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This paper describes the Ring Spur Assignment Problem (RSAP), a new problem arising in the design of Next

Generation Networks. The RSAP complements the Sonet Ring Assignment Problem (SRAP). We describe the

RSAP, positioning it in relation to problems previously addressed in the literature. We decompose the problem

into two IP problems and describe a branch-and-cut decomposition heuristic algorithm suitable for solving

problem instances in a reasonable time. We present promising computational results.
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1. Introduction

We address an interesting new problem, the Ring Spur Assignment Problem (RSAP), introduced in (Carroll and

McGarraghy, 2009a) and (Carroll and McGarraghy, 2009b). The problem is motivated by a practical situation:

a telecommunications network operator seeks to identify an economical fault tolerant Next Generation Network

(NGN) topology that can be overlaid on existing physical infrastructure. This problem arose in discussions

with an industry partner who wished to identify a survivable backbone topology design in the physical network

layer as part of an overall network upgrade plan. The operator wished to achieve this by exploiting existing

spare capacity with no (or minimal) further capital investment. At about the same time, the Irish Government

proposed a project to build a backbone network on the infrastructure of its local agencies aiming to connect EU

funded Metropolitan Area Networks (MANs) which aim to provide broadband access in all areas of the country.

The solution topology we propose would be suitable for both the industry partner and the government

project. In both instances, we seek to mine some value from the existing infrastructure and harness the benefits

from emerging technology. A ring topology is preferred but if a ring solution is not possible we allow spurs. A

sample RSAP topology is shown in Figure 1.

Figure 1: Sample RSAP topology
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In this paper we provide a brief summary of some telecommunications background theory and related

literature on topology design problems, focusing on ring-based topologies. We describe the RSAP in detail

and explain how it relates to problems previously addressed in the literature. We describe how the problem

can be decomposed into two IP sub-problems. We use an IP modelling approach which identifies feasible ring

structures without having to resort to column generation. We describe our decomposition approach and our

branch-and-cut implementation which links the two sub-problems. Finally, we summarise our computational

results and give our conclusions.

2. Background Material

Fibre optic cable allows speeds in the Tb/s range to be used in implementing Next Generation Networks (NGNs).

However the higher the speed (bandwidth), the greater the loss if an individual cable or piece of equipment

develops a fault. Thus, it has become mandatory for backbone networks to be designed with survivability in

mind. Despite the Dial before you dig campaigns of many utility companies, it is still a frequent occurrence for

cables to be accidently cut as noted in (Grover, 2003). Survivability issues are reviewed in detail in (Grover

et al., 2002) and (Kerivin and Mahjoub, 2005).

Synchronous Digital Hierarchy (SDH) is a transmission standard which allows for ease of access to individual

channels. SDH, also known as Synchronous Optical NETwork (SONET), provides a fast managed response to

failures and so can provide the survivability protection required by modern sparse networks. SDH promotes

the use of Self Healing Rings (SHRs) to increase network reliability. In SHRs, described in (Cosares et al.,

1995), the node switching equipment is arranged in cycles (rings) connected by transmission links so that traffic

affected by node or link failure in one part of the network can be routed on an alternative path. Cosares et al.

(1995) note that many computationally challenging problems arise in the design and management of survivable

networks.

Wavelength Division Multiplexing (WDM) is used on fibre optic networks to achieve higher bandwidths.

Papadimitriou et al. (2001) give an introduction to optical networking issues and indicate that Internet Protocol

(IP) over WDM may be the preferred option for NGNs. This protocol can be implemented over the physical

SDH layer. The use of WDM introduces additional graph colouring type problems. Wavelength conversion

equipment must be installed where traffic is routed across neighbouring rings (Bayvel, 2000). Dense Wave

Division Multiplexing (DWDM) offers the potential of even higher bandwidths, (Brackett, 1990).

The Two Connected Bounded Ring problem (2CNBR) and its variants that arise in the design of SDH/SONET

and WDM networks are described in (Fortz and Labbé, 2004; Fortz et al., 2000, 2006, 2003). This problem con-

cerns designing a minimum cost network where at least two node-disjoint, or alternatively edge-disjoint, paths

exist between every pair of nodes. Each edge of the network belongs to at least one cycle whose length (number

of edges) is bounded by a given constant. This bound is imposed to ensure the quality of the telecommunications

signal. As an alternative, the ring size could be specified in terms of the ring recovery time (Fumagalli et al.,

2003) or ring length in km (Grover et al., 2002). Rings in the resulting 2CNBR topology are not necessarily

disjoint but constraints that limit the number of rings that share an edge can be added.
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The NP-Hard SDH Ring Assignment Problem (SRAP) is described in (Goldschmidt et al., 2003) as a high

level design problem that seeks to identify which SHRs should be built; they choose to minimise network costs by

minimising the number of disjoint rings while satisfying customer demand and satisfying a common ring capacity.

A special ring, called the federal ring, of the same capacity as the other rings in the network, interconnects the

other rings. Another formulation of SRAP as a set partitioning model with additional knapsack constraints is

given in (Macambira et al., 2006).

Grover (2003) gives a comprehensive introduction to all of the transmission technologies mentioned above,

along with a discussion on survivability issues that affect specific topologies. He describes the technical and

engineering network background in detail, and reviews the computational techniques to solve the resulting

network design optimisation problems.

We also mention the Ring Star Problem (Labbé et al., 2004). A Ring Star is used to connect terminals

to concentrators where not all nodes are required to be 2-connected. A single node is a designated hub node

that must be connected to the ring. All other nodes can either be assigned to the ring using concentrators or

assigned to a node on the ring. The objective is to minimise the total cost of the ring and star assignments.

The authors give an exact algorithm and a polyhedral analysis of the RSP. They also present computational

results of a branch-and-cut implementation.

We mention an extension to the RSP, the Capacitatedm-Ring-Star Problem (CmRSP) described in (Baldacci

et al., 2007) in relation to the design of an optical network in an urban area in an Italian city. The problem

consists of finding m node disjoint ring stars that visit a central depot. The number of customers allocated

or visited in a ring cannot be greater than some capacity Q. The objective is to minimise the total ring

star assignment costs. The authors give two ILP formulations, a two index edge and a two commodity flow

formulation and they develop a branch-and-cut algorithm. They assess the effectiveness of the two formulations

in a branch-and-cut framework and show the equivalence of the formulations, i.e., the two models represent

the same solution. They report that their algorithms can handle instances up to about 100 nodes. Naji-Azimi

et al. (2010) give a heuristic method for solving larger CmRSP problem instances, while Hoshino and de Souza

(2009) give an exact branch-and-cut-and-price algorithm which they report outperforms the branch-and-cut

implementation of Baldacci et al. (2007).

