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Abstract—The dissemination of textual personal information
has become a key driver for innovation and value creation.
However, due to the possible content of sensitive information,
this data must be anonymized, which can reduce its usefulness
for secondary uses. One of the most used techniques to
anonymize data is generalization. However, its effectiveness
can be hampered by the Value Generalization Hierarchies
(VGHs) used to dictate the anonymization of data, as poorly-
specified VGHs can reduce the usefulness of the resulting data.
To tackle this problem, we propose a metric for evaluating
the quality of textual VGHs used in anonymization. Our
evaluation approach considers the semantic properties of VGHs
and exploits information from the input datasets to predict
with higher accuracy (compared to existing approaches) the
potential effectiveness of VGHs for anonymizing data. As a
consequence, the utility of the resulting datasets is improved
without sacrificing the privacy goal. We also introduce a
novel rating scale to classify the quality of the VGHs into
categories to facilitate the interpretation of our quality metric
for practitioners.

Keywords-Privacy, Data Publishing, Data Quality, Generali-
zation Hierarchies, Data Semantics, Anonymization

I. INTRODUCTION

Currently, the volumes of data generated globally grow

exponentially every year. Within this data, there is a large

amount of textual personal information, such as socio-

economic data and health care records. This fact has at-

tracted the interest of companies in various sectors (e.g., in-

surance companies, retailers) to collect this data for creating

new business models or delivering better services. This data

has also become a fundamental resource for other organi-

zations (e.g., research institutions), who can reuse this data

beyond its original purpose. For this reason, data sharing has

become a driver for innovation and value creation. However,

this data may contain sensitive information about individuals

(e.g., medical conditions, religious beliefs) that can bring

harm to the involved parties if the disclosure of this in-

formation occurs. For example, individuals may suffer from

discrimination or identity theft. Likewise, organizations may

suffer from negative publicity, fines or other sanctions [18].

Hence, this data must be anonymized before being shared

for analysis. Privacy-Preserving Data Publishing (PPDP)

provides methods for publishing data without compromising

the confidentiality of individuals, while trying to retain the

utility of the data for a variety of tasks (e.g., to feed data

mining models, perform query answering, create decision-

support systems) [4]. Since all the potential usage scenar-

ios for the data are commonly unknown at the time of

publication, the produced anonymization solution should

be useful enough to be adequately exploited by multiple

data recipients. One widely-used technique of anonymization

is generalization, which consists in replacing the original

values of an attribute in a dataset with others that are less

precise but semantically consistent [21]. The idea is that

the original data loses its specificity, which reduces the

probability of re-identifying the individuals contained in the

published datasets. For example, one could generalize the

terms “oncology clinic” and “cosmetic surgery hospital” to

“medical institution” to protect the sensitive whereabouts of

a person.

A common prerequisite of generalization algorithms is

the use of Value Generalization Hierarchies (VGHs) to

drive the anonymization. VGHs are tree-like structures that

contain the original values of an attribute and their set

of candidate generalizations, which constitute the anonymi-

zation solution space for the attribute. VGHs are usually

created and evaluated by the data publishers (i.e., anyone

involved in the dissemination of data in a safe and useful

manner; hereinafter referred as users). Users often follow an

iterative process for assessing the concepts and appropriate

details to represent in the VGHs. This can yield multiple

candidates of VGHs (for each attribute) that can be used for

anonymization. Then, the users have to choose which VGH

will be used to anonymize each attribute. All these tasks are

often performed manually and rely on users’ judgment.

A key problem of this practice is that the quality of

the VGHs is evaluated in a subjective and informal way.

Regardless this problem, the “correctness” of the VGHs

that feed generalization algorithms is an aspect that is

rarely questioned in the PPDP literature. This is because

it is commonly assumed that users are fully capable of

providing the adequate domain expertise to the VGHs

based on their own knowledge and experience [12], [23].

To mitigate possible issues, knowledge engineers are often

involved in the evaluation process. However, the process

may become expensive due to the limited availability of
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subject-matter experts and the time-consuming manual

labor it requires. In any case, the decision about the

quality of VGHs generally represents the subjective

opinion of a single individual, and thus corresponds to

only one interpretation of a domain. Clearly, the tasks

of creating and evaluating VGHs for anonymization are

challenging and the current practices are not effective [5],

[22]. Likewise, the chosen VGHs play a key role in

the utility remaining in the anonymized data and in the

precision of the analysis performed, as both can decrease

if poorly-specified VGHs are used in the data generalization.

