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Abstract

We present a Wolff Theorem for all infinite dimensional bounded symmetric
domains of finite rank. Namely, if B is the open unit ball of any finite rank JB∗-
triple and f : B → B is a compact holomorphic map with no fixed point in B, we
prove convex f -invariant subdomains of B (of all sizes and at all points) exist in
the form of simple operator balls cλ + Tλ(B), for cλ ∈ B and Tλ an invertible linear
map. These are exact infinite dimensional analogues of the invariant discs in ∆, the
invariant ellipsoids in the Hilbert ball and invariant domains in finite dimensional
triples. Results are new for rank > 2, even for classical spaces such as C∗-algebras
and JB∗-algebras.

Introduction

Iteration theory of holomorphic maps on Banach spaces has as its foundation some ap-
propriate analogue of Wolff’s theorem on ∆ [37, 38]; recall if f : ∆→ ∆ is a holomorphic
fixed-point free map, then there exists ξ ∈ ∂∆ such that each disc internally tangent at
ξ is f -invariant. In a Hilbert space ellipsoids replace the internally tangent discs [18]. In
strictly convex domains, in Cn [1, 2, 7], or in Banach spaces [9, 10], the internally tangent
discs are replaced by horospheres defined in terms of the Kobayashi distance. Although
these horospheres are defined for arbitrary Banach spaces [2, 3, 32], if the boundary of
the ball is more complicated they are considerably less tractable, even in finite dimen-
sions [17, 4, 16]. While holomorphic iteration on both finite and infinite dimensional
Banach spaces has recently continued apace [5, 7, 8, 9, 11, 12, 20, 28, 31, 32, 34], spaces
whose balls have, for example, non-strictly convex boundaries, even classical spaces such
as the C∗-algebras or L(H,K), still require a Wolff theorem and concrete descriptions of
invariant domains to facilitate progress on iteration.
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Banach spaces whose open unit ball is homogeneous, however, (including Hilbert spaces,
C∗-, J∗-, and JB∗-algebras, among others) are classified as JB∗-triples and Jordan the-
ory enables significant other techniques. In [30, Theorems 3.8, 3.10], the author gave a
Wolff theorem for all finite dimensional JB∗-triples, and more generally, for all triples
satisfying a certain additional condition. This paper provides a Wolff theorem for all infi-
nite dimensional JB∗-triples of finite rank, together with an explicit algebraic description
of the resulting invariant domains in terms of the Jordan product. The advantage with
JB∗-triples is that the Jordan product replaces the Kobayashi distance, enabling us to
show that the invariant domains are operator balls

Eλ = cλ + Tλ(B), for cλ ∈ B and Tλ ∈ GL(Z).

In infinite dimensions lack of compactness of the closed ball forces us to work with the
weak topology, made possible as the norm of a finite rank triple is equivalent to a Hilbert
norm [24, 25]. Trickier to overcome, however, is that the Jordan product is not weakly
continuous [27]. Jordan theory captures the desired behaviour though, even for classical
spaces such as C∗-algebras or L(H,K). For that reason, we summarise part of our main
result below in a Jordan-free form. The results are new in infinite dimensions for rank
greater than 2. Crucially, despite the underlying force being the very non-linear Kobayashi
distance, the resulting invariant domains display straighforward affine structure and exist
at every point of B.

0.1 Theorem. Let Z be any finite rank JB∗-triple with open unit ball B and let f :
B → B be a compact holomorphic fixed-point free map. Then there exists e ∈ ∂B, such
that for all λ > 0, there is cλ ∈ B and Tλ ∈ GL(Z) such that the operator ball

Eλ := cλ + Tλ(B)

is a convex f -invariant domain in B containing e in its boundary.

Moreover, for each y ∈ B, there is λy > 0 with y ∈ ∂Eλy .

If Z has rank 1, namely, it is a Hilbert space, then the Eλs are exactly the earlier ellipsoids
[18], [32]. The theorem reproduces results for finite dimensional triples [30]. We note that
the point e is a tripotent ({e, e, e} = e), satisfying e = cλ + Tλ(e), and the maps Tλ are
invertible linear operators defined in terms of the triple product.