Finally, we note that a polyhedral approach is used to solve many of these combinatorial optimisation

problems. The polyhedral approach is described in detail in (Lawler et al., 1985) and (Nemhauser and Wolsey,

1988). The degree constraints of the traditional TSP formulation force each node to have exactly two incident

edges while the Subtour Elimination Constraints (SECs) require that any proper subset of nodes be connected

by at least two edges.

A core task in the polyhedral approach is finding the minimum cut of a graph. Grötschel et al. (1995) note

that the Gomory-Hu tree of min cuts can be generated in polynomial time and used to identify violated subtour

constraints. We note that some house-keeping is required for this approach as the Gomory-Hu algorithm

is intended for use on a directed graph since it in turn uses repeated calls of the Ford-Fulkerson max-flow

algorithm. In (Stoer and Wagner, 1997), the authors describe a deterministic non-flow based min cut algorithm

based on the principle of maximal adjacency. It takes as input a graph adjacency matrix and returns the min
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cut value. It runs through a number of iterations, finding a cut at each iteration, the smallest of which is the

min cut of the graph.

Grötschel in Lawler et al. (1985) describes a (perfect) 2-matching as a set of edges such that every vertex is

contained in at most (exactly) 2 edges, hence every TSP tour is a perfect 2-matching. Padberg and Rao (1982)

give a polynomial time exact algorithm for the separation of 2-matching inequalities.

Our brief summary gives a flavour of just some of the wide variety of approaches, topologies and design

parameters used in survivable network design and how emerging DWDM technology is posing new optimisation

problems. In particular, we distinguish between approaches that are demand — and hence capacity — driven,

yielding solutions in the logical layer and approaches that are topologically focused to provide solutions at the

physical layer.

3. The RSAP

The seven layer Open Systems Interconnection (OSI) model is a standardised framework for data exchange. In

this paper we focus on selecting a survivable topology in the physical layer of the OSI model. A node with

(exactly) k incident edges is said to be (exactly) k-connected. We seek to identify a 2-connected (disjoint ring)

topology to ensure survivability. If a suitable topology can be identified in the physical layer, the logical network

can be implemented and managed at the logical layer.

We wish to use pre-installed capacity in the physical SDH network to minimise costs. Our aim of identifying

a highly resilient topology at minimum cost is achieved by assigning locations to rings. Traffic demand for such

a project cannot be known with certainty, so we focus on the topological aspects of the problem. Our work

can be classified amongst approaches providing physical survivability but differs from other works since we aim

to exploit existing physical infrastructure where possible. We focus our attention in this paper on the design

aspect. As such, the RSAP is a complement of the SRAP.

We now describe the RSAP in detail. Communities of interest, defined in (Cosares et al., 1995) as geo-

graphically close nodes that have high traffic demands between them, are identified and their traffic demands

are estimated. If such communities can be clustered on node disjoint rings, no wavelength conversion is requi-

red, eliminating the cost of wavelength conversion and/or opto-electronic conversion equipment for intra-ring

demand. We call these rings local rings. All ring nodes must be exactly 2-connected to two other ring nodes.

Local rings are then connected by a special ring, which we call the tertiary ring, often called the federal or

backbone ring in the literature. Tertiary is a legacy naming convention used by this operator to signify the

highest level in the physical infrastructure. The tertiary ring facilitates inter-ring demand; wavelength converters

are required where local rings connect to the tertiary ring. Early discussions with the network operator included

many design options for the interconnection of the tertiary ring with the local rings. The chosen criteria were

that at least one node from each local ring must be on the tertiary ring and the tertiary ring must form a single

simple cycle. Other possible options could specify that at least two nodes of each local ring must be on the

tertiary ring or that no local ring edges may be used on the tertiary ring.

So far, the problem described is similar to the SRAP problem; we are identifying rings that can carry
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the estimated demand. However, no SRAP solution is possible in some real world instances, as the following

example shows. For adjacent nodes i and j, let ei,j denote the edge joining them.

Figure 2: Left: Benchmark problem with no SRAP solution. Right: RSAP topology

Figure 2 (left) shows france, a benchmark problem from (Orlowski et al., 2010). We can see that nodes 13,

14 and 21 are 2-connected and share node 15 as an adjacent node. An SRAP solution could start by connecting

edges e13,15 and e14,15 to attempt to form a ring. Since node 21 is exactly 2-connected and adjacent to node

15, edge e21,15 must also be included in a ring; but this violates the requirement that ring nodes be exactly

2-connected, since node 15 is now three-connected; hence, no SRAP solution exists for this problem instance.

As an alternative, where no SRAP solution exists, we allow locations that have insufficient spare capacity

or no possible physical route due to limitations of geography, to be connected to SHRs by spurs off the local

rings. Spur nodes must be connected to a local ring by a single edge, i.e., we do not allow a chain of edges to

connect spur nodes. We call this problem the Ring Spur Assignment Problem (RSAP).

An example of the RSAP solution topology for france is shown in figure 2 (right). The tertiary ring edges

are shown with heavy dashed lines, local rings as thin lines and spur arcs as light dashed lines. For clarity, we

omit any edges of the graph that are not part of the solution topology.

An instance of the RSAP is specified by:

• an undirected graph G = (V,E) defined on a set V of nodes, labelled from 1 to n where n = |V |, n ≥ 6 to

exclude degenerate cases, and a set of undirected edges E; the underlying set A of oriented arcs contains,

for each edge {i, j} ∈ E, two arcs (i, j) and (j, i), one in each direction.