Contributions. Considering these challenges, our re-

search has centered on developing techniques to evaluate in

an objective, quantifiable, and automatic way, the quality

of textual data VGHs with the aim of improving their

effectiveness for anonymizing data. In [5] we introduced

the Generalization Semantic Loss metric (s-GSL), which

captures the quality of a VGH with respect to its semantic

consistency and taxonomy. However, s-GSL is based on

a static strategy. That is, it assumes that, for a given set

of domain values, there is an optimum “one-size-fits-all”

VGH that would suit any input dataset containing such

values. Hence, it does not exploit information from the input

datasets. This makes s-GSL sensitive to data sparseness,

which reduces its accuracy and limits its applicability. Also,

s-GSL lacks a qualitative interpretation. In this paper we

extend our previous work [5] by proposing an enhanced

VGH quality metric (d-GSL) which, based on a dynamic

evaluation scheme, exploits the frequency distribution of

the input datasets. In this manner, d-GSL can predict with

higher accuracy the effectiveness that VGHs will have in

anonymization. This enables users to select the best VGH

(among all candidates) for a particular dataset. Hence, the

utility of the anonymized datasets will be better preserved

without sacrificing the privacy goal. We also experimentally

show how d-GSL enhances the process of VGH evaluation.

Finally, we propose a rating scale to help users to classify

the VGHs based on their quality (w.r.t. d-GSL) into cate-

gories. Each category includes an interval and a qualitative

descriptor to offer practitioners an intuitive interpretation of

the d-GSL metric.

The remainder of this paper is organized as follows: Sec-

tion II provides the background and related work. Section III

presents the proposed d-GSL metric and its rating scale.

Section IV explains the methodology and the evaluation

criteria selected for our experiments. Section V discusses our

experimental results. Section VI provides a final discussion

of our work. Finally, Section VII presents our conclusions

and future work.

II. BACKGROUND AND RELATED WORK

The collection and dissemination of large amounts of

personal information have allowed organizations to benefit

from the exploitation of this data. Therefore, a lot of effort

has been invested into studying PPDP techniques. In a typ-

ical PPDP scenario [4], a trusted organization collects data

about individuals for their own business reasons. However,

this data may be shared in a sanitized form with third

parties or in the public domain under various circumstances

(e.g., commercial use, research, legal reasons). The essence

of PPDP is to release anonymized datasets that have good

utility for a variety of tasks.

Generalization is a commonly used technique in PPDP

to achieve privacy. One advantage of generalization is that

(unlike perturbation techniques that apply noise to data)

it preserves the truthfulness of the data. This property is

achieved by using VGHs. An example VGH is shown in

Fig. 1. The leaves at level 0 (L0) represent the original

distinct values of an attribute in the dataset. The ancestors

at upper levels (L1 to L3) correspond to the candidate

values used for the generalizations. The root node (at L3)

corresponds to the maximum generalization (or full suppres-

sion) of a value. VGHs are usually specified for the quasi-

identifier (QID) attributes of a dataset, which are those that

can be linked to external information and lead to the re-

identification of people in published anonymized datasets.

Although the aim of PPDP is to share anonymized data for

legitimate (non-privacy-violating) purposes, a key assump-

tion in this area is that attackers can also be found among

the data recipients, who will intend to uncover sensitive

information about individuals. Thus, generalization is used

in conjunction with a privacy model (e.g., k-anonymity, �-
diversity, t-closeness) [17] with the aim of providing formal

privacy guarantees. In our work, we focus on k-anonymity, a

widely-adopted privacy model that consists in making each

record indistinguishable from a group of at least k-1 other

records [21].

Example 1. To illustrate generalization-based k-anony-

mization, consider Table I showing a table with socio-

economic records. Among the attributes, name is the identi-

fier (ID), occupation is the QID, and salary is the sensitive

attribute (SA). Suppose the desired privacy goal is k=3.

In order to achieve it, the ID is removed and the QID

is generalized two levels of the VGH shown in Fig. 1.

Table II shows a 3-anonymous version of Table I. Note

that the generalization created two groups of records that

share the same QID value. Within each group, individuals

are indistinguishable from each other.

Figure 1. VGH for occupation



Table I
EXAMPLE SOCIO-ECONOMIC DATASET

ID QID SA
Record# Name Occupation Salary

1 Bob Music Teacher 51 000
2 John Surgeon 278 000
3 Clare Veterinarian 86 000
4 Alice Math Teacher 47 000
5 Owen Assistant Profesor 75 000
6 Jack Optician 107 000

Table II
A 3-ANONYMOUS VERSION OF TABLE I

QID SA
Record# Occupation Salary

1 Educator 51 000
4 Educator 47 000
5 Educator 75 000
2 Doctor 278 000
3 Doctor 86 000
6 Doctor 107 000

The creation and evaluation of VGHs for numerical at-

tributes have been well studied in the literature [6], [22]. For

numerical attributes, it is relatively easy to evaluate if the

data quality has been preserved after anonymization (e.g., by

retaining their statistical properties, or by minimizing the

size of an interval). In contrast, little research has been done

to study the quality of textual data VGHs. Previous studies

have discussed the role that VGHs play in the utility of

anonymized data [6], [11], [16], [22]. They indicate that

a good VGH would improve the usefulness of the data,

whereas a poor VGH would reduce the precision of the data.

