbation
technique to acquire greater insight into the electrome-
chanical coupling, present in all eKEH.

3.1. Analysis in the electrical domain

Before considering the analysis of the full system, we
propose to present a brief analysis of the circuit in the
electrical domain. It is shown that considerable di�cul-
ties arise for the fully analytical description of this sim-
ple circuit even when the electromechanical coupling is
not considered.

Lets suppose that Ctran(⌧) is a known function. In this
case, eq. (4b) is a linear nonhomogeneous equation with

variable coe�cient whose general solution is found us-
ing a standard method [25]:

Q(⌧) = Q0 e
�

⌧R

0
⇢Ctran(t)�1dt

+

+ e
�

⌧R

0
⇢Ctran(t)�1dt

·
⌧Z

0

e

tR

0
⇢Ctran(t1)�1d⌧1

dt
(7)

Now consider a realistic form of the Ctran(⌧) function.
The case detailed in this article is for the symmetri-
cal gap closing transducer which is the configuration of
the experimental transducer [26]. If the motion of the
mobile mass is sinusoidal with normalised amplitude a,
from Table 2 (for Ctran(y) for SGC), we obtain:

Ctran,SGC =
2

1 � (a cos(⌧))2 . (8)

Note that Ctran(y(⌧)) is not sinusoidal, even if the mobile
mass vibrations are.

It can be seen that the integral (7) with (8) cannot
be expressed in closed form. However, since the sys-
tem is submitted to periodic parametric excitation, it is
expected that all dynamic quantities are periodic in the
steady-state mode. So, using the property that the func-
tion is periodic, the steady-state-solution of Q, denoted
Qss, can be expressed through a Fourier Series.

Qss(⌧) = A0 +

1X

n=1

An cos(nt) +
1X

n=1

Bn sin(nt) (9)

where the dc componentA0 is equal to I0( ⇢a2

4 ), and In(z)
is the modified Bessel function of the first kind. This
formula provides an accurate model of the evolution in
the electrical domain as a function of the resonator dis-
placement. Due to the symmetry of the device, all odd
members of the sum are zero, as well as A2 and B4.
Hence, in most cases, truncation of the series after the
fourth term (n=4) provides enough precision, although
under some conditions more terms would be required.

The lack of a closed form solution of (4b) present-
ing the electrical domain, and the complexity of the
solution of (7), highlights the di�culties involved in
analysing the system. On the other hand, when com-
bined with semi-analytic techniques, such as the multi-
ple scales method (presented later), the system of di↵er-
ential equations, (4a) and (4b), can be solved as a non-
linear equation while still including the nonlinear elec-
tromechanical coupling. Compared with numerical sim-
ulations, solutions of this form are significantly faster,
allow further validation of the numerical solutions and
allow designers gain increased insight into the system
dynamics.
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3.2. Multiple Scales Method

The method of multiple scales (MSM) was adapted
in [22] to solve resonators with a capacitive interface.
The multiple scales method approaches the eKEH as a
simple resonator with a perturbation term. It then solves
this by introducing di↵erent time scales.

A requirement of the presented method is that the
transducer force ft be periodic. This allows the trans-
ducer force be represented by a Fourier series. It is also
advantageous that the system be high Q, which is the
case for narrow band energy harvesters (cf Section 2).
Further justification of the validity of the MSM for the
analysis of eKEH is provided in [22]. The resulting
equation provides a solution for the steady-state ampli-
tude of oscillations, a0, as a function of the Fourier se-
ries coe�cients (a1(a0) and b1(a0)) of Ft(y,Q) and the
dimensionless parameters:

↵2

4
=

 
a0� +

⌫ta1(a0)
2

!2

+

 
�a0 +

⌫tb1(a0)
2

!2

(10)

where � is the dimensionless frequency mismatch
(!ext/!0 � 1) and the Fourier coe�cients are functions
of the specific conditioning circuit and transducer con-
figuration. Solving (10) for a0, the steady-state solution
of y can be determined in the form

y0(⌧) = yav,0 + a0 cos ((1 + �)⌧ + ✓0 �  0) (11)

where a0, yav,0 and  0 are the steady-state amplitude,
average displacement (constant shift) and phase of os-
cillations. The index ’0’ is used to emphasize that this
is a steady-state solution. As explained in [22], this ap-
proach provides information about transient dynamics
of the system, and allows one to explore the dynamics
around multiple stable points and identify di↵erent pos-
sible stable modes.