• a pair of positional co-ordinates for each node i ∈ V that allow us to assign positional reference values for

the end nodes of each edge {i, j}. These reference values signify the position of end nodes with respect to

each other;

• a non-negative routing cost giving the cost of a link dependent on its length and capacity. Let cij ≥ 0 be

the cost coefficient of edge {i, j} ∈ E for ring edges. If arc (i, j) is assigned as a spur, then it will be given

a cost bcij , where the penalty factor b is as in §4 below.
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The RSP topology presented in (Labbé et al., 2004) is a single ring star with no bound on the ring. In the

RSAP, there is another level of hierarchy, where bounded local rings are connected to the backbone ring, and

spurs then emanate from the local rings. A solution to our problem is a set of disjoint bounded ring stars

interconnected by a tertiary ring. In addition, we note that a solution with a single ring and many spurs is not

desirable from a reliability point of view so all RSAP solutions consist of at least two local rings interconnected

by a tertiary ring. We also note that our results have practical applications in location-allocation and rapid

transit network design problems.

4. IP Decomposition Approach

A practical approach to solving large combinatorial problems is to decompose the whole problem into more

manageable connected subproblems. While this approach may yield a local rather than the global optimum,

the approach provides results for practical problems within a reasonable time frame and is frequently used in

network design problems (Cosares et al., 1995; Fumagalli et al., 2003).

We decompose the RSAP into two IP sub-problems; sub-problem 1 (SP1), of finding a minimum cost local

ring/spur partition and sub-problem 2 (SP2), of finding a minimum cost tertiary ring to interconnect the local

ring/spur partition solution from SP1. We describe IP formulations for both sub-problems.

SONET standards set the recommended maximum number of pieces of node switching equipment (Add-

Drop Multiplexers (ADMs)) per ring at sixteen but, in this practical application, local rings are restricted to

having no more than eight nodes, which we denote by RB for Ring Bound.

Since local rings can have a minimum of three nodes and a maximum of eight, it would be impractical to

consider all possible feasible rings. We do not explicitly identify a subset of rings to be considered, the approach

taken by some authors e.g., Fortz et al. (2003) or resort to column generation to identify potential rings, an

approach used by e.g., Thomadsen and Stidsen (2005). Instead, our formulation ensures that feasible node

disjoint local rings are constructed, by ensuring that all local ring nodes are exactly 2-connected and that rings

contain no more than eight nodes.

Goldschmidt et al. (2003) propose an upper bound of n on the number of rings to be used. Since any valid

ring must contain at least three nodes, we note that ⌊n/3⌋ is an upper bound. We do not predetermine the

number of rings but give the set of ring indices R := {1, . . . , ⌊n/3⌋}.

SP1 can be formulated as a binary integer programming problem as follows: Let xijr be a binary variable

equal to 1 if and only if edge {i, j} appears on ring r, and equal to 0 otherwise; i.e., both i and j are assigned

to the same ring r ∈ R.

For each arc (i, j) ∈ A, let yij be a binary variable equal to 1 if and only if vertex i is assigned to vertex j

as a spur; we set yii = 1 for any vertex i that is on a ring. Let zij be a binary variable equal to 1 if and only if

edge {i, j} appears on the tertiary ring.

The set of nodes adjacent to node i is denoted by adj(i). The cut of S ⊂ V is denoted by δ(S) := {{i, j} ∈

E : i ∈ S, j /∈ S}, i.e., the set of edges having only one endpoint in S. We say a cut is odd if |δ(S)| is odd,

even otherwise. The set of nodes on the ring of index r is denoted by N(r) and the set of edges that form the
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ring of index r is denoted by E(r). For simplicity, we refer to ring r, meaning the ring of index r. The support

graph Gr associated with ring r is Gr := (N(r), E(r)) i.e., those edges for which xijr > 0. The support graph

GT associated with the tertiary ring is GT := (N(T ), E(T )) i.e., those edges for which zij > 0.

As previously noted, we wish to foster high resilience by having locations assigned to rings where possible.

By assigning a sufficiently high weight, bij , to links that are spurs, we achieve this objective. A similar approach

is used in (Labbé et al., 2004).

First, consider the case shown in Figure 3. We prefer the use of eij and ejk as ring edges (the leftmost

arrangement) over the spur assignment of j to i or j to k. Then, for every clique of nodes {i, j, k} ∈ V ,

Figure 3: Ring versus Spur assignment, Case 1

cij + cjk < bji + cik (a)

and cij + cjk < bjk + cik, (b)

so cij + cjk − cik < bji (c)

and cij + cjk − cik < bjk. (d)

Thus, we set

bji := cij + cjk − cik + ε (e)

where ε is some positive value, chosen to be small.

Now, consider the case shown in Figure 4. Again, we prefer the ring solution on the left of Figure 4 over the

spur solution on the right. For every pair of adjacent nodes j, l which could be assigned as either ring nodes or

spur nodes (assigned to i, k respectively), choose bji and blk so that

Figure 4: Ring versus Spur assignment, Case 2

cij + cjl + clk < bji + blk + cik. (f)

Thus, for every arc (j, i) it suffices to choose

bji = cij + cjl + clk − cik (g)

7



since blk will be positive. Therefore, to ensure bji is sufficiently high to guarantee a ring solution where one is

possible, we set bji to the larger of (e) and (g). For simplicity, we let b = maxij∈A{b′ij} where b′ij := bij/cij ,

and set the linear coefficient of each arc (i, j) ∈ A, to be bcij in our objective function, i.e., the cost of using a

spur arc is the network cost of that edge, cij , multiplied by the penalty weighting value of b for the network.

We now address the topology considerations of the local ring spur partitions and specify the formulation for

SP1 as follows:

SP1 min
∑

{i,j}∈E

∑
r∈R

cijxijr +
∑

(i,j)∈A

bcijyij (1)

subject to Local Ring Topological constraints:∑
j∈adj(i)

yij + yii = 1 ∀ i ∈ V Assignment (2)

∑
j∈adj(i)

∑
r∈R

xijr = 2yii ∀ i ∈ V Node Connectivity (3)

∑
l∈adj(j),l ̸=i

xljr ≥ xijr ∀ {i, j} ∈ E, r ∈ R Edge Connect (Head) (4)

∑
k∈adj(i),k ̸=j

xikr ≥ xijr ∀ {i, j} ∈ E, r ∈ R Edge Connect (Tail) (5)

∑
{i,j}∈E

xijr ≤ RB ∀ r ∈ R Ring Bound (6)

∑
r∈R

xijr + yji ≤ yii ∀ i ∈ V, j ∈ adj(i) Spur Assign (7)

xijr ∈ {0, 1} ∀ {i, j} ∈ E, r ∈ R yij ∈ {0, 1} ∀ (i, j) ∈ A, yii ∈ {0, 1} ∀ i ∈ V Binaries (8)

We wish to ensure that each local ring consists of a single simple cycle of the edges assigned to that local

ring. A subtour on local ring r is defined as a simple cycle on a proper subset of the edges assigned to ring r. The

traditional TSP formulation enforces connectivity with degree constraints. However, use of degree constraints

alone does not prohibit subtours. Our formulation above also allows for subtours; local rings are connected but

may be split into two or more cycles. In the next section we describe how these subtours can be eliminated.