Although these works have helped us to understand a set of

desired properties in VGHs, formal methodologies to assess

VGHs are still scarce as VGHs continue to be judged by the

users based on their own knowledge.

A closely related work is ontology evaluation, as VGHs

could be seen as particular cases of ontologies in which

only the is-a semantic relationships are considered. Several

valuable works have been proposed in this field [20]. How-

ever, the direct applicability of those techniques in PPDP is

limited as they do not consider the particular characteristics

needed by a VGH in the context of data anonymization.

For example, those techniques usually validate how well

the domain of interest has been covered (i.e., granularity).

However, in anonymization, a trade-off exists between the

granularity and the privacy vulnerability that a VGH should

have. This is because, the finer the granularity, the more

useful the anonymized data is, but also the more vulnerable

it could be to inferences.

More recently, some data privacy works have pro-

posed to use ontologies (instead of VGHs) to anonymize

data [8], [13]. However, their applicability may be limited

as they can bring significant restrictions to anonymization.

For example: (1) The size of the solution space increases

with respect to the number of QIDs and the height of

their VGHs. Due to the complexity of ontologies’ graph

model, the solution space would substantially increase. Thus,

existing anonymization algorithms would not be able to

efficiently handle such deep and broad taxonomies (hence,

becoming impractical for real-world applications); (2) The

fine granularity of ontologies can overexpose information

to an adversary such that the anonymized data could still

be vulnerable to inference attacks; (3) Ontologies cannot be

easily customized to the requirements of the data recipients,

whereas VGHs are more flexible and can be adapted to

different use cases (e.g., eliminating undesirable generaliza-

tions, controlling the level of explicitness).

For these reasons, our work only reuses ontologies as an

external source of knowledge for the evaluation of VGHs;

leveraging the fact that many large and consensus ontologies

have been made available [7]. Moreover, multiple ontologies

can be integrated to complement each other and have a more

complete source of knowledge [19].

III. PROPOSED APPROACH

In this section, we motivate the use of data semantics for

evaluating textual data VGHs. We also discuss the details of

our proposed solution and the advantages of using a dynamic

strategy over a static one. Finally, we present a rating quality

scale that serves to better interpret d-GSL.

A. Semantics Data Preservation in Textual Data

Data semantics is an implicit aspect of textual data.

However, traditional metrics used in PPDP for measuring

the amount of generalization in textual attributes do not

usually consider it. Instead, metrics that are better suited

for numerical attributes are typically used [16], [21]. For

example, a common approach is to map each textual value

to a numeric one, then the amount of data distortion occurred

by generalization is quantified by the length of the interval in

which the original values have been grouped [16]. Although

these types of metrics capture a certain level of data distor-

tion, they do not capture the loss in the meaning of textual

values. For example, consider that illness is generalized to

disease (its synonym). A semantic-based approach would

correctly capture that both terms are semantically equivalent,

thus the information loss would be zero, as the meaning

of the original value is preserved. Likewise, the loss when

cafeteria is replaced by restaurant should be lower than

replacing it by tavern, as the first two concepts are more

similar. Considering this, we have incorporated the use of

data semantics in our VGH evaluation approach with the aim

of capturing more accurately the possible loss of information

incurred in the VGH. This would help to identify those

VGHs that better retain the semantics of the original data.

As a result, the anonymized data will also better retain its

semantic usefulness, which would enable users to extract

more useful conclusions.



B. Static vs. Dynamic Selection of VGHs

In the traditional anonymization process, the design and

selection of VGHs are performed the first time that a dataset

needs to be published by an organization. If a new dataset

that belongs to the same domain (which has already been

modeled) requires anonymization, the selected VGH usually

remains static. This is because, as discussed in Section I, the

complexity and cost of the VGH creation process can be

significant, and thus may be unsuitable for an organization

to carry it out periodically. Thus, the static VGH (which

was the best according to the evaluation process) is used

to perform the anonymization of subsequent datasets; as-

suming that such VGH will be the best regardless of the

input dataset. However, using a single static VGH for all

anonymizations may not be the best strategy in PPDP. This

is because the effectiveness of the VGHs (and the utility of

the anonymized data) can be impacted by the characteristics

of the input datasets. For this reason, our work proposes to

use a dynamic strategy in the evaluation of the candidate

VGHs. That is, VGHs should be evaluated depending on

the input dataset, as the decision about the “best” VGH can

change when the distribution of the datasets is considered.

C. Dynamic VGH Evaluation Scheme Overview

In our work, the quality of the VGHs is represented by a

score, which dynamically adjusts to the distribution of the

input datasets. This strategy would allow a more accurate

evaluation of the VGHs and thus, a better prediction of

their effectiveness to conduct the data anonymization. Fig. 2

depicts the contextual view of our solution in PPDP: (1) Or-

ganizations collect personal information and are required

to share it under different circumstances. However, these

datasets must be anonymized before being disseminated.