3.3. Application of the MSM Analysis

It is di�cult to create accurate models of nonlinear
systems, as there are uncertainties in both experimen-
tal measurements and dynamic behaviour such as non-
linear damping. Thus if only one model is employed,
inaccuracies of the model/measurements may not be
clear. Added to this, the nonlinear equations describ-
ing eKEH cannot be solved in a closed form and there-
fore insights into optimal operating conditions are dif-
ficult to achieve. Accordingly there are multiple ben-
efits to employing both numerical and semi-analytical
models to achieve a greater understanding of the de-
vice behaviour. Employing semi-analytical techniques
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Figure 2: Harvested power versus load resistance for various bias volt-
ages. Lines denote solutions of the MSM and characters present so-
lutions of the system of ordinary di↵erential equations (1)-(3). There
is an optimum resistance for the continuous circuit, roughly 11M⌦ in
the presented case.

provides a greater understanding of the device dynam-
ics. While not in a closed form, some mathematical re-
lationships optimising the system are presented in this
section.

3.3.1. Converted power
An immediate design benefit of the method is the

ability to calculate the harvested power across a plane of
possible design parameters. The harvested power can be
calculated as the time average of the square of the cur-
rent, through the resistive load, given by the equation:

P =
RL

T

Z T

0
q̇2dt (12)

where T is the period of the resonator oscillations.
Figure 2 shows the power for di↵erent initial biasing

as a function of the load resistance (RL). The MSM so-
lution of (10) compared with the numerical system of
equations (1)-(3) shows very good accuracy. Figure 2
not only highlights the existence of an optimum RL, the
presence of an optimum set (RL,V0) is also indicated.

3.3.2. Resonance frequency shift
One e↵ect of the electromechanical coupling is elec-

trostatic frequency modification, which a↵ects the res-
onance frequency of oscillations in the resonator. Elec-
trostatic frequency modification is the alteration of the
e↵ective sti↵ness of the resonator due to the interface
with the conditioning circuit. This e↵ect on the res-
onator displacement and velocity is shown in Fig. 3.
Note this is not individually due to the conditioning cir-
cuit but also due to the capacitor geometry. An equation
can be derived from (10) which describes the resonance
frequency shift of the oscillations, given by:

�resonance shi f t = �
a1(a0)

2a0
(13)
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Figure 3: The resonant frequency shift, of the mass, due to electrome-
chanical coupling. (a) describes the normalised displacement of the
oscillating mass and (b) presents the change in the normalised veloc-
ity for the same electromechanical coupling.

Even in cases when the MSM approach is not as ac-
curate, eq. (13) provides a very good indication of
the magnitude of the shift in oscillations [27]. Equa-
tion (13) highlights the dependence of the resonance fre-
quency shift on the first Fourier cosine term of the trans-
ducer force, and as this term is nonzero we will have a
frequency shift for di↵erent system parameters. For ex-
ample, in the case of the constant charge conditioning
circuit presented in [22], with a gap closing transducer,
a1(a0) = 0 and oscillations do not experience a shift in
the resonance frequency.

