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ABSTRACT 

 

Extensive work has been done over the last two decades on the simulation of traffic loading on bridges. 

The methodology used is to generate a number of years of simulated traffic and to use extreme value 

statistics to predict more accurately the characteristic loading for a given bridge. The parameters and 

probability distributions used in the Monte Carlo simulation must be based on observed sample traffic 

data. Many previous studies have assumed that there is no significant correlation between the Gross 

Vehicle Weights (GVW) of trucks in the same lane, or between trucks in adjacent, same-direction lanes.  

For this paper, an extensive database of Dutch Weigh-in-Motion data is analysed. Data is collected from 

two same-direction lanes and is time-stamped to the nearest 0.01 seconds. The statistical characteristics 

of this set of data are presented, and various techniques are used to establish the nature and extent of 

GVW correlation. 

 

1. INTRODUCTION 

 

1.1 BACKGROUND 

It is well established that traffic loading on many 

road bridges is considerably less than for the 

network at large or for roads of the class in which 

the bridge is located. This can be very useful when 

bridges fail a capacity assessment by a small 

margin, as it may cause the bridge to be retained 

where it otherwise would have needed to be 

repaired or replaced. Therefore, the load 

assessment of existing highway bridges is an area 

where great savings in maintenance budgets are 

possible. 

For 2-lane bridges with traffic travelling in 

opposing directions, the traffic streams in each 

direction can be assumed to be statistically 

independent. Where there are same-direction lanes 

on the other hand, vehicles may be coming from 

the same source and their weights may be 

correlated. For example, there is anecdotal 

evidence of the existence of overweight convoys 

such as a crane and a truck carrying its kentledge. 

Conversely, on such bridges, it is reasonable to 

expect that only lighter trucks occur in the 

overtaking lane, due to better mechanical 

performance. 

For this paper, an extensive database of Dutch 

Weigh-in-Motion data is analysed 

 

1.2 SOURCE DATA 

The Dienst Weg- en Waterbouwkunde (DWW) 

office of the Dutch Ministry of Transport maintain 

Weigh-in-Motion (WIM) sensors on 3 lanes in one 

direction of the 6-lane motorway near Woerden in 

central Holland. Data for truck traffic in the two 

inner lanes for the 20 weeks period from 7th 

February to 25th June 2005 were made available 

to the Bridge and Transport Infrastructure Group 

in the School of Architecture, Landscape & Civil 

Engineering in University College Dublin. No data 

was supplied for the outer lane which trucks are 

not normally permitted to use.  

The data were supplied in a series of files. One set 

of files contained the following data for a total of 

725,897 trucks: 

 

• Vehicle number (unique identifier) 

• Date 

• Time (to nearest second) 

• Speed 

• Lane 

• Category (type of truck) 

• Length 



• Individual Axle loads, the sum of which is the 

Gross Vehicle Weight (GVW). 

• Axle spacings 

These data files were loaded into a Microsoft® 

Access database. A second set of log files 

contained almost 20 million records for many 

different types of events related to the operation of 

the WIM sensors. Among these were timestamps 

to the nearest 0.01 seconds for each truck. Such 

accurate time-stamps are essential for the 

modelling of the gaps that occur between same-

lane trucks. These timestamps were extracted from 

the log files and stored with the other truck data by 

using relational database join operations.  

 

1.3 DATA CLEANING 

Data quality issues were identified in consultation 

with DWW, and the original list of trucks was 

reduced by eliminating unreliable readings. The 

criteria used were: 

 

• The timestamp for the truck should be also 

recorded in the log file so that the more 

accurate timestamps (to 0.01 s) are available. 

For various operational reasons, 61,554 trucks 

had not been recorded in the log files, and were 

excluded from the analysis. 

• The recorded speed should be between 60 and 

120 km/h inclusive. Axle weights for trucks 

travelling at speeds outside this range are not 

considered to be reliable. This resulted in the 

exclusion of a further 15,839 trucks. 

• The number of axles should be two or more. 

Some “zero-axle” and “single-axle” trucks were 

mistakenly registered by the WIM sensors. This 

resulted in the exclusion of a further 79 trucks. 

• The GVW should be 3.5t or greater. 200 trucks 

in the original list were mistakenly registered 

by the WIM sensors as having zero GVW, but 

all of these had already been excluded by 

applying the first three conditions above. 

The number of trucks was thus reduced from 

725,897 to 648,425. Of these, 598,292 (92.3%) 

were in the inner slow lane, and 50,133 (7.7%) 

were in the overtaking “fast” lane. All subsequent 

analysis described herein was carried out on this 

reduced set of clean data.  

