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Abstract 

Information on the condition of bridges is primarily obtained through the use of visual 

inspection methods. These methods are unreliable due to an overdependence on human 

judgement and also inconsistencies due to human objectivity. A scientific approach is a 

more suitable alternative. Some authors use changes in the natural frequencies of the bridge 

to indicate possible damage but these methods aren’t suitable for local damage detection. 

Mode shapes have also been used but are more difficult to infer from measurements. 

 

This paper investigates the use of a Moving Force Identification (MFI) algorithm in 

conjunction with bridge deflection data. MFI back-calculates a vehicle applied axle forces to 

a bridge. It has been found that damage in a bridge changes the calculated axle forces 

substantially. These calculated axle force histories are used to infer damage from. The 

damage indicator used here is based on a linear regression analysis of the axle force 

histories. It is found that the absolute value of the slope of the linear regression fit increases 

with damage. Hence, by monitoring this parameter, information on possible bridge damage 

may be supplied on a vehicle by vehicle basis. 
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Introduction 
 

Visual inspections are the primary method today of obtaining bridge condition information. A 

large drawback of this approach is inconsistency due to human objectivity and a lack of 

science in the approach. This results in unreliable information on the true condition of a 

bridge. An adequate bridge monitoring scheme could prevent catastrophic occurrences such 

as the Interstate 34 Bridge collapse in Minneapolis in 2007 [1]. Early damage detection also 

makes it easier to undertake maintenance and repair works as they can be organised more 

easily. Traffic disruptions can also be managed more efficiently. Vibration sensor-based 

monitoring has become more popular in recent years as a result of the drawbacks of visual 

inspections. This has been facilitated by a reduction in instrumentation costs as well as in 

increase in computational technology. 

Natural frequency based methods were one of the first vibration monitoring techniques used. 

This is primarily due to the ease at which a structure’s natural frequencies can be measured. 

Damage in a structure causes the natural frequencies to change so it is logical that an 
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indication of damage may be inferred from this frequency change. A lot of the early literature 

on the use of frequency applied to damage detection focuses on simple structures such as 

bars. Adams et al. [2] use vibration data in the form of frequency modes to analyse the 

location and severity of a damaged region in a structure. The location of damage is predicted 

by superimposing several pairs of modes with the intersection of theses modes 

corresponding to the possible locations of damage. The method is proved to be quite 

effective for one dimensional structures but has shown to be ineffective for some cases of 

higher damage severities. 

Other authors have investigated the use of frequency changes as a damage indicator also. 

An extensive review is carried out by Salawu [3]. Banks et al. [4] and Weissenburger et al. 

[5] shed a bit of light on the drawbacks of frequency approaches. Weissenburger shows that 

if miniscule damage (represented as a loss of stiffness) occurs at certain points in a 

structure, it can result in large frequency changes. Furthermore, it is demonstrated that 

certain modes of vibration can remain unaffected by damage if damage exists at the nodes 

of vibration. Banks et al. conclude that the geometry of the damage explains why frequency 

methods work for some cases but are ineffective for other cases. Changes in mode shapes 

have also been used to provide information on damage location and severity. A high level of 

accuracy is required in these methods however, making it more difficult to detect damage 

from measurements [6]. 

Wu et al. are one of the first authors to examine the use of neural networks applied to 

damage detection [7]. Neural networks can be used to recognise patterns between the 

responses of damaged and undamaged structures and in many cases, have the advantage 

of negating the requirement of having an underlying mathematical model of the structure. 

Wu et al. apply a neural network to a simple three degree of freedom structure and have 

some limited success in predicting the damaged location in the structure. Lee et al. [8] use a 

neural network approach in conjunction with a baseline finite element model allowing for a 

degree of error in the baseline model with the inputs to the neural networks being the ratios 

of the mode shape components before and after the presence of damage. Modal sensitivity 

change must be less than the errors due to model inaccuracy in order to detect damage, 

which is a large drawback of the approach. 

Camera technology has improved greatly in recent years along with affordability, paving the 

way for possible damage indicators to be inferred from camera data. A high-resolution 

camera could measure the deflection of a point or a number of points along a bridge as a 

vehicle traverses the bridge. This could be made possible by using one camera with an 

appropriate setup or else by using multiple cameras. Khuc and Catbas use a camera 

combined with computer vision techniques and achieve comparable accuracies to LVDTs 

(linear variable differential transformers) in measuring the deflection responses of a structure 

[9]. 