1 Notation and background

1.1 JB∗-triples

Every homogeneous open unit ball is biholomorphically equivalent to a bounded sym-
metric domain, classified as the open unit ball of a JB∗-triple [21]. For X,Y complex
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Banach spaces, L(X, Y ) denotes continuous linear maps from X to Y , L(X) = L(X,X)
and GL(X) is invertible elements in L(X).

1.1 Definition. A JB∗-triple is a complex Banach space Z with a real trilinear mapping
{·, ·, ·} : Z × Z × Z → Z satisfying

(i) {x, y, z} is complex linear and symmetric in the outer variables x and z, and is
complex anti-linear in y.

(ii) The map z → {x, x, z}, denoted x�x, is Hermitian, σ(x�x) ≥ 0 and ‖x�x‖ = ‖x‖2
for all x ∈ Z, where σ denotes the spectrum.

(iii) The product satisfies the following “triple identity”

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}.

Classical examples include L(H), H a complex Hilbert space, with {x, y, z} = 1/2(xy∗z+
zy∗x), where y∗ denotes the usual operator adjoint of y. In fact, the first four of the six
types of the so-called Cartan factors are subtriples of L(H), cf [13, Example 9.2].

The triple product is continuous, giving linear maps: x�y ∈ L(Z) : z → {x, y, z},
Q(x) ∈ LIR(Z) : z → {x, z, x}, and the geometrically significant Bergman operators

B(x, y) = I − 2x�y +Q(x)Q(y) ∈ L(Z).

Let Aut(B) denote all biholomorphic maps from B to B. For z in B, we have gz ∈ Aut(B)
defined by

gz(w) = z +B(z, z)
1
2 (I + w� z)−1w

satisfying gz(0) = z, g−1z = g−z and g′z(0) = B(z, z)
1
2 (defined in terms of a functional

calculus) [21].
We will refer to the concept of (holomorphic) boundary component, Kx, of x ∈ B. For
finite rank triples, every such boundary component, Kx, is determined by a unique tripo-
tent e = {e, e, e}, such that Kx = Ke. Boundary components in the finite rank case are
classified by the triple product [23].

1.2 Spectral Decomposition

Every tripotent e = {e, e, e} induces a splitting of Z, as Z = Z0(e)⊕Z 1
2
(e)⊕Z1(e), where

Zk(e) is the k eigenspace of e�e and P0(e) = B(e, e), P 1
2
(e) = 2(e� e − Q(e)Q(e)), and

P1(e) = Q(e)Q(e) are mutually orthogonal projections of Z onto Z0(e), Z 1
2
(e), and Z1(e)

respectively. We say e is maximal if Z0(e) = 0 and minimal if Z1(e) = Ce. Elements
x, y ∈ Z are orthogonal, x⊥y, if x�y = 0 (⇔ y�x = 0 ⇔ {x, x, y} = 0). Z is said
to have finite rank r if every element z ∈ Z is contained in a subtriple of (complex)
dimension ≤ r, and r is minimal with this property. If Z has finite rank r, a frame
is a set {e1, . . . , er} of non-zero pairwise orthogonal minimal tripotents. Every z ∈ Z
then has a unique spectral decomposition, called its Peirce decomposition, z = λ1e1 +
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· · · + λrer, for some frame {e1, . . . , er} and scalars 0 ≤ λ1 ≤ . . . ≤ λr = ‖z‖. A fully
fledged spectral theory exists for JB∗-triples [22]. In particular, for z ∈ Z, the closed
JB∗-subtriple generated by z, denoted Zz, is isometrically J∗-isomorphic to C0(S), for
locally compact S = Sz ⊂ [0, ‖z‖] called the triple spectrum of z, where z is identified
with the map z(s) = s for s ∈ S, and {a, b, c} = abc, for a, b, c ∈ C0(S). The rank of
an element z in Z, rank(z), is defined as the (complex) dimension of Zz. If z⊥w then
rank(z + w) =rank(z)+rank(w). See [29, 22] for details.