(2) The users choose the QIDs to be generalized from the

datasets. (3) For each QID, users create a set of candidate

VGHs modeling the given domain and evaluate them based

on their own knowledge and experience. In the traditional

anonymization process, these tasks are performed manually,

so they are time-consuming and error-prone. Considering

this, users need to have an efficient and effective manner

of assessing candidate VGHs to decide which VGH best

fits each input dataset. (4) Our proposed approach is a

dynamic VGH evaluation scheme which captures, in a score

denoted as d-GSL, the degree of data semantics that each

VGH loses in their specification. The lower the d-GSL

score, the less information loss incurred in the VGH. Our

solution integrates knowledge bases and semantic similarity

metrics. The knowledge base is implemented in the form of

ontologies, which act as a gold standard in which the domain

expert knowledge is reflected. Ontologies often represent the

consensus opinion of a panel of experts thus, we mitigate the

risk of having partial interpretations and single judgments

over the domains represented in the VGHs. The semantic

content of the ontologies is exploited by semantic similarity

metrics to measure the proximity between the original values

of a dataset and its possible generalizations; resembling hu-

man behavior regarding the judgment of similarity between

two terms. (5) The output of our approach is one d-GSL

score per evaluated VGH, which allows the users to compare

the quality of the candidate VGHs and select the best for

each data scenario (e.g., those ranked #1). Our solution also

defines a rating scale in which the d-GSL score can be

mapped to a qualitative category to ease the interpretation of

d-GSL for practitioners. (6) After evaluation, the best VGHs

(in terms of d-GSL) can then be used to feed the algorithm

that anonymizes the data with more guarantees that the

chosen VGHs will help to better preserve the semantics of

the original data, hence, retain the data usefulness.

D. Computing the Dynamic GSL Score

In order to assess the quality of a VGH in terms of

its semantics preservation and the input dataset, we eval-

uate the degree of information loss that could result from

the transformations of the original values in the input

dataset. To perform this, we first measure the semantic

distance between the original values at the leaf nodes

L = {l1, l2, . . . , ln} and their corresponding candidate

generalizations at the ancestor nodes of each level i of the

VGH Ai = {ai1, ai2, . . . , aik}. To consider also the dataset

distribution, we consider the frequency of occurrence of the

original values F = {f1, f2, . . . , fn}. The semantic loss

caused by the generalization of a value to its ancestor in

level i is given by (1):

Di
j = fj · SemDist(lj , a

i) (1)

where lj is the j-th leaf node of the VGH, fj is the number

of times that the lj node value appears in the input dataset,

and ai is the ancestor of lj in level i.
The score representing the quality of a VGH, V , is

captured by the Dynamic Generalization Semantic Loss
(d-GSL). For this measure, lower values are better, as it

would mean a lower semantic loss. The d-GSL score is given

by (2):

d-GSL(V ) =

h∑
i=1

wi · G(Di
1, . . . , D

i
n) (2)

where i is the index of a level in the VGH, h denotes the

height of the VGH, wi is a predefined weight associated

with the level i, and G is an aggregation function applied to

all the Di
j distance scores. The weights should be specified

such that they sum up to 1. They can be used to consider

taxonomical characteristics of the VGHs (e.g., height) into

the evaluation score. For example, a generalization occurring

in a coarse-grained VGH would cause a higher information

loss than one in a fine-grained VGH. Moreover, weights can

also be used to penalize the abstraction/specificity of the

terms in the VGH. For example, to magnify the differences

in semantics for the generalization at the lower levels of the



Figure 2. Contextual View of Dynamic VGH Evaluation Scheme in PPDP

VGH, where the more specific levels are found. The weights

can be given by any of the equations in (3):

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

h
, if wi is uniform

(h+ 1− i)∑h
j=1 j

, if wi is based on level i

(3a)

(3b)

The function G(Di
1, . . . , D

i
n) can be any aggregation

mechanism that allows to combine the Di
j scores into a

single representative value for each level of a VGH, with

the aim of assessing their quality. The definition of the

function G is based on the intended analysis of the users. For

example, to identify the individual generalizations that are

causing the maximum losses (maximum value as in Eq. 4a),

or to compare the overall quality of each level of the VGH

(average value as in Eq. 4b). This is useful because under

some schemes of anonymization, the generalization occurs

at the domain level, that is, all the original values end at the

same level of the VGH (e.g., full-domain generalization [4]).

G(s1, ..., sn) =

⎧⎪⎪⎨
⎪⎪⎩

max
i∈[i,n]

si, if G is maximum

∑n
i=1 si∑n
i=1 fi

, if G is average

(4a)

(4b)

Example 2. To illustrate the benefits of leveraging data

semantics for VGH evaluation, let us consider a dataset

where the selected QID to anonymize is occupation. The

user has defined (based on her own knowledge) the VGH

shown in Fig. 1 to perform the generalization of the QID.