3.3.3. Impact of the biasing on the displacement ampli-
tude

According to Fig. 3(a), the amplitude of vibrations
near resonance increases as the bias voltage increases.
This seems counter-intuitive as, generally, an under-
standing of electromechanical coupling in eKEH would
lead one to expect a decrease in the resonator oscilla-
tions for an increase in the initial bias voltage, due to the
electromechanical coupling becoming stronger. How-
ever this evolution, in Fig. 3(a), is a joint e↵ect of the
increase in damping and the shift of the resonance fre-
quency. Let us consider a linear oscillator composed
of a mass, spring and damper, submitted to a sinusoidal
force with amplitude F0 at the resonance frequency!res.
A simple analysis gives the amplitude of velocity and
displacement U0 and X0 respectively:

U0 =
F0

µ
X0 = !resU0 =

F0

µ!res
(14)

Such a linear resonator can be considered as an equiv-
alent linearised model of the studied KEH, where µ is
a total damping accounting for the intrinsic resonator
damping and for the electrostatic damping.

From the last equation it can be seen that as the damp-
ing µ increases, the velocity decreases. Indeed, for our
system, from Fig. 3(b) the velocity at the resonance fre-
quency clearly decreases as the electromechanical cou-
pling (and thus the total damping) increases. However,
the displacement amplitude X0 is inversely proportional
to the product !resµ. In our case, as the bias voltage
increases, the total damping µ increases, but the reso-
nance frequency !res decreases. As a consequence, the
trend for the amplitude of displacement at the resonance
is not obvious and can only be given by an analysis of
the particular configuration.

Note the existence of hysteresis in Fig. 3 at 40V,
corresponding to bi-modality in the resonator displace-
ment. The occurrence of more than one stable solution
of the system is caused by the nonlinear electromechan-
ical coupling. The Method of Multiple Scales can pro-
vide further insight into such regions of nonlinear be-
haviour [27].

3.3.4. Calculating the Optimum Bias Voltage
When a purely electrical model is considered with

fixed time function Ct(t), it can be seen that in the steady
state all electrical quantities are proportional to the volt-
age, so that the power given by (12) is proportional to
the square of the voltage. However, when a coupled
electromechanical model is considered, the voltage im-
pacts the amplitude of the mobile mass displacement,
and there is an optimal voltage which globally max-
imises the harvested power.

Equation (10) is an implicit function of both a0 and
⌫t. Denoting (10) as H(a0, ⌫t) and taking the par-
tial derivatives H0a0

(a0, ⌫t) and H0⌫t
(a0, ⌫t), the implicit

derivative can be determined. Calculating da0/d⌫t from
H0⌫t

(a0, ⌫t)/H0a0
(a0, ⌫t) and setting equal to zero, one ob-

tains the ⌫t giving maximum x. (Refer to Table 2 to scale
⌫t to V0).

⌫t =
�2(a0�a1(a0) + a0�b1(a0))

a1(a0)2 + b1(a0)2 (15)

Both the optimum resistance and optimum bias volt-
age are coupled. Therefore to achieve a truly accurate
representation of the optimum electrical point (RL,V0)
both RL and V0 must be iterated. For this reason, the
benefit of the semi-analytic methods presented in this
article is that they allow an e�cient calculation of vari-
ables across the parameter space, Fig. 4.
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Figure 4: Global power maximum on a plane of RL and V0, for fixed
external vibrations (Aext = 0.25g and fext = 150Hz). For the given
external driving, the optimum is located at RL = 13M⌦ and V0 =
23.5V. It changes for di↵erent external excitations, limited only by
the mechanical stoppers and pull-in between the capacitor plates.

3.4. Use of MSM for Optimisation of Harvester Design

This section uses the insight detailed in the above
Sections to present an optimisation, using the multi-
ple scales method, of the eKEH with a SGC device. It
is reasonable to consider that certain parameters of the
device have been previously chosen due to other con-
straints. The predetermined parameters for which we
will optimise the system are: external vibrations (am-
plitude and frequency), area (S ) of the device, and the
parameters of the resonator (the mass, the sti↵ness, the
damping coe�cient) The external vibrations, Aext and
fext, are parameters that a designer cannot control. It
is realistic to assume that the resonator parameters and
transducer area are fixed; as for energy harvesting the
mass is sought to be maximised, and in practise the de-
vice is limited by the available space. Therefore, the
parameters available to a designer, include:

– The bias voltage V0 and load resistance RL (circuit
design parameters)

– the e↵ective transducer gap d
The first optimisation case is presented in Fig. 4, for

the experimental parameters given in Table 3, including
the fixed transducer gap (d). It shows that an optimum
combination of (RL,V0), giving the maximum power, ex-
ists. This point will shift for di↵erent external vibra-
tions, due to the e↵ects described in previous sections,
but this circuit always presents a unique optimum solu-
tion (RL,V0) for sinusoidal operation.

This is an important result as it shows that a global
optimum exists in the electromechanical system, for the
electrical parameters (RL and V0). This circuit is widely
used to test fabricated devices, where conclusions about
the performance, power yield and power density of the
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Figure 5: Optimum Power for the parameter space d, V0 and R, for
fixed external vibrations (Aext = 0.25gm/s2). Lines denote unre-
stricted motion (140 and 160 Hz), where 160Hz is close to the nat-
ural resonance frequency of the unbiased mechanical resonator. The
shapes detail the optimisation for the case when the mobile electrode
motion is restricted to 0.75d amplitude (140, 160 and 180 Hz).

devices are made. Therefore to allow for a fair compar-
ison between devices it would appear obvious that each
transducer should be compared at some parameters ap-
proaching its optimum set.

The second design case presents a global optimisa-
tion to estimate the e↵ective transducer gap correspond-
ing to maximum power. This is achieved by calculating
the optimum plane of parameters (RL,V0), as in Fig. 4,
for multiple values of the transducer gap d. The opti-
mum Pmax of each plane (RL,V0) is plotted against its
corresponding gap, presented in Fig. 5, with an external
acceleration of 0.25g.

A very important result of this simulation is an exis-
tence of an optimal value of gap maximizing the con-
verted power. As expected, the restriction on the mass
displacement reduces the maximum power, since it re-
duces the maximum value of the transducer capacitance
over a period (Cmax) and hence the amplitude of the
charge flow generating power on the load.

The maximum convertible power is a strong function
of the frequency of external vibrations. The frequency
shift due to the voltage is well observed on this plot:
whereas the natural resonance frequency of the mechan-
ical resonator is 160 Hz, at 140 Hz the maximum power
is more than twice greater than at 160 Hz. Indeed, since
the transducer must be biased to convert power, there is
an unavoidable resonance frequency shift toward lower
frequencies. Note that the frequency 180 Hz is too far
from the resonance, and it does not allow a significant
conversion of power.

It is also advantageous that for frequencies at which
there is a significant conversion of power (140 Hz and
160 Hz), the optimum gap value does not depend on
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the frequency. That provides a practical hint for the de-
signer, who, therefore, can optimise the transducer de-
vice for an amplitude of external vibrations typical for
its application.

The e↵ect on the optimum gap of limited resonator
displacement is shown by shapes in Fig. 5, when me-
chanical stoppers restrict the motion of the oscillations
to approximately 0.75 of the overall e↵ective gap (this
is the case in the practical device (Section 5.1)). This
shows that in cases when the stoppers represent a signif-
icant portion of the e↵ective gap, the ’optimal’ gap can
appear to shift. However, as shown by lines in Fig. 5,
a truly optimal gap does exist. According to the partic-
ular application context and the particular design con-
straints, the harvested power P can be normalized by us-
ing one of the figures of merit previously proposed, e.g.,
the volumetric e�ciency [28], eq. (13), or area/voltage
normalized e�ciency [29], eq. (28), and the optimiza-
tion can further be carried out with use of the normal-
ized power.

4. Coupled Analysis of the System using Mechanical
Impedance

This section presents a semi-analytical technique,
based on the First Harmonic Method, which highlights
design considerations of eKEH.