1.3 Algebraic Norm on Z

For a JB∗-triple of finite rank r, the norm is equivalent to a Hilbert norm [24, 25], cf [13,
Propositions 9.11, 9.13]. Namely, if z = λ1e1 + · · · + λrer is the Peirce decomposition of
z, for frame {e1, · · · , er} and 0 ≤ λ1 ≤ · · · ≤ λr = ‖z‖ then
‖z‖a :=

√
λ21 + · · ·+ λ2r is a Hilbert norm, referred to as the algebraic norm on Z. Clearly

‖z‖ ≤ ‖z‖a, ‖z‖ = ‖z‖a if, and only if, z is a multiple of a minimal tripotent (rank(z) ≤
1) and ‖x + y‖2a = ‖x‖2a + ‖y‖2a if x⊥y . Since for any Hilbert norm, ‖ · ‖H , if a =
w- limk ak and ‖a‖H = limk ‖ak‖H then a = limk ak. In particular, for any sequence (ak)
in Z

(1) a = lim
k
ak ⇐⇒ a = w- lim

k
ak and ‖a‖2a = lim

k
‖ak‖2a .

1.4 Kobayashi balls as operator balls

The Kobayashi distance, κ, is key to f -invariance. On the ball B of a JB∗-triple Z
κ(z, w) = tanh−1 ‖g−z(w)‖, for z, w ∈ B. Importantly, Kobayashi balls centered at z are
the images of norm balls under automorphism gz ∈ Aut(B).

1.2 Definition. [30, Section 2] The Kobayashi ball about z ∈ B of radius tanh−1 r, for
0 < r < 1, is denoted Dz,r := Bκ(z, tanh−1 r) = gz (B(0, r)), where B(0, r) := {x ∈ B :
‖x‖ < r}.

Kobayashi balls have been shown to display affine structure here.

1.3 Theorem. [30, Results 2.2, 2.3, 2.5] For z ∈ B and 0 < r < 1, Dz,r = c + T (B) ,
where c = (1− r2)B−1rz (z) ∈ B and T = rBzB

−1
rz ∈ GL(Z), for Bz = B(z, z)1/2. Moreover,

Dz,r is convex and if f(z) = z then Dz,r is f -invariant.

If Z is finite rank, Kobayashi balls have more concrete algebraic descriptions, facilitating
calculations via functional calculus. We use [29, Corollary 3.15] to get the following
adaptation of [30, Proposition 2.6].
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1.4 Corollary. Let Z have finite rank r and z = γ1e1 + · · · + γrer be the Peirce decom-
position of z. Then, for δ > 0, Dz,δ = c+ T (B) where

c =
r∑
1

(1− δ2)γiei
1− δ2γ2i

, v =
r∑
i=1

siei and T = δB(v, v)

where si satisfies (1− s2i )2 =
1−γ2i

1−δ2γ2i
, 1 ≤ i ≤ r.

Domains of the form c+T (B) are more generally referred to as operator balls. For proofs
in this section see [30, Section 2].

2 New Results

Let Z be a JB∗-triple with open unit ball B and f : B → B be a compact holomorphic
map having no fixed point in B. Choose (αk)k, 0 < αk < 1, αk ↑ 1 and let fk := αkf for
all k. Then fk has a fixed point, zk, in αkB [14] and, as f is compact, we may assume
zk → ξ ∈ B and hence ξ ∈ ∂B, as otherwise it would be a fixed point of f . [30, Theorem
3.8] proves that whenever

(2) R := lim
k

(1− ‖zk‖2)B−1zk exists in L(Z)

then a Wolff theorem exists and, in particular, for λ > 0

Eλ := {w ∈ B : ‖B−1w B(w, ξ)R‖ < λ}

is a non-empty convex f -invariant subdomain of B with ξ ∈ ∂Eλ. Our first aim is therefore
to show that (2) holds, while our second is to describe Eλ as a simple operator ball. We
recall Bz = B(z, z)1/2 = g′z(0), gz ∈ Aut(B), gz(0) = z, and Bz is invertible ⇔ z ∈ B
[21]. In fact, since ‖B−1z ‖ = 1

1−‖z‖2 [