Ideally, more general terms are located at higher levels in

the VGH and more specialized terms are lower in the VGH.

However, there are imprecisions in the VGH which might

not be easy to identify at first sight. For example, the ances-

tor terms specified for “optometrist” are semantically incon-

Table III
EVALUATION OF VGH SHOWN IN FIG. 1

Quality Scores (using WordNet and Wu-Palmer metric)
Dataset Scenarios s-GSL d-GSL
DS1: uniform 0.3403 0.3403
DS2: 90%, 10% 0.3403 0.4744
DS3: 50%, 40%, 10% 0.3403 0.3803

sistent. This is because although those terms refer to people

involved in eye caring, “optometrist” is not an “eye-doctor”
or “doctor”. These type of issues can be easily detected

by inspecting those transformations using our semantic-

based approach. For example, the semantic loss caused by

the transformations of “optometrist” to “eye-doctor/doctor”
(computed with Eq. 1) are 0.3846 and 0.3333, respectively;

which indicate a high loss. In contrast, the ancestors spec-

ified for “veterinarian” are correct, as the transformations

to “medical practitioner/doctor” incur lower losses, which

are 0.0769 and 0.037, respectively.

Example 3. To illustrate the benefits of evaluating VGHs

using a dynamic scheme (such as d-GSL) over a static

one (such as s-GSL), let us consider three datasets (DS)

containing 100 records that need to be anonymized. These

DS belong to the same domain but have different frequency

distributions (as shown in the first column of Table III): DS1

has a uniform distribution of 10% of each term; DS2 has

90% of “optometrist” terms (poorly-specified branch) and

10% divided among the rest; DS3 has 50% of “veterinarian”
terms (well-specified branch), 40% of “optometrist”, and

10% divided among the rest. Next, consider that we first

evaluate the quality of the VGH using s-GSL. In this case,

we obtain the same quality score independently of the input

dataset (as seen in the s-GSL column). In contrast, when

using the d-GSL metric (computed with Eq. 2), we obtain

different scores per dataset, as d-GSL considers the impact



Table IV
RATING SCALE FOR THE D-GSL METRIC

Category Ranges Descriptor
Cat1 0.0 ≤ Quality Score < 0.2 Very Good
Cat2 0.2 ≤ Quality Score < 0.4 Good
Cat3 0.4 ≤ Quality Score < 0.6 Moderate
Cat4 0.6 ≤ Quality Score < 0.8 Poor
Cat5 0.8 ≤ Quality Score ≤ 1.0 Very Poor

of the data distribution to evaluate the quality of the VGH.

For DS1, both quality scores yield the same result as the

impact of having a single instance of each term is the same

as having n instances. For DS2, d-GSL showed an increment

in the loss incurred by the VGH, as in this scenario 90%

of the data falls into a branch where the losses are high.

Finally for DS3, d-GSL showed a small increment as the

data is distributed between well-defined and poorly-specified

branches. Having obtained different d-GSL scores for the

same VGH shows the importance of considering information

from the input datasets in the VGH evaluation process.

Moreover, it shows that our dynamic scheme can capture

more accurately the different dataset scenarios compared to

the static scheme.

As shown by the above examples, our approach brings

multiple benefits to the users in the evaluation of VGHs, such

as: (1) Inconsistent specifications introduced in the VGH can

be easily identified (e.g., misclassifications, redundancies);

(2) A clearer differentiation can be made between terms that

look similar; (3) Users do not have to depend on the limited

availability of knowledge engineers and the associated cost;

(4) Users mitigate the risk of relying on the subjective

judgment of a single individual expert as the knowledge base

is represented by consensual ontologies often created by a

panel of experts.

E. VGH Quality Categories

We propose a rating scale consisting of five categories to

classify the VGHs according to their d-GSL score. The aim

is that these categories serve as a guide for the users to know

what to expect about the utility of the data anonymized with

the VGHs. These categories are shown in Table IV. They

were inspired by the rule of thumb used for interpreting

correlation coefficients (e.g., pearson, spearman), which is

composed of a 5-point scale to offer a fair and intuitive

range of qualitative descriptors. Furthermore, the ranges

of the categories were derived from the VGH behaviors

observed in our empirical evaluation. Each category has

an ordinal scale (i.e., the descriptor) which qualitatively

expresses the ratings of quality, so that practitioners can

better interpret the d-GSL metric. Lower categories are better

as they indicate that a VGH has a lower semantic loss, thus

retaining more information in their specification. The ranges

of the categories cover the interval of [0,1], which matches

how the d-GSL is expressed. This is because we used the

Wu and Palmer metric to measure semantic similarity; if an

alternative metric is used, the range of the metric would only

need to be normalized to the [0,1] interval.

IV. EXPERIMENTAL SETUP

Below, we present our experimental methodology and de-

scribe the testbed of VGHs, the datasets, and the evaluation

criteria used in our experiments.