Note also that if no nodes are assigned as spurs, the resulting topology is a set of disjoint local rings similar

to an SRAP topology albeit without having yet verified that the topology capacity supports the estimated

demands. The assignment constraints (2) ensure that each site is assigned, either as a ring node (assigned to

itself) or as a spur (assigned to another site). Connectivity constraints (3) are used to ensure that any node

assigned as a ring node with yii = 1 is exactly 2-connected, i.e., exactly two ring edges xijr are incident to node

i.

Using only constraints (2) and (3) allows an assignment xijr1 = 1 = xikr2 , i.e., Node Connectivity is satisfied

but the local rings are not correctly constructed so Edge Connect (Head) constraints (4) and Edge Connect

(Tail) constraints (5) are added to force the cut of any active ring edge to be at least one on the same ring. We

can consider these to be dis-aggregated connectivity constraints.

Rings are restricted to having no more than RB nodes by the Ring Bound Constraints (6). The Spur

Assignment Constraints (7) ensure that any node i is on a ring if any node j is assigned to i as a spur and
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is strengthened by noting that node j cannot be assigned as a spur to node i and adjacent to it on any ring.

Finally, constraints (8) ensure that the decision variables are binary integers.

For each integer solution found to SP1, we solve an instance of SP2, a Generalised Travelling Salesman

Problem, to find a tertiary ring that interconnects the local rings.

SP2 can be solved using the following model:

SP2 min
∑

{i,j}∈E

cijzij (9)

subject to: ∑
k∈adj(i),k ̸=j

zik ≥ zij ∀ {i, j} ∈ E (10)

∑
l∈adj(j),l ̸=i

zlj ≥ zij ∀ {i, j} ∈ E (11)

∑
j∈adj(i)

zij ≤ 2 ∀ i ∈ V (12)

zij + yij + yji ≤ 1 ∀ spur arc (i, j) of SP1 (13)∑
i∈N(r)

∑
j∈adj(i),j /∈N(r)

zij ≥ 2 ∀ ring r of SP1 (14)

along with the Binary Integer constraints:

zij ∈ {0, 1}, ∀ {i, j} ∈ E. (15)

The head of each tertiary ring edge is forced to be connected to another tertiary edge by constraints (10).

Similarly for the tail with constraints (11). We limit the use of each node to at most two incident edges with (12).

The next two constraints are explicitly written for the particular SP1 solution. Constraints (13) ensure that no

spur node forms part of the tertiary ring as this would be unreliable. Constraints (14) force at least two tertiary

edges to be incident with each local ring identified in SP1. In other words, the cut of the tertiary ring across

each local ring is at least two. Finally, constraints (15) are the binary integer constraints.

Let VT ⊂ V be the subset of nodes of the SP1 local rings that connect the local rings to the tertiary ring

by constraints (14). In the case of the tertiary ring, we wish to form a single simple cycle on all nodes of VT ,

and to avoid having the tertiary ring split into multiple cycles. A subtour on the tertiary ring is defined as a

simple cycle on a proper subset of VT . As described, our formulation enforces connectivity of the nodes of VT

but allows subtours on the tertiary ring. In the sections below we describe how tertiary ring subtours can be

eliminated.

4.1 Additional Valid Inequalities

Our decomposition algorithm uses a branch-and-cut approach to SP1. Subtour elimination constraints are valid

and necessary for ring subsets, i.e., each ring must form a single simple cycle. However, in the case of the RSAP

we do not know which local rings will form the optimal SP1 solution, so we need modified versions of the known

SECs. In this section we address how the running time can be improved by tightening the lower LP bound of
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SP1 with valid inequalities added at the root node and how subtours on the SP1 local rings and SP2 tertiary

rings are eliminated during the branch-and-cut search.

We use the following approach; for each local ring r ∈ R, create the support graph Gr associated with ring

r and calculate the min cut of Gr. Details of how we calculate the min cut are given in §4.2 below. If the min

cut is zero, we have detected subtours on Gr, i.e., on ring r.

Let us assume we detect subtours ra and rb on a specific ring r′, as shown in the example in Figure 5.

We partition the nodes of r′ into subsets N(ra) and N(rb), and the edges of r′ into subsets E(ra) and E(rb).

Correspondingly, we denote the subtour partitions of Gr′ by Gra and Grb i.e., N(r′) = N(ra) ∪ N(rb) and

E(r′) = E(ra) ∪ E(rb). Now, let {k, l} be an edge in E(rb). If this edge is in r′ then, clearly, not all edges in

E(ra) can be in r′ since this would cause the formation of a subtour in r′. From this observation, the following

valid inequality can be derived: ∑
{i,j}∈E(ra)

xijr′ ≤ |ra| − xklr′ (16)

Figure 5: Left: Subtour example, Right: 2-matching example

Back to Figure 5, let ring 1 and the edge {6, 7}, respectively, play the roles of ring r′ and of edge {k, l} in

Eq. (16). The corresponding constraint reads: x1,2,1 + x1,5,1 + x2,5,1 ≤ 3− x6,7,1. This says that a cycle on ring

1 of the edges ∈ E(ra) can only be formed if the edge {k, l} ∈ E(rb) on ring 1 is set to zero. If the edge {k, l}

is not set to zero on ring 1, then not all the edges of E(ra) can be on ring 1.

Likewise, we can write the constraint in respect of rb: x6,7,1 + x6,8,1 + x7,8,1 ≤ 3− x1,2,1.

We note that this inequality is valid for all ring indices, not just the ring where the subtour is detected. In

our examples, the inequalities are valid for all r ∈ R, not just on r = 1.

The right hand side of the traditional SEC is |ra| − 1. Our modified SEC is not as strong as the traditional

form since in a fractional solution, the value of the edge decision variable xklr′ may be less than one.