4.1. Mechanical Impedance Method
The mechanical impedance is a quantity introduced

through the mathematical equivalence between the me-
chanical and electrical systems [21]. It is defined as
 = �Ḟ/U̇, where Ḟ is the phasor of a sinusoidal force
applied to a point, and U̇ is the phasor of the velocity
of motion of this point. Note: phasor quantities are de-
noted with overdots, not to be confused with derivatives
with respect to time. The impedance is generally de-
fined for linear systems. However, in the case of narrow
band resonators actuated by a nonlinear force whose fre-
quency is in the resonator passband, the impedance can
be written for the fundamental harmonic of the nonlin-
ear force as:

 = � Ḟ!

U̇
, (16)

where Ḟ! is the phasor of the fundamental harmonic of
the force. This is only valid if the velocity of the res-
onator remains very close to a sinusoidal regime (the
higher harmonics of the force are filtered out by the res-
onator character).

The work in [21] provides a detailed description
of the notion of mechanical resonators for nonlinear

eKEH, as well as a practical method for the calculation
of the impedance of a given transducer. Two important
points must be emphasized:

1) The mechanical impedance of the electromechan-
ical transducer depends on the transducer physics and
on the conditioning circuit employed. Hence, the calcu-
lation of mechanical impedance requires a definition of
the electrical behaviour of the conditioning electronics.

2) The calculation of mechanical impedance is done
under the assumption of a given sinusoidal motion of
the mobile terminal of the transducer, with some fixed
amplitude Ẋ = X0e j�0 and velocity j!Ẋ. Then, the
electrical system ”transducer + conditioning circuit” is
simulated/analysed in the electrical domain. The re-
sulting electrical conditions of the transducer (the volt-
age/current/charge evolution) define the resulting me-
chanical force ft(t) used for calculation of (16). The
actual mechanical impedance is a function of X0 (and
not on �0).

The mechanical impedance of the transducer  t al-
lows a simple estimation of the power converted be-
tween the mechanical and electrical domains:

P =
1
2

(!X0)2Re t, (17)

For a transducer with a given geometry, the mechani-
cal impedance depends on the amplitude X0 and on the
electrical parameters of the conditioning circuit. As can
be seen from (3), there are only two electrical param-
eters: RL and V0. Moreover, as all electrical dynamic
quantities scale with V0, so does the transducer voltage
Vt. Since ft is proportional to V2

t , it is enough to calcu-
late  t for one value of V0 = Vre f . For any other value
of V0, the transducer impedance is given by

 t(V0) = (V0/Vre f )2 t(Vre f ) (18)

Figure 6 presents the imaginary and real parts of  t
calculated for three amplitudes 32, 34, 36 µm, with
V0 = 10V , and for RL from 0.5 to 30 M⌦, for a trans-
ducer with symmetrical gap closing geometry and pa-
rameters given in Table 3, cf. discussion in Section 5.1.
It can be seen that for any amplitude, there is a corre-
sponding optimal RL value. Also, the real part of the
impedance depends strongly on the amplitude: that is
explained by hyperbolic Ct(x) function resulting in a
strong sensitivity of Ct with regard to the vibration am-
plitude. It is known from the theory of electrical circuits
that the imaginary part of the impedance defines the res-
onance frequency of the system. From Fig. 6 it can be
seen that the quantity Im t is a function of both V0 and
RL. As a consequence, it is clear that not only the bias
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Figure 6: Result of electrical simulations of the conditioning circuit:
real and imaginary parts of the transducer impedance for di↵erent load
resistances (RL) and amplitudes of displacement (X0), V0 = 10V , with
symmetrical gap closing transducer, with parameters given in Table 3.

voltage a↵ects the resonance frequency of the resonator,
but also the load resistance. This is a very important re-
sult: it is often considered that the resonance frequency
shift observed in resonators conditioned by a simple cir-
cuit is defined by the bias voltage. Our analysis shows
that the value of the load resistance plays as important
a role as V0, and the method of mechanical impedance
allows its precise calculation.