 

2. KEY CHARACTERISTICS OF DATA 

2.1 GROSS VEHICLE WEIGHT (GVW) 

2.1. (a) Overall GVW 

Two histograms of GVW distribution in the slow 

lane are shown below – for 0t to 60t (tonnes) in 

Figure 1, and for 60t to 170t in Figure 2 using a 

magnified vertical scale. The first histogram 

supports the often-used assumption of a bimodal 

normal distribution, with one peak at 16t and a 

second peak for fully loaded trucks at 36t. The 

legal limit for 5-axle trucks in the Netherlands is 

50t, with a limit of 11.5t for an individual axle 

load. It is interesting to note the significant tail of 

very heavy trucks in the second histogram which 

supports the view [4] that different models must 

be used for the general population of trucks and 

for the tail of very heavy trucks. As would be 

expected, the tail of heavy trucks in the fast lane 

(not shown here) is much smaller, with just 89 

trucks over 60t, compared with 1,750 in the slow 

lane, and the heaviest truck observed in the fast 

lane was 90t, compared with 166t in the slow lane. 
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Figure 1. GVW Distribution 0t to 60t – Slow Lane 

To illustrate the nature of the very heavy trucks, a 

summary of all trucks with GVW of 140t or 

greater is shown in Table 1 (all are in the slow 

lane). 
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Figure 2. GVW Distribution – 60t to 170t – Slow Lane 

Table 1. All trucks over 140t 

GVW 

(t) 

Number of 

Axles 

Wheelbase 

(m) 

Speed 

(km/h) 

166 12 28.7 78 

165 12 27.3 85 

152 13 28.4 80 

150 12 28.8 79 

148 13 19.5 76 

147 12 28.8 81 

146 13 36.6 76 

145 11 24.8 82 

145 13 29.4 80 

143 12 28.8 77 

140 13 28.3 84 

140 13 28.2 86 

 

2.1. (b) GVW by number of axles 

Further analysis of the GVW distribution is shown 

in Figure 3 for 5-axle trucks and in Figure 4 for 9-

axle trucks. These illustrate the fact that whereas 

the distribution of 5-axle trucks is well-behaved, 

the distribution becomes more fragmented as the 

number of axles increases. This can be attributed 

to both sparseness of data and the non-standard 

nature of trucks with high numbers of axles. 
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Figure 3. GVW Distribution – 5-axle trucks 

9 Axles - 646 vehicles
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Figure 4. GVW Distribution – 9-axle trucks 

 

2.1. (c) Intra-day GVW variations. 

There are significant variations in truck weight 

over the 24 hours each day in both lanes, as can be 

seen in Figure 5. There is a sharp peak of 24t in 

the slow lane in the early morning between 03:00 

and 04:00. The daily maximum average hourly 

flow (not shown here) also occurs around 04:00 – 

at 353 trucks per hour in the slow lane, and 44 

trucks per hour in the fast lane. The average 

weight dips to 20t by 06:00, and rises back up to 

nearly 24t by 18:00. In the fast lane, the variation 

is even more dramatic, from a peak of over 22t at 

03:00 to under 16t at 21:00. This intra-day 

variation in GVW gives rise to positive correlation 

between the weights of trucks travelling at around 

the same time of day. This point is discussed in 

more detail in Section 3.2 on autocorrelation. 
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2.2 HEADWAY  

Trucks are assigned a timestamp based on the 

point when the first axle is detected by the WIM 

sensors. The inter-axle spacings are recorded, and 

these can be summed to give the wheelbase for the 

vehicle. The overall length of the body of the truck 

is also measured by inductive loop detectors. The 

gaps between successive trucks in the same lane 

can be measured in different ways. Headway is 

defined as the time gap in seconds between the 

first axle of the leading truck and the first axle of 

the following truck. The headway between 

vehicles has been used in many studies [1] as the 

basis for generating simulated traffic arriving on a 

bridge. The gap may also be measured as the time 

between the rear axle of the leading truck and the 

front axle of the following truck. Driver behaviour 

is influenced by the clear gap between the bodies 

of the two trucks. However, the measurement of 

truck body lengths is not particularly reliable, and 

this lack of reliability is evident in the analysed 

data.  