The 2-matching constraints force the number of edges across a cut to be even. The traditional 0-1 formulation

of the TSP uses xe ∈ {0, 1} for all e ∈ E and for E′ ⊆ E, defines x(E′) :=
∑

e∈E′ xe. In the traditional

formulation, 2-matching constraints are given by:∑
E(H)

xe +
∑
E′

xe ≤ |H|+
⌊
|E′|
2

⌋
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where H ⊂ V is called the handle and E′ ⊂ E is an odd set of k disjoint edges, k ≥ 3, with exactly one end in

H, known as teeth.

Nemhauser andWolsey (1988) note that the 2-matching constraints are dominated by the subtour inequalities

when the number of teeth is 1. The 2-matching inequalities can be derived by taking linear combinations with

weights of 0.5 on the degree constraints of the handle nodes, weights of 0.5 for teeth edge trivial upper bound

inequalities and rounding down the RHS. Except for the rounding of the RHS, the 2-matching inequality with

one tooth can be obtained by similar linear combinations. Moreover, even after rounding down the RHS, this

leads to an inequality dominated by a traditional subtour elimination constraint. Note that the solution on the

right of Figure 5 violates the traditional SECs but not our SECs modified for the RSAP.

The 2-matching constraints are valid for the local rings of SP1, but again, modified versions are needed.

T ⊂ E is an odd set of disjoint edges, known as teeth, each with exactly one end in H. In our case, the use

of the dis-aggregated connectivity constraints allow a violated 2-matching on a single tooth. For the RSAP,

|T | ≥ 1, i.e., we may have a violated 2-matching inequality on one tooth while 2-matching constraints on a

single tooth are redundant in the traditional TSP formulation.

We use the following modified form of the 2-matching constraints. In (17), r′ is a ring where a violated

2-matching constraint is detected. ∑
E(H)

xijr′ +
∑
T

xijr′ ≤
∑
i∈H

yii +

⌊
|T |
2

⌋
(17)

On the right of Figure 5 we show an example of a violated 2-matching with one tooth on r = 8, ring 8. In

this example H = {13, 14, 15, 16} and T = e12,13, yii = 1 for all i ∈ H. Note that the solution given in Figure 5

not only satisfies all the inequalities in the system, Eqs. 2 to 7, but also does not violate the subtour elimination

constraint on vertices 13–16.

Since the ring edges of the SP1 LP solution may be fractional, local rings of the LP solution might not be

disjoint and we observe a ghosting effect as in Figure 6. We define a ghost ring rg as a simple cycle on the

fractional ring edges of the SP1 LP solution with more than the ring bound number of edges, i.e., |E(rg)| > RB,

the ring bound.

Figure 6: Ghost rings

Figure 6 shows an example, where two local rings, r′ and r′′ of size 11 coincide, yii = 1 for all 11 nodes with
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xijr′ ≈ 0.73 for all edges on ring r′, xijr′′ ≈ 0.27 for all edges on ring r′′. In this example, E(rg) = E(r′)∪E(r′′),

note that |r′| = |r′′| = 11 > RB. Both rings r′ and r′′ satisfy the ring bound constraint (6) but there are more

than the allowed number of sites on the ghost ring rg. Effectively, the set of edges E(rg) form an infeasible

ring, since it exceeds the ring bound. Our objective is to achieve bounded rings but long cycles in the fractional

solution can emerge in our formulation.

Such ghosts can be eliminated by observing that at most |E(rg)| − 2 of the edges on the ghost ring rg can

be used in an optimal solution to form a feasible ring. Standard SECs break a subtour by forcing at least one

edge of the subtour to be dropped. In the case of bounded rings, dropping one edge would leave a path, in our

example of 10 edges. These 10 edges forming a path cannot form a bounded ring.

We observe that ⌈|rg|/RB⌉ is a lower bound on the number of rings that would be required to cover the

nodes of a ghost ring. Thus, we obtain a stronger constraint by forcing at least ⌈|rg|/RB⌉ edges of rg to be

dropped, as follows: ∑
{i,j}∈E(rg),r∈R

xijr ≤ |rg| −
⌈
|rg|
RB

⌉
(18)

We call these constraints Ghost Elimination Constraints (GECs) and note that they are another refinement of

SECs.

Finally, we address subtours on the SP2 tertiary ring. Recall that SP2 is a generalised TSP problem for

each SP1 local ring/spur partition. We ensure that at least one ring node from each SP1 local ring connects the

local ring to the tertiary ring with Eqs. (14). Figure 7 shows an example of subtours detected on the tertiary

ring connecting the local rings of an SP1 solution. In this example SP1 consists of four local rings. Let E′ ⊂ E

be the set of edges of a subtour of the tertiary ring. For such a set E′ we add a tertiary ring SEC similar to

the traditional TSP SECs, (19). ∑
{i,j}∈E′

zij ≤ |E′| − 1 (19)

Figure 7: Tertiary ring subtour interconnecting SP1 solution

We identify two tertiary ring SECs in our example in Figure 7: z4,5+z4,6+z5,6 ≤ 2 and z9,11+z9,13+z11,13 ≤ 2.

4.2 The Algorithm

In this section we describe the main components of our branch-and-cut decomposition algorithm which links

the two sub-problems SP1 and SP2. The pseudo code of our algorithm is given as Algorithm 1, comments are
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shown in curly braces. Our branch-and cut approach to SP1 is as follows: we solve the relaxed SP1 LP. Then at

the root node we separate and add SECs Eq. (16), 2-Matching Eq. (17), and GECs Eq. (18) in that order. If the

resulting SP1 solution is still fractional, we run a global branch-and-cut search on the amended SP1 problem

separating SECs Eq. (16) and 2-Matching Eq. (17) at each node. We solve an instance of SP2 at any integer

node in the SP1 branch-and-cut tree.

In our implementation, we create one instance of SP2 since the objective function and constraints, (10), (11)

and (12) are the same for all tertiary ring sub-problems. For each integer local ring spur partition solution to

SP1 we modify SP2 by adding constraints of type (13) and (14). We solve the SP2 IP adding SECs Eq. (19) as

necessary.