Note that the aspect of characteristics in Fig. 6 de-
pends on the geometry of the transducer. For instance,
for a non symmetrical gap-closing transducer (cf. Ta-
ble 2), the imaginary part of the mechanical impedance
tends to zero for very large load resistance values.

4.2. Practical use of the mechanical impedance method

Mechanical impedance method can be used straight-
forwardly for the analysis of the system, i.e., for the de-
termination of the dynamics starting from the system
parameters. However, such a use does not o↵er any ad-
vantages comparing to the numerical analysis or to the
above presented MSM method, since the corresponding
algebraic equations are nonlinear and needs to be solved
numerically.

However, the method of mechanical impedance of-
fers a great insight into the system operation if the start-
ing (input) information of the design is the amplitude
of the mobile mass displacement, and the unknowns are
some parameters of the system controlling the displace-
ment amplitude. In this case, the mechanical impedance
method solves an inverse problem, i.e., determines the
parameters of the system for some desired behavior.

Here we illustrate the use of the mechanical
impedance method by considering a case when the ge-
ometry of the transducer is fixed, and when it is required
to chose optimal parameters of the circuit (the resistance
and the voltage source) so to maximise the harvested
power. In order to show the consistency of the MSM
method and of the mechanical impedance method, we
propose to select the displacement amplitude obtained
in the first optimisation of Section 3.4, corresponding to
a global maximum of the converted power (cf. Fig. 4).
The amplitude is X0=20 µm, the frequency is 150 Hz,
the external acceleration is 0.25g. The geometry of the
transducer is given in Table 3. The goal of design is the
selection of the parameters for the conditioning circuit
which optimise the harvested power and which guaran-
tee the wanted amplitude X0.

According to [21], the transducer impedance  t re-
sulting in such an amplitude is given by:

| t +  r | =
mAext

!X0
. (19)

where  r is the mechanical impedance of the resonator.
In order to define the two components of the com-

plex quantity  t, an additional equation is needed. It is
given by the requirement of maximisation of the con-
verted power, expressed through  t by (17). Since the
amplitude X0 is fixed, a maximisation of the real part of
impedance is required.

We now study the mechanical impedance of the elec-
trostatic transducer oscillating with amplitude X0, and
biased by the conditioning circuit of Fig. 1. The
mechanical impedance is calculated for the desired
amplitude X0, for di↵erent sets of V0 and RL, the
only two parameters of the electrical circuit. For
the impedance calculation we use a Spice simulator
which solves the electrical model presented in Sec-
tion 3.1. A simple script automating the parame-
ter variation calculates  t for all couple of values
of V0 and RL from the grids (21, 22, 23, 24 V) and
(500 k⌦, 1000 k⌦,...30 M⌦). These ranges depend on
the numeric values of the system parameters and, as in
any approximation analysis methods, on the intuition
and experience of the designer.
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. Each black line is plotted for the specified

V0 voltage, each star point in the line corresponds to a particular value
of RL. For each line, RL varies on the grid (0.5,1...30) M⌦, the point
with larger Im correspond to the smallest load resistance.

Now, we use the obtained  t(RL,V0) at X0 = 20µm to
choose the optimal RL and V0. For this, we graphically
solve (19), by plotting the total mechanical impedance
locus  (RL,V0) =  t(RL,V0) +  r on a complex plane
as a family of lines, such that each line correspond to
a fixed value of V0 (Fig. 7). In this plot, the mechani-
cal impedance of the resonator is designated by a point:
it is defined for any values of V0, RL. The grey arrow
represents the vector of the transducer’s impedance  t,
which is added to the resonator impedance  r in order
to yield the total mechanical impedance of the system.

Equation (19) fixes the absolute value of  to a con-
stant; graphically, it means that all roots of this equa-
tion lie on the circle  = mAext/(m!ext), plotted with
the grey line in Fig. 7 (it looks like an oval, because
of the chosen axes scale). It can be seen that several
points (RL, V0) are roots of the equations, since the cir-
cle crosses several plots  (RL,V0).