A. Experimental Methodology

We conducted a series of experiments that pursued three

objectives: (1) to investigate how the effectiveness of a

VGH is subjective to the dataset that will employ it for

anonymization; (2) to demonstrate how and why using a

dynamic VGH quality assessment scheme, which considers

the distribution of the input datasets, is better than a static

scheme; and (3) to demonstrate how a rating scale can be

applied to classify the quality of VGHs.

For this purpose, we created a set of candidate VGHs

modeling the same domain for a socio-economic attribute

(see Section IV-B). We then evaluated the quality of those

VGHs using the d-GSL and s-GSL metrics. s-GSL was

chosen as the rival metric for comparison as it repre-

sents, to the best of our knowledge, the first quantitative

mechanism to assess the quality of VGHs to perform data

anonymization. Later, we conducted the anonymization of

datasets (see Section IV-B) using the candidate VGHs and

the Datafly algorithm (a popular k-anonymity based algo-

rithm) [21]. We tested different levels of privacy, varying the

k-values ∈ [30..100]. In this manner, all the anonymity levels

of the candidate VGHs were covered, which guaranteed a

fair comparison. Finally, we calculated the usefulness of

the anonymized datasets using task-independent data utility

metrics (see Section IV-C).

B. Evaluated VGHs and Datasets

Our testbed consisted of 252 VGHs. Those VGHs were

created by perturbing the semantical content of an ideal
VGH which was constructed by extracting the minimal

taxonomy from WordNet (ontology widely used due to its

broad coverage of concepts [14]) for our evaluation data.

To obtain a varied range of VGH quality scores for our

tests, we applied transformations to the ideal VGH, such

as: mixing the leaf nodes and replacing the terms of the

ancestors with another one selected from a list of candidate

terms extracted from WordNet (that are within a semantic

similarity boundary). All VGHs were constructed over the

same set of leaf concepts. As evaluation data, we used the

Insurance dataset [2] which contains personal information

(in tabular format) that can be of interest to an insurance

company for carrying out a risk assessment on potential

clients. From this dataset, we focused on the attribute of

occupation, which has the highest diversity of values. To test

the generality of our solution, we derived multiple datasets



per VGH. This strategy allowed us to considerably diversify

the range of evaluated scenarios and to show the impact

that a dataset can have over the anonymization performance

of the VGHs. To achieve this, for each VGH we computed

the semantic loss that each branch (from leaf to root node)

incurred in the VGH. We then identified the branches with

the minimum and maximum semantic losses. Based on

these branches, we generated 10 datasets (each composed of

1,100 records) per VGH. The name assigned to each dataset

reflected the frequency distributions of the worst branch, the

best branch, and the rest of the terms in the dataset. For

example, for the dataset 70w20b10r, the 70% of the data

was the worst branch, while 20% was the best, and 10%

was distributed among the rest of the terms.

C. Evaluation Criteria

VGH Quality. The quality of the VGHs is expressed

in terms of our d-GSL metric and the s-GSL metric. As

both metrics leverage on measures of semantic similarity,

in our experiments we used two widely-used path-based

metrics: Wu and Palmer (WUP) and Leacock and Chodorow

(LCH) [14]. This strategy allowed us to prove the generality

of the d-GSL with respect to the used semantic similarity

metric. The WUP metric measures the depth of two given

concepts in the taxonomy and the depth of their least

common subsumer. The LCH metric measures the length

of the shortest path between two concepts considering the

depth of the taxonomy. Our implementation used the WS4J

library [3], which relied on WordNet 3.0 to compute the

semantic similarity between two words.

Data Utility. The level of usefulness that remained in the

datasets after anonymization was measured using two task-

independent data utility metrics (as not knowing in advance

the analysis task is an essential premise of PPDP): Semantic

Sum of Squared Errors (SSE) [8] and Semantic Information

Loss (SemILoss) [13]. SSE measures the level of intra-group

homogeneity in a group of anonymized records. SemILoss

measures how semantically different the anonymized values

are (on average) compared to the original ones. For both

metrics, lower values are better, as it indicates a higher utility

of the data.

VGH Quality and Data Utility Correlation. To analyze

the degree of correlation between the scores representing the

quality of VGHs and the utility of the anonymized datasets,

we calculated the Spearman’s rank order correlation (rSpm).

It measures the strength of a monotonic (but not necessarily

linearly related) relationship between paired data. rSpm can

take values from -1 to +1; the closer the value is to ±1, the

stronger the relationship.