OBrien et al. have previously investigated the use of moving force identification (MFI) for the 

purpose of damage detection based on deflection responses [10]. MFI is the process of 

calculating the axle force histories based on bridge measurements. The concept of statistical 

spatial repeatability [11] is used which is the fact that the daily mean applied axle forces for a 

population of vehicles of a certain category is repeatable. Hence, any change in this mean is 

an indicator of damage. This changes the output of the MFI algorithm and effectively, the 

axle forces are over predicted as the model of the bridge is unaware of the damage. A 

damage indicator is then created by using the root mean squared differences (RMSD’s) 

between the mean of the calculated forces for a batch of vehicles crossing over a healthy 

bridge and then a damaged bridge. This paper also investigates the use of MFI as damage 



  CSHM-6 

  Belfast - May 2016 

indicator but a different damage indicator is investigated. Rather than using a damage 

indicator based on batches of vehicles, the method in this paper uses the calculated axle 

force histories from a single vehicle to infer damage from. The damage indicator is based on 

a linear regression analysis of the axle force histories. It is found that the absolute value of 

the slope of the linear regression fit increases with damage. Hence, by monitoring this 

parameter, information on possible bridge damage may be supplied on a vehicle by vehicle 

basis. 

 

Moving Force Identification  
MFI is a process which back-calculates the axle force histories from bridge measurements. 

This is achieved by calculating the axle forces such that the difference between the bridge 

measurements (deflections in this case) and the corresponding parameters from the 

dynamic equations is minimised. The original authors to propose this method were Law et. al 

[12] and the method was subsequently improved upon by Gonzalez et al. [13] by using a first 

order regularisation process. The fundamental equations of the MFI algorithm are now 

explained. The matrix differential equation for structural dynamics is represented by 

 

      ( )g g gM u C u K u F t                (1) 

 

where {u} is a vector of displacements, F(t) is a forcing function and Mg, Cg and Kg are the 

mass, damping and stiffness matrices respectively. A more appropriate representation for 

the purpose of calculating the unknown forces is   

 

        ( )g g gM u C u K u L g t                (2) 

 

where g(t) is a vector of time dependent force magnitudes which are distributed to the 

relevant degrees of freedom by the location matrix, [L], which takes into account the applied 

force locations on the bridge at a particular time. By defining 

 

   v u    (3) 

 

and 

 

   a v    (4) 

 

it may easily be shown that 
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Equations (3) to (5) may now be combined to give 
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By defining a state vector, {X}, containing displacements and velocities, {u} and {v}, equation 

(6) may be represented by 
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By using eAt as an integration factor on equation (7), followed by discretising and applying 

Padé approximations [14,15] to the result, equation (7) becomes 
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and 

 

 
 A h
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with h being the time step between two consecutive intervals. 

The optimisation problem is to find the forcing function, {g} that minimises the error, E, 

defined by 
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      (13) 
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where N is the number of time-steps, dj is a vector of measurements for the jth interval, Q is a 

vector extracting the relevant state variables from the state vector, W is the identity matrix, 

and B is a regularisation parameter introduced due to the ill-conditioned nature of the 

problem. The notation (x,y) denotes the vector product in equation (13). The optimal 

smoothing parameter, B, is obtained from a method known as the L-Curve method [16] 

which seeks a trade-off between an acceptable least squares solution and ill-conditioning. 

The optimal regularisation parameter is located at the corner of the L-Curve, which 

corresponds to the point of maximum curvature [17]. 

A first order regularisation method is used in this paper which regularises the derivative of 

the forces as opposed to the forces themselves which would be the case in zeroth order 

regularisation. The minimisation process is solved by using dynamic programming [18] and 

Bellman’s principle of optimality [19]. 

 

 

Damage Detection using Moving Force Identification 
 

To demonstrate how the MFI algorithm is used for damage detection purposes, a simulated 

example of a vehicle crossing a bridge is conducted. A bridge is represented by a 20 m 

simply supported beam. It is modelled using the finite element method and it is broken up 

into twenty, one metre elements. Each node has two degrees of freedom. The beam has a 

cross sectional area, density, modulus of elasticity and second moment of area of 10m2, 

2446 kg/m3, 35 × 109 N/m2 and 1.15 m4 respectively. An ISO class ‘A’ road profile (classified 

Table 1: Vehicle Parameters  

as ‘very good’) is generated on the bridge.  The vehicle is modelled as a two-axle ‘half-car’. 