Now, we should choose the optimal couple (RL, V0).
We want to maximise the real part of  t. Note, that
since  m is constant for a given frequency, the max-
imisation of Re t is the same as the maximisation of
Re . Hence, in Fig. 7, we simply should chose the right
most point of the grey circle crossing the impedance
lines. From Fig. 7(b) (an enhanced view of Fig. 7(a)),
the maximal real part of impedance corresponds to the
point (13.5 M⌦, 23V). We chose it as the solution.
The corresponding value of the transducer impedance
is 0.0006 + 0.0127 j Nsm�1, and according to the for-
mula (17), with amplitude X0 = 20 µm we obtain 92.4
nW for the the power.

These results can be compared with Fig. 4, where
the optimal power is obtained at RL = 13M⌦ and
V0 = 23.5V. The discrepancy in the power (the maxi-
mum power in Fig. 4 is 76.2 nW) is easily explained.
The displacement amplitude, for Fig. 4, is actually X0 =
18.9 µm. Therefore, using a slightly larger Aext to give
X0 = 20 µm, the optimal MSM point is (13 M⌦, 23V)
and the power is 94 nW. Hence, the two methods pro-
duce consistent results.

What if the analysis in Section 3.4 was not done, and
the amplitude of the mobile mass displacement corre-
sponding to the maximum power is not known? In this
case, we need to consider the amplitude as a parame-
ter X0, to use the presented algorithm for definition of a
mathematical application ”X0 ! optimal power for X0”
and optimisation X0 for global maximisation of the
power.

5. Experimental Validation

5.1. Experimental Device
The setup presented in this work was fabricated and

tested in Université Paris-Est. It includes a silicon-based
symmetrical gap-closing transducer and a continuous
conditioning circuit. The parameters are shown in Ta-
ble 3. A full characterisation of the device is presented
in [26]. To utilize the presented analysis, a simple model
of a symmetrical gap closing transducer, as shown in Ta-
ble 2, was employed. To accommodate the undercut by
deep reactive ion etching (DRIE), the e↵ective gap is
approximated as an average gap between the fixed and
movable fingers:

d = d0 + h↵ (20)

where h is the height of the silicon substrate and defined
in the orthogonal direction to the substrate plane, ↵ is
the ratio of the silicon undercut by DRIE and d0 is the
gap between the fixed and movable fingers at the top of
the comb.
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Figure 8: Picture of the fabricated device and a diagram explaining
the profile of the transducer gap.

Table 3: Parameters of the system
Proof mass (m) 66 · 10�6 kg

No. of fingers (N) 142
Length of fingers (l) 1.97 · 10�3 m
Finger thickness (h) 380 µm

Initial gap between fingers (d0) 43.5 µm
Aspect ratio of sidewalls (↵) 0.013

Approximated gap (d) given in (20) 48.44 µm
Location of Stoppers (xst) 36.0 µm

Damping Factor (b) 7.9 · 10�3 Nsm�1

Quality factor (Q) 8.5
Spring constant (k) 68 Nm�1

Area S 1.063 · 10�4 m2

To compare the theoretical values and experimen-
tal results, the maxima and minima of the capacitance
Ct, were compared at a large external vibration am-
plitude. This allows one assume the maximum value
of x as corresponding to the maximum capacitance
Cmax. The net extreme experimental values of Ct
(88pF/40pF) compare very well with our theoretical val-
ues of 86.8pF/38.8pF (calculated with the formula given
in Table 2, with C0 = "0S/d and x = ±xst, other param-
eter values are from Table 3). This is equivalent to the
method further detailed in [26].