VGH Quality Categories. Based on our proposed rating

scale, we created clusters based on both VGH quality scores,

and compared them against the clusters created based on the

data utility scores. In this manner, we could determine which

of the two cluster partitions (those based on d-GSL or those

based on s-GSL) was more in agreement with the clusters

obtained from the data utility scores. The idea is that the

higher the agreement between the partitions, the higher the

accuracy of the quality metric. This was measured using two

representative clustering evaluation metrics: the Wallace co-

efficient (Wallace) and the Normalized Mutual Information

(NMI) metric [9]. Wallace is a pairwise agreement metric

that assesses whether each pair of data points are either

clustered together or separated into different clusters. NMI

is an entropy-based metric that relies upon concepts from

information theory to measure how much information is

shared between partitions of clusters. Both metrics range

between 0 and 1; larger values indicate a higher similarity

between the partitions. These metrics were computed using

the tool available at [1].

V. EXPERIMENTAL RESULTS

Correlation Comparison. This analysis focused on as-

sessing the capacity of the d-GSL and s-GSL metrics to cap-

ture (a priori) the effectiveness of the VGHs for anonymizing

data. Figs. 3a and 3b show the correlation between the

VGH quality metrics and the data utility per dataset. Fig. 3a

shows the correlation calculated using WUP to compute the

VGH quality scores, and SSE to quantify the data utility.

The d-GSL metric obtained stronger correlations (between

0.91 and 0.98) than the ones obtained for s-GSL (between

0.64 and 0.81). This means that d-GSL was more precise in

determining the effectiveness of VGHs. Similar results are

observed in Fig. 3b. It shows the correlation calculated using

LCH to compute the VGH quality scores, and SemILoss to

quantify the data utility. Results show that d-GSL continued

to exhibit a stronger correlation (between 0.79 and 0.90)

than s-GSL (between 0.73 and 0.85).

To complement the validation, the highest and the lowest

correlations obtained for each quality metric are shown in

Figs. 4 and 5 (for the 50w40b10r and 05w90b05r dataset

scenarios, respectively). It can be observed how the rela-

tionship between the quality of the VGHs and the utility

of the anonymized data exhibits a more linear and positive

monotonic trend for the d-GSL metric.

In conclusion, this analysis demonstrated that d-GSL is

a better metric than s-GSL as it provides a more accurate

representation of the VGHs’ quality.

Data Distribution Sensitivity Analysis. This analysis

centered on assessing the influence of the input datasets

(with different frequency distributions) on the effectiveness

of the VGHs. For the sake of brevity, we only present the

comparison of ten sample VGHs (randomly picked from our

testbed) that belong to the category 2 (according to their

s-GSL score). Fig. 6a shows the d-GSL and s-GSL scores

of the sample VGHs. Since s-GSL is computed using a static

scheme, there is one s-GSL score per VGH. For this reason,

we use the s-GSL score as the baseline for our comparisons.

In contrast, d-GSL uses a dynamic scheme, thus each VGH
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has one d-GSL score per input dataset. It can be seen how

the s-GSL scores remained within the range of a single

quality category (i.e., [0.3 to 0.39] corresponding to cat2),

whereas the d-GSL scores fluctuated among four categories

(i.e., [0.14 to 0.67] corresponding to cat1 to cat4). Based

on their quality scores (per dataset), the VGHs were ranked

to identify the best VGH among all candidates. That is, the

VGH that would yield the lower information loss in the

anonymized data. These rankings are shown in Fig. 7a. For

example, based on d-GSL and the 90w05b05r input dataset,

the VGH3 would be the best. Whereas, if the input dataset

were 05w90b05r, the best would be VGH2. In summary,

Figs. 6a and 7a represent the expected anonymization

performance of the VGHs based on their d-GSL and s-GSL

quality scores.

Figs. 6b and 7b show the real performance of the sample

VGHs. That is, the information loss that the datasets suffered

after being anonymized with the VGHs. Fig. 6b shows

the data utility magnitudes (in terms of SSE), whereas

Fig. 7b shows the data utility rankings of the VGHs for

each dataset scenario. To validate the accuracy of the quality

metrics (d-GSL and s-GSL) for anticipating the utility of

the anonymized data, we compared the expected rankings

(shown in Fig. 7a) with the real rankings (shown in Fig. 7b).

Overall, the d-GSL metric predicted more accurately the

performance of the VGHs than s-GSL. For example in

Fig. 7a, s-GSL ranked the VGH2 in 2nd place, however its

performance degraded with some datasets (e.g., 70w20b10r

and 90w05b05r) until falling to 9th place. In contrast, this

scenario is well-captured by d-GSL, as the d-GSL scores

exhibit the same trends in both quality (Fig. 7a) and utility

plots (Fig. 7b). We also compared the expected magnitude

trends (Fig. 6a) with the real magnitude trends (Fig. 6b).

In this case, we only validated that the trends remained, as

the correlation between VGH quality and the utility offered

by the VGHs is not linear (as previously discussed in our

correlation results).

In conclusion, this analysis demonstrated that there is

no “best-fit-for-all” VGH for all datasets. Instead, the best

VGH can change depending on the input datasets. Hence,

the utility of an anonymized dataset can be improved when

the VGH evaluation is performed using a dynamic scheme

(i.e., d-GSL) instead of a static scheme (i.e., s-GSL).