The ‘half-car’ allows for vehicle hop, pitch and bounce motions and has four degrees of 

freedom. The vehicle has a gross vehicle weight and velocity of 20,000 kg and 40 km/h 

respectively. The remaining vehicle parameters are listed in Table 1 below. 

The vehicle above is simulated crossing the bridge. The MFI process uses the 

deflection measurements at every interior node (19 nodes) to calculate the forces. 

Noise is added to the deflection responses, dcalc, in order to create realistic 

measurements values, dj, for each time step. Noise is introduced using the formula  

maxj calc p noised d E d N     (14) 

Vehicle Parameter Axle 1 Axle 2 

Unsprung mass (kg) 1000 1000 

 

Suspension stiffness (N m) 

 

 

4 × 105 1 × 106 

Suspension Damping (N s m-1) 

 

10 × 103 20 × 103 

 

Tyre Stiffness (N m) 1.75 × 106 3.5 × 106 
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where Nnoise is a normally distributed vector with a mean of zero and a standard 

deviation of one, dmax is the maximum deflection at the centre of the bridge as the 

vehicle passes and Ep is the noise level which was chosen to be five per cent in this 

case.    

 

Figure 1: Axle 1 calculated force histories 

Damage is now introduced as a percentage loss of stiffness in the region between the 6 m 

and 7 m mark along the bridge. Figure 1 shows the calculated Axle 1 force histories for the 

healthy case and for two levels of damage. It is observed that as damage increases, the 

calculated axle force histories deviate further from the healthy case. This led OBrien et al. 

[10] to apply the concept of statistical spatial repeatability [11] to form a damage indicator 

based on the RMSD’s between the mean calculated axle force histories of batches of similar 

vehicles crossing a healthy and then a damaged case. A contour plot of damage indicator 

value versus damage location and severity is then obtained for all possible cases of 

damage. The method is poor for predicting the location of damage however. This paper 

investigates an alternative form of damage indicator that uses a linear regression analysis on 

the calculated axle force histories.  

 

Linear Regression Analysis of Axle Force Histories 
 

This section investigates a damage indicator inferred from the calculated axle force histories 

of a single vehicle. By applying a linear regression analysis to the calculated axle force 

histories, it is seen that the absolute value of the slope of the regression line increases with 

damage. Figure 2 shows the regression analysis for Axle 1 using the same vehicle as 

examined previously. 

The damage is also in the same region. The change in the magnitude of the slope of the 

regression line is quite large and is clearly sensitive to damage. This parameter also 

increases with damage. The same can be said for the calculated axle force histories for Axle 

2 whose changes are shown in Table 2. The changes are represented as a ‘factor of 

change’, where ‘factor of change’ is defined as the absolute value of the ratio of the healthy 

slope to the damaged slope.  

 

 

 



  CSHM-6 

  Belfast - May 2016 

  

Table 2: Slope of Regression Line – Factor of Change  

Table 2 shows that the factor of change is different for each Axle. Axle 2, which is the 

heavier axle, changes by less of a factor. An interesting observation from Table 2 is that the 

increase in factor of change is almost linear with damage severity for each level of damage. 

Figure 3 plots the data from Table 2 and this linear result is seen a bit more clearly.  

 

 

Figure 2: Linear Regression Analysis of Axle 1 force histories 

 

 

Figure 3: Factor of change vs Damage Severity 

 

Conclusion 

The analysis in this paper has shown that a linear regression analysis on the calculated axle 

forces has scope for potential damage detection. The slope of the regression line changes 

Damage Case Axle 1 Forces: Factor of change Axle 2 Forces: Factor of change 

10 % Damage 69.3 13.2 

 

20 % Damage 

 

 

151.5 26.55 

30 % Damage 310 55.2 
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by a significant amount when there is an area of damage in the bridge. This parameter 

increases with an increase in damage. Interestingly, the increase in the factor of change in 

the magnitude of the slopes between a damaged and healthy case is showing a linear trend, 

as is shown in Figure 3. This is a useful finding as damage severities for different factor of 

changes could be obtained from this relationship. 

The findings in this paper are useful but still somewhat limited as only one vehicle and one 

area of damage was investigated in the analysis. A more detailed study using many vehicles 

and different areas of damage would need to be carried out in order to verify whether the 

parameter in question is suitable for damage detection purposes.  
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