5.2. Validation of the models with experimental results

This section presents the experimental validation of
the numerical and semi-analytical (MSM) models of the
harvester. The goal of the validation is to prove that the
proposed models are able to predict the performances
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Figure 9: Validation of the proposed models with experimental data
(dots). The numerical model is shown with full lines, and the MSM
model is presented by dotted lines.

and characteristics of an implemented prototype, start-
ing from the known prototype parameters.

Fig. 9 compares the power as a function of the load re-
sistance (RL), for di↵erent initial biasing voltages (V0).
Each data point was taken at the driving frequency giv-
ing the maximum power conversion. The capacitance
fitting presented in Section 5.1 was made for low volt-
age electronics. However, high voltage (HV) electronics
were required for the experiments involving electrome-
chanical conversion, introducing a higher input parasitic
capacitance (estimated to be 20pF). Figure 9 shows that
the numerical model, (1)-(3), with added parasitic ca-
pacitance agrees very well with the experimental data
with the exception of the V0 = 40V plot. This is be-
cause there are certain mechanical and electrical param-
eters which cannot be determined exactly, such as the
lumped parameters of the device and its exact geometry.
In particular, nonlinear damping, along with the shift
in the resonance frequency, has a significant influence
on the accuracy of the models in strong electromechani-
cal coupling scenarios [30]. The resonator displacement
amplitude is greatly a↵ected by the bias voltage, which
in turn a↵ects the optimum load resistance. The MSM
model is also in good agreement, with the exception of
the strong electromechanical coupling scenarios, due to
the same inaccuracies prevalent in the numerical model.
The accuracy of the MSM method is further hindered
by the larger shift in oscillations and omission of the
parasitic capacitance. The larger bias voltage causes the
dimensionless frequency term ⌦ to become larger and
therefore reduces the accuracy of the MSM approach
(which assumes all coe�cients in (4a) are small).

The excitation frequency corresponding to the maxi-
mum power is presented in Fig. 10, for di↵erent biasing.
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Figure 10: Comparison of the three models showing the frequency
corresponding to the maximum power for a spectrum of initial bias
voltages. The resistive load RL was fixed equal to 8.9M⌦. The ap-
pearance of hysteresis between V0 = 35V and V0 = 40V reduces the
accuracy of the models due to the increased nonlinear nature of the
system.

From Fig. 10 the ability of both models to accurately
capture the frequency shift of the maximum power due
to the increasing electromechanical coupling is evident.
The discrepancy in the MSM prediction of the fre-
quency shift is under 8.6%, and the worst error is for
the large voltages where, as previously mentioned, the
MSM method is less precise because of the increased
nonlinear behaviour. The frequency modification, due
to electromechanical coupling, is given by (13).

6. Conclusion

This study presents the first consolidated study of the
continuous conditioning circuit from the viewpoint of a
designer. This conditioning circuit is widely used in the
characterisation of electrostatic devices but very little
study has focused on the circuit itself. The significant
e↵ects of the circuit configuration on the power output
due to electromechanical coupling are described and ex-
plained. Both numerical and analytical analysis are pre-
sented to explain the system. The results compared well
with a fabricated MEMS transducer. This article shows
that, by treating the mechanical transducer and electri-
cal circuit as one system, insights into global and trans-
ducer specific characteristics can be described. There-
fore, while this circuit configuration is widely used to
test transducers, analysis of the full system is required
to discuss the maximal power of such a device.

The implementation of semi-analytic approaches pro-
vides a further understanding into certain phenomena
which occur due to electromechanical coupling, such
as: the shift in the resonance frequency, the impact of

the electrical biasing on the resonator displacement and
to estimate the optimal bias voltage. Using this analysis,
the methods are used to optimise the system across mul-
tiple parameters. For example: a global optimum exists
for the electrical parameters (RL and V0), to allow for a
fair comparison between fabricated devices it would ap-
pear obvious that each transducer should be compared
at some parameters approaching its optimum set. Both
methods provide a qualitative and quantitative insight
into the electromechanical action of the transducer. We
believe this can be useful for a designer to understand
the system operation.
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