VGH Quality Categories Comparison. This analysis as-

sessed the empirical categories we proposed in Section III-E.

Fig. 8 shows the average data utility of the VGHs grouped by

quality categories based on their d-GSL score. For the sake

of brevity, we only present the results for three datasets, as

similar behaviors were obtained for the others. Within each

dataset, the highest utility was obtained for the Cat1 as the

VGHs belonging to this group reduced the information loss

the most, in comparison to the rest of the categories. This

demonstrates that a VGH that belongs to a lower category

would be more effective to perform the anonymization of

data than one that belongs to a higher category. It can also

be noticed that the information losses are generally lower
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We also grouped the VGHs in categories based on their

s-GSL scores; their behaviors were similar to the ones

exhibited by the d-GSL categories (shown in Fig. 8). To val-

idate which of the two category groups was more accurate,

we compared the groups (“clusters”) based on the d-GSL

and s-GSL scores, against the groups created based on the

data utility scores. That is, we evaluated if the VGHs are

“classified” in the same way when they are grouped by their

quality than when they are grouped by the data utility. Then,

we measured the agreement between the groups. Figs. 9a

and 9b depict the level of agreement between the data utility
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clusters and the VGH quality clusters measured with Wallace

and NMI. The VGH classification based on d-GSL always

outperformed the one based on s-GSL. This means that

s-GSL could have overestimated or underestimated the real

data utility yield by the VGHs in each category.

In conclusion, this analysis proved that VGHs classified

in lower categories are more likely to yield a higher data

utility than those in higher categories. We also showed that

the agreement level between the categories created based on

quality and data utility was higher when the classification

was performed with d-GSL (rather than s-GSL). That is, the

expected VGHs’ effectiveness indicated by d-GSL was more

in accordance with their real effectiveness.

VI. FINAL DISCUSSION

In our empirical evaluation, the effectiveness of d-GSL

was tested with VGHs applied in the anonymization of

tabular data (one of the most used formats in data sharing).

However, the applicability of our solution can be broader,

as VGHs are the most used approach in generalization to

protect privacy in different types of data. For example, in

semantic trajectory data [15], VGHs are used to hide sen-

sitive places where a person has stopped (e.g., an oncology

clinic); while in transactional data [10], they are used to hide

sensitive items in purchases (e.g., pregnancy test).

Our approach uses an a priori strategy for evaluating

the quality of VGHs. That is, the potential effectiveness

of VGHs is estimated before anonymizing the data, which

allows to save users’ time and prevent applications from us-

ing inappropriate VGHs. Regarding the privacy implications

of our approach, it does not affect the privacy goal set by

users. In our experiments, the anonymized datasets improved

their utility while still satisfying their corresponding k-

anonymity levels. Thus, the anonymized datasets kept the

same protection and vulnerabilities of the privacy model

used. In our experiments, we used k-anonymity. However,

our approach is not tied to a specific privacy model or its

associated goal. This decision was made not only to make

d-GSL independent of the privacy model but also because

it is not known a priori how many generalizations will be

needed to satisfy a privacy goal (e.g., k-anonymity level),

thus our assumption is that it can be equally satisfied (same

probability) at any level of the VGH.



VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamic VGH evaluation

approach which exploits the frequency distribution of the

input datasets. Our approach yields a score (d-GSL) which

acts as predictor of the effectiveness of VGHs to perform

the anonymization of data. The d-GSL score enables users

to effectively compare multiple VGHs for a given domain

and select the one that will better retain the usefulness of the

original data. We also proposed a rating scale that will help

users to classify the VGHs based on their quality (in terms of

d-GSL) into categories. Each category includes an interval

and a qualitative descriptor to offer practitioners an intuitive

interpretation of the d-GSL. Our results demonstrated that

the utility of anonymized datasets is improved (without

sacrificing the privacy goal) when the selection of the best

VGH is based on a dynamic scheme (i.e., d-GSL) instead of

a static scheme (e.g., s-GSL). Our results also demonstrated

that d-GSL is more accurate than s-GSL, as it was better

correlated with the utility of the datasets anonymized with

the evaluated VGHs. Furthermore, we showed that VGHs

classified in lower categories are more likely to yield a

higher data utility than those in higher categories.

In our future work, we intend to investigate which

other aspects of PPDP might be suitable to extend our

VGH evaluation solution. Likewise, we plan to broaden the

validation of d-GSL applying task-specific utility metrics

(e.g., data mining). Another interesting idea is to consider

the potential vulnerability of the VGHs to different privacy

attacks. We plan to use this additional knowledge to develop

a global cost evaluation function which can assess VGHs

from different perspectives. It would be also interesting

to evaluate our solution further using more datasets and

privacy models. Finally, we also intend to explore how to

automatically generate well-defined VGHs or improve an

“imperfect” VGH.
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