Algorithm 1 Decomposition Algorithm

Initialise data, calculate b

create SP1 and SP2 (less Eq.s (13) and (14))

Solve LP (SP1: Local Ring Spur Partition)

while fractional cuts and iterations < MaxIter do

separate and add cuts { modified Local SECs, 2-Matchings, GECs}

end while

if solution is fractional then

call branch-and-cut { modified local ring SECs and 2-Matchings}

for each integer node of SP1 branch-and-cut do

add constraints of type (13) and (14) to SP2

solve SP2 IP adding tertiary SECs (19) as necessary

reset SP2 {remove constraints (13), (14) and (19)}

save best solution

end for

else

add constraints of type (13) to SP2 and (14) to SP2

solve SP2 IP adding tertiary ring SECs (19) as necessary

save solution

end if

We save the first complete integer (local and tertiary) solution, if one is found, as the best so far. If any

subsequent integer solution is of lower cost than the best so far, it becomes the incumbent best solution. With

a decomposition approach it is possible that a globally optimal solution, consisting of a relatively higher local

ring cost interconnected by a lower cost tertiary ring, could be missed. By investigating the higher costing SP1

integer solutions, our heuristic attempts to compensate for the weakness of the decomposition approach.

Next we describe our cut separation procedures. Since we only need to identify violated subtours on any

ring rather than generate all min-cuts in the solution, we use a modified version of the min cut algorithm of

(Stoer and Wagner, 1997). We modified the Stoer Wagner algorithm to run on the support graph GT for the

13



tertiary ring (and Gr for each local ring). We track the cuts at each iteration using data structures to store

the number of edges in a cut, the cut value and the resulting partitions. We interrupt the min cut algorithm if

a zero value cut is detected. Otherwise, the modified Stoer Wagner algorithm runs to completion and in both

cases we have access to the stored cuts. A subtour is detected when the min cut of GT (Gr) is zero.

In the case of subtours of the SP2 tertiary ring we add tertiary ring SECs Eq. (19). It may not be possible

to find a tertiary ring to interconnect this SP1 integer solution, in which case we move on the next SP1 integer

solution or terminate if there are no further integer SP1 solutions to consider. Having processed the current

integer SP1 solution, we then remove those SP1-related constraints of type (13), (14) and (19) from the SP2

model.

In the case of the local rings of SP1, for each ring at each node of the branch-and-cut search, we use the

modified check Stoer Wagner algorithm to identify a min cut of zero and check for a violated SEC Eq. (16).

We use the following heuristic to separate 2-matching inequalities on the SP1 local rings: having modified

Stoer Wagner’s min cut algorithm we have access to any odd cuts detected on Gr during the SEC separation.

We note that unless the odd cut detected by our modified Stoer Wagner algorithm is the min cut of the graph,

it is not necessarily the minimal odd cut but any odd cut found on the fractional ring edges is a violation of

some sort and is worthy of investigation. We check if any odd cut gives a violated 2-matching Eq. (17) to be

added to SP1.

Since there are potentially exponential numbers of both feasible and infeasible rings on a fractional SP1

solution, we use a simple heuristic to detect and add GECs given by Eq. (18); other approaches are also

possible. Recall that a ghost ring is a cycle in the fractional solution which exceeds the ring bound number

of edges. For each ring index r in the fractional SP1 LP solution, we create the support graph Gr, select any

2-connected node as the start node and attempt to trace a path that returns to the start node to form a simple

cycle along the edges of Gr.

Our cycle construction heuristic uses a greedy approach and simply looks at the next node on the path.

Our rationale is that one way to to trace a potential ghost cycle is to attempt to steer around the contour of

the edges of Gr. At any intermediate node of degree greater than two, we select the next node as the unvisited

node that makes the biggest clockwise angle on our current path, by looking in the appropriate quadrant as

described below. This choice for navigation was motivated by empirical evidence in the fractional LP solutions.

We continue tracing the path until there are no more adjacent unvisited nodes. If we have returned to the start

node, we have traced a cycle which may exceed the ring bound.

To select the outermost node in the GEC separation procedure we make use of the positional data of the

nodes. Similarly to the idea of using quadtrees in computer graphics, but using simple quadrants, we assign

positional reference values for each end node of each edge which signify the position of end nodes with respect

to each other. Each node i is assigned as being north west Q1, north east Q2, south east Q3 or south west Q4

of any adjacent node j.

In Figure 8 we show an example where node i has been selected as the start node, it is two connected and

its first adjacent node is node j. So the first edge of the ghost path is eij . Node j is adjacent to four nodes;

the ghost path so far has come from the direction of node i so we wish to select the next node on the path as
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the one that makes the biggest angle with the incoming path edge in a clockwise direction. In our example, we

wish to leave by edge ejk. Node i is in Q4 wrt node j so we select as the next node any node in Q3, in our

example, node k.

Figure 8: Selecting next node in GEC separation

In this example, if the current lead node has no adjacent node in Q3, we select the next best as any node in

Q2 and failing that, any node in Q1. If there are more than two adjacent nodes in a quadrant, we take the first

we find rather than the incurring the cost of calculating the angles between the candidate edges. In summary,

we check the quadrant of the incoming path against the quadrant of possible outgoing edges and select the

outermost as the next edge to add to the path.

If the path returns to the start node or meets a node already visited, we stop the GEC separation heuristic.

If the heuristic has stopped because we have returned to the start node, we check whether the sum of the ring

edges on the candidate ghost cycle give a violated GEC and if so, add the GEC to the SP1 problem definition.

We may only have detected a cycle on the fractional ring solution with less nodes than the ring bound so this

tolerance check is necessary to avoid the addition of an invalid constraint. If we failed to form a cycle or the

cycle thus formed uses less than the ring bound number of edges, no GEC has been detected on this fractional

ring and we proceed to check the next ring with a fractional solution.

5. Results

We present promising computational results. A complete set of our results is downloadable from http://mis.

ucd.ie/Members/pcarroll. Small problems can be solved in a reasonable amount of time and we achieve the

desired effect of favouring ring topologies where they exist. We set a time limit of three hours for SP1 for larger

problems (of more than 40 nodes), interrupt the branch-and-cut search if it has not completed, and report the

best integer solution found by that time.

All code was written in ANSI C, using Xpress-MP suite 7.2 with Xpress-BCL version 4.4.0 Builder Com-

ponent library routines and Xpress-Optimizer 22.01 and run on a 32 bit Toshiba Satellite Pro with Intel Dual

Core Pentium 1.86GHz processors and 2 G of RAM under Windows Vista. The release of the Xpress 7.2 suite

(May 2011) includes a facility to exploit parallel processing in the branch-and-bound tree. This is achieved
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by synchronising the BCL and optimiser problems at the start and end of each callback, access to the BCL

problem is locked to the particular thread in between these two function calls. We allowed two threads in our

implementation to exploit the dual core hardware.