Figure 6 below show the distribution of headways 

in the range from zero to 4 seconds. A commonly 

used assumption [1] is that the coinciding of a 

number of very heavy trucks in free-flowing 

traffic represents the critical loading for bridges of 

relatively short spans (up to perhaps 45m), 

whereas for longer spans congested traffic is more 

likely to produce the critical loading.  A vehicle 

travelling at 80 km/h travels 89m in 4 seconds, 

and in the bridge spans of interest (below 45m) 

trucks separated by longer headways will not be 

on a bridge at the same time. Critical multi-truck 

bridge loading events happen when the headways 

are very small. Of particular interest in the 

distribution shown here is the small peak between 

0.4 and 0.6 seconds. Previous studies [1] have 

assumed that the headway distribution drops to 

zero around 0.7s, whereas these results indicate a 

small but significant number of “tailgating” trucks. 

This includes trucks of all weights, and could be 

significant for bridge loading. The distribution is 

otherwise very similar to what has been used in 

recent studies [1] – a negative exponential 

distribution from 1.5s upwards, with some form of 

polynomial curve fitting between 0.7s and 1.5s. 
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Figure 6. Headway distribution – Slow lane 

 

3. GVW CORRELATION 

 

3.1 CONTOUR PLOTS 

The relationship between the leading truck GVW 

and the following truck GVW in all truck pairs 

was analysed for trucks travelling together in the 

same lane, and for pairs of trucks travelling beside 

each other in both lanes. The statistical model 

commonly used is the bivariate bimodal normal 

distribution. The joint probability density function 

for this theoretical distribution is shown in both 

3-D form in Figure 7 and as a contour plot in 

Figure 8 which show contours of constant 

probability density. Both of these are based on 

zero correlation between the two variables. 
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Figure 7.  Bivariate bimodal Normal joint probability density 
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Figure 8.  Bivariate bimodal Normal Contour plot 

If correlation is introduced into the theoretical data 

by means of simulation, the shape of the contour 

plot changes, and this is particularly noticeable for 

pairs of heavy leading and heavy following trucks 

where the contours become elliptical rather than 

circular (“heavy” is defined for the purpose of this 

study as over 25t). This can be seen in Figure 9 

where the data have a 25% coefficient of 

correlation. 

The contour plot for the slow lane at Woerden is 

shown in Figure 10. This shows that the heavy-

heavy zone in the slow lane has a distinctly 

elliptical shape, which indicates significant 

correlation between heavy trucks travelling 

together in the slow lane. 
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Figure 9.  Contour plot – 25% correlation 

Similar plots for the fast lane and for inter-lane 

traffic do not show the same pronounced elliptical 

shape, and this supports the analysis in the section 

on autocorrelation that the correlation for heavy 

trucks in the fast lane and between lanes is not as 

strong as in the slow lane. 
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Figure 10. Contour plot – Slow Lane 

 

3.2 AUTOCORRELATION 

Autocorrelation is used in the analysis of time 

series in areas such as economics [6] and signal 

processing. The term autocorrelation (or serial 

correlation) denotes the correlation of a random 

variable with a time-shifted version of itself. A 

typical time series contains observations of a 



random variable X at equally spaced time intervals. 

The value of the random variable at each time t, Xt, 

is compared with the value of the variable at time 

t-s, Xt-s, where s is some time lag. The coefficient 

of correlation is then calculated as a function of 

the time lag s, and this is referred to as the 

autocorrelation function: 
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A series of truck GVWs can be considered as a 

time series at randomly spaced time intervals. In 

this study, the autocorrelation function was 

calculated using the variable “number of trucks 

apart” instead of a time lag. The coefficients of 

correlation were calculated between the weight of 

each truck (the leading truck) and the truck 

following it, between the leading truck and the 

second truck behind it, between the leading truck 

and the third truck behind it and so on. The results 

of this are shown for all trucks in the slow lane in 

Figure 11. 
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Figure 11. Autocorrelation – Slow Lane 

This shows that there is an underlying correlation 

of 2.0% between trucks travelling at the same time 

of day, and that there is significantly more 

correlation (5.1%) between pairs of consecutive 

trucks. The underlying correlation can be 

attributed to the intra-day variation in GVW 

shown earlier in Figure 5, and also to some form 

of platoon effect whereby heavy trucks tend to be 

found travelling in groups. Corresponding 

correlation coefficients for the fast lane are 7.6% 

(underlying) and 9.7% (intra-pair). Further 

analysis shows that the correlation in the fast lane 

is mainly due to lighter trucks. In both lanes, 

trucks travelling very close together (less than 4s 

apart) show higher intra-pair correlation (8.7% in 

the slow lane and 12.4% in the fast lane). 

For inter-lane autocorrelation, a slightly different 

approach was used in calculating the time lag. 

Each truck in the fast lane was compared first with 

trucks beside it in the slow lane. This was defined 

as a truck in the slow lane within 4 seconds in 

front or behind the one in the fast lane. This time 

interval was widened to 10, 20, 30, 40, 50, 60, 300, 

600 and 1,200 seconds to provide the 

autocorrelation function. The results are shown in 

Figure 12. This shows an underlying correlation of 

2.1% and an intra-pair (under 4s) correlation of 

4.0%. Again, this shows significant additional 

correlation for pairs of trucks travelling beside 

each other. This may be attributable to trucks 

which are travelling together overtaking one 

another.  Average overtaking times for cars has 

been measured as approximately 8 seconds [5].  

Trucks are substantially longer than cars and their 

relative velocity in overtaking may be lower.  A 

figure of 20 to 30 seconds overtaking time might 

be considered reasonable for trucks, and this lends 

support to the suggestion that overtaking may 

explain the shape of the autocorrelation function 

for inter-lane traffic. 
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Figure 12. Autocorrelation – Inter-lane 

A more detailed analysis was done to establish 

whether intra-pair correlation is influenced by the 

absolute weights of both trucks. For different 

weight thresholds, correlation coefficients were 



calculated for pairs of truck where both trucks 

exceeded the threshold. A 95% confidence interval 

for the population correlation coefficient (ρ) was 

calculated using the method described in [2], [3]. 

The confidence interval depends on both the 

number of data points (N) and on the calculated 

estimate for the coefficient (r). A transformed 

variable z is defined as: 
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The variable z is approximately normally 

distributed with mean and standard deviation: 
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Using these, a 95% confidence interval for z and 

hence r can be calculated.  There is a requirement 

that the two random variables for which the 

coefficient of correlation is being calculated 

should be at least approximately possess a joint 

normal distribution [2], and this is the case here, 

particularly when correlation is being calculated 

for pairs of heavy trucks or pairs of light trucks. 

 

The data become sparse as the weight threshold 

increases, particularly when the much lower traffic 

volumes in the fast lane are being analysed, and as 

a result the calculated coefficients become 

unreliable for higher weight thresholds. The 

results are shown in Figure 13. The data point 

plotted here for zero GVW is the coefficient of 

correlation between pairs of light trucks (where 

both are under 25t). The 95% confidence interval 

for the slow lane is also shown.  For the fast lane 

and inter-lane data, the lower bound of the 

confidence interval drops below zero for weight 

thresholds above 35t.  It is clear that there is a 

sharply increasing correlation between pairs of 

trucks in the slow lane as the weights of both 

trucks increase.  This corresponds to the distinctly 

elliptical shape evident in the contour plot in 

Figure 10 above.  This may well be significant for 

the prediction of critical bridge loading. 
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Figure 13.  Correlation vs. weight threshold 

 

4. CONCLUSIONS 

Some interesting characteristics were identified in 

the data which will need to be incorporated into 

future traffic simulation for bridge loading. These 

include the number of extremely heavy trucks (up 

to 166t), and the tailgating behaviour of some 

trucks. 

Significant correlation was found between the 

weights of pairs of trucks. This is particularly true 

for pairs of very heavy trucks in the slow lane, and 

further work is needed to quantify the significance 

of this correlation for bridge loading. 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Mr Han van Saan 

of DWW in the Dutch Ministry of Transport for 

his assistance in providing and interpreting the 

WIM data. 

 

REFERENCES 

 

1. Caprani, C.C, 2005 ‘Probabilistic Analysis of 

Highway Bridge Traffic Loading’, PhD Thesis, 

University College Dublin. 

2. Hoel, P.G., 1971 ‘Introduction to Mathematical 

Statistics’, Wiley pp 166-169 

3. Fisher, R. A., 1921 ‘On the probable error of a 

coefficient of correlation deduced from a small 

sample’ Metron, 1 (4), 3–32. 

4. Getachew A., OBrien, E.J., 2005, ‘Sensitivity of 

predicted bridge traffic load effects to the tails of 

truck weight distributions’ 5th International 



Conference on Bridge Management, University of 

Surrey, Proceedings pp 275-282 

5.  Hegeman, G., Brookhuis, K., Hoogendoorn, S., 

2005, ‘Opportunities of advanced driver assistance 

systems towards overtaking’ EJTIR, 5, no. 4 

(2005), pp. 281-296 

6. Enders, W. 1995, ‘Applied Econometric Time 

Series’, Wiley 