Xpress-MP uses floating point arithmetic to encode real numbers. We settled on a tolerance value of 10−6.

In our separation routines, if the value of the left hand side (LHS) of an inequality differs from the right hand

side (RHS) value by less than this tolerance level, we deem that the constraint is satisfied and we have failed

to detect a violated inequality. Using a lower tolerance level proved inefficient in testing as it allowed too many

cuts to be added without improving the objective function value.

The test data used was SNDlib (Orlowski et al., 2010), since it provides many real world problem instances

with both a network model and positional co-ordinates for each node. The problem instances have associated

costs for capacities that can be installed on the edges of the graph. Some instances have pre-installed capacities,

in other instances no capacity is pre-installed so we install one unit of the lowest capacity available at the costs

specified to allow us to test our algorithm. Two problems, janos-us-ca and zib54 were integer infeasible for

SP1, and so were omitted from further testing. These two networks have a small number of nodes of very high

degree making them unsuitable for the RSAP topology.

We got the best results from the cutting plane algorithm by allowing a maximum of 50 iterations at the

root node where modified SECs Eq. (16), 2-Matching Eq. (17) and GECs Eq. (18) are separated in that order.

Modified SECs Eq. (16) and 2-Matching Eq. (17) are then separated at each node of the SP1 branch-and-cut

tree. Empirical testing of the GECs in the branch-and-cut showed that in some cases they improved the run

time but in many cases they caused a deterioration in run time. Recall that we use a heuristic to separate

the GECs. It is possible that a better heuristic would justify their inclusion in the branch-and-cut but in our

algorithm, we restrict the use of the GECs to the root node.

Computational results from SP1 (the local ring spur partition problem) are shown in Table 1. Columns

from left to right show the problem name and size (the number of nodes n, the number of edges m), the value

of penalty weighting b, the SP1 LP objective function value, the tightened Cutting Plane Objective function

value and the Integer solution value (on termination or interruption). We then report the time in seconds for

the addition of cuts at the root node (including the initial LP relaxation), the time for SP1 IP followed by the

number of cuts by type (Modified SECs, 2-Matching and GECs). The comment INT INF indicates that the

problem is integer infeasible for SP1.

We see that in some cases the LP relaxation yields an integer solution, denoted with ∗ in Table 1. In some

cases, such as dfn-bwin and atlanta, the integer solution has subtours and local ring SECs are added at the root

node. As noted previously, janos-us-ca and zib54 were integer infeasible for SP1. We see that SP1 for small

problems is solved with a relatively short running time but that for most of the larger problem instances the

hardware memory limitation was reached before the maximum run time allowed. In the case of germany, the

algorithm terminated after just under 1.5 hours. We see for these problems that a large number of modified

local ring SECs and 2-matchings are added during the branch-and-cut search.

Results for SP2 are shown in Table 2. SP2 identifies a tertiary ring to interconnect the integer local ring

spur solutions of SP1. Columns from left to right show the problem name, the number of tertiary ring SECs
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prob n,m b LP(SP1) CP(SP1) IP(SP1) CP(s) IP(s) Cuts (SEC; 2M; GEC)

dfn-bwin 10,45 3 *81,333 81,333 81,333 0.579 0.61 3; 0; 0

pdh 11,34 4 1,047,629 1,055,454 1,059,366 0.497 0.49 0; 0; 2

di-yuan 11,42 16 *343,200 - 343,200 0.153 - 0; 0; 0

dfn-gwin 11,47 6 *12,520 - 12,520 0.18 - 0; 0; 0

polska 12,18 3 *2,631 - 2,631 0.164 - 0; 0; 0

atlanta 15,22 17 *33,582,500 33,582,500 33,582,500 0.511 0.28 2; 0; 0

newyork 16,49 7 1,257,600 1,267,733 1,333,600 0.699 18.46 63; 76; 2

ta1 24,51 7 7,931,099 8,329,128 8,329,128 1.366 2.73 2; 0; 4

france 25,45 10 14,000 15,800 15,800 0.685 1.66 2; 1; 0

janos-us 26,42 4 11,799 12,134 13,289 2.397 60.07 433; 88; 4

norway 27,51 6 423,065 427,972 504,880 1.503 707.94 2,186; 2,245; 3

sun 27,51 15 423 425 604 1.532 2,407.98 9,418; 12,224; 0

nobel-eu 28,41 3 164,160 164,447 170,890 1.422 25.25 259; 2; 4

cost266 37,57 13 6,914,610 7,013,655 8,633,700 1.354 294.63 1,317; 49; 3

giul39 39,86 6 662 671 708 2.06 **4,920.12 7,904; 3,645; 3

janos-us-ca 39,60 10 - - INT INF - - -

pioro40 40,89 9 5,707 5,724 6,248 3.444 **3,120.56 9,902; 3,881; 3

germany 50,88 7 301,480 303,711 426,950 4.651 **5,340.72 26,867; 2,162; 6

zib54 54,82 12 - - INT INF - - -

ta2 65,108 20 23,903,860 29,687,391 64,362,782 8.554 **9,781.31 12,978; 3,476; 7

Table 1: Sub-problem 1 results, ∗ indicates an integer result, ∗∗ denotes out of memory.

added and the number of SP1 integer solutions considered. Next we show, for the best complete solution found,

the local ring integer objective function value and the cost of its interconnecting tertiary ring (SP2 objective

function value). We next show the best total solution cost (which is the sum of the local ring spur costs and the

tertiary ring costs). Then we show the lower bound for the tertiary ring followed by the problem lower bound

and lastly, the gap between our best solution an the problem lower bound. We explain below how the lower

bound is calculated.

For all of the problems for which SP1 integer solutions are found, except one, a tertiary ring and complete

solution can be found. The exception is nobel-eu with b = 4 where only one integer SP1 solution was found

during the branch-and-cut search with five local rings and two spurs. The network does not have a set of edges

to allow the local rings to be interconnected by a tertiary ring. This leaves 17 of the original test cases where

complete solutions were found.

We see that, on smaller problems, the number of integer solutions to SP1 is often low and generating and

solving SP2 takes a small amount of time. For example, only one integer local ring SP1 solution is considered

for the 24 node ta1. We add 14 tertiary ring SECs to find an interconnecting SP2 tertiary ring. Figure 9 shows

an example of the RSAP solution for the newyork problem instance. We see that the algorithm considers four

integer SP1 solutions and yields a ring solution.
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Figure 9: Left: newyork instance, Right: Best RSAP solution for newyork

prob T-SEC Num Int SP1 SP2 best LBSP2 Problem Gap

Sols best sol best sol sol LB %

dfn-bwin 0 3 81,333 24,549 105,882 24,322 105,655 0.21

pdh 0 1 1,059,366 370,204 1,429,570 260,081 1,315,535 7.98

di-yuan 2 1 343,200 69,100 412,300 68,200 411,400 0.22

dfn-gwin 2 1 12,520 3,204 15,724 2,812 15,332 2.49

polska 2 1 2,631 856 3,487 694 3,325 4.65

atlanta 0 1 33,582,500 21,870,000 55,452,500 5,120,000 38,702,500 30.21

newyork 22 4 1,333,600 194,000 1,527,600 133,200 1,400,933 8.29

ta1 14 1 8,329,128 3,081,040 11,410,169 486,480 8,815,608 22.74

france 8 1 15,800 5,000 20,800 600 16,400 21.15

janos-us 14 5 13,289 4,091 17,380 594 12,728 26.77

norway 22 5 511,950 84,120 596,070 20,890 448,862 24.70

sun 14 7 604 180 783 21 446 43.09

nobel-eu 0 1 170,890 INT INF - - - -

cost266 40 4 8,633,700 3,628,890 12,262,590 378,180 7,391,835 39.72

giul39 146 6 745 221 966 33 704 27.12

pioro40 228 5 6,269 2,794 9,063 271 5,995 33.86

germany 48 7 437,980 120,610 558,590 11,160 314,871 43.63

ta2 24 2 64,362,782 9,420,022 73,782,804 176,902 29,864,293 59.52

Table 2: Computational Results for the RSAP

We see also that, for larger problems, a higher number of integer SP1 solutions are considered. For example,

five local ring solutions are considered for the 40 node pioro40 problem. We note that the branch-and-cut search

is interrupted before the three hour time limit had elapsed as we reach the hardware memory limit. We report
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the best feasible solution within the time and hardware limits. In this case, the best solution had an SP1 local

ring cost of 6,269 and SP2 tertiary ring cost of 2,794, giving a total solution cost of 9,063. The lowest cost SP1

local ring solution found by the branch-and-bound search by contrast was lower at 6,248 but needed a tertiary

ring costing 3,047 giving a higher total cost of 9,104. This is an example of where our branch-and-cut heuristic

compensates for the weakness of the decomposition approach. Figure 10 shows an example of an RSAP solution

topology for the 50 node germany problem. We note in this case that the algorithm yields a ring spur solution.

Figure 10: RSAP solution for 50 node germany problem

Finally, we seek a measure of the quality of our solutions. We calculate a lower bound on the solution cost

for each problem as the sum of the lower bound on the local ring spur solution, LBSP1 plus the lower bound

on the tertiary ring solution, LBSP2. We set LBSP1 to be the Cutting Plane objective value. The minimum

number of local rings in an RSAP solution is two, and these must be connected by a tertiary ring of size at least

three. Therefore, we set the lower bound LBSP2 for the tertiary ring to be the cost of a min cost simple cycle

of size at least three for each problem instance. This is a weak lower bound, as in general the RSAP solutions

have more than two local rings.

We solve a modified version of SP2 to calculate LBSP2 for each problem instance. We use the same objective

function with constraints (10), (11), (12) and (15) and an additional constraint that ensures the sum of tertiary

ring edges is at least three.

Each of LBSP1, LBSP2 is a lower bound for the appropriate sub-problem in the absence of any other
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constraints. Thus, even though we have decomposed the problem, the sum of the proposed lower bounds on the

sub-problems is a valid lower bound for the complete problem. We see that, for small problems such as polska,

the gap is narrow at 4.65% but, for the larger problems, the gap is wide, e.g., the worst gap is for the 65 node

ta2 problem at 59.52%. However, this RSAP has ten local rings demonstrating the weakness of a lower bound

of a minimum cost tertiary ring with at least three edges.

We note also that the tertiary rings of our solutions can consist of a large number of edges, since no ring

bound was imposed on the tertiary ring. The 50 node germany solution shown in Figure 10, has a tertiary ring

containing 15 nodes (edges) which exceeds our Ring Bound but satisfies the SONET ring bound recommendation.

In the case of the 37 node cost36 and 65 node ta2 problems, the tertiary rings exceed the SONET ring bound.

These solutions may still be acceptable if alternative ring bounds in terms of time or length can be satisfied.

Alternatively, a 3-level topology would be necessary.

6. Conclusions

We have presented a summary of the RSAP problem and positioned it in relation to problems previously

described in the literature. The main contribution of our paper is an IP based decomposition branch-and-

cut algorithm which we have implemented with promising computational results. We have described valid

inequalities for multi-ring problems. We are currently investigating alternative formulations for the complete

IP model that may be solvable within a reasonable time frame without having to decompose the problem. We

are also working on improving the lower bound to give a better estimation of the quality of our results.

Finally, we note the resulting tertiary ring for large networks may exceed the SONET ring bound standards.

We note that the result of our work is a 2-level hierarchal network where the local ring spurs of the stage 1

problems constitute the lower layer and the tertiary ring constitutes the higher layer. A further modification

to our work would allow us to create a 3-level topology. We could interconnect the stage 1 local rings by

intermediate rings which in turn would be interconnected by the tertiary ring. This corresponds directly to

the traditional hierarchal topology of telecommunications networks which consist of primary, secondary and

tertiary layers in a tree-like topology. The local ring/spur partitions correspond to the primary layer but now

have some ring protection, likewise our intermediate rings would correspond to the secondary layer while the

tertiary ring corresponds to the tertiary layer.

Acknowledgements

We thank the anonymous referees for their thorough engagement with this work and their many very helpful

comments and suggestions which contributed greatly to improving the clarity and presentation of this paper.

In particular, we thank the referee who suggested improvements to our additional valid inequalities.

20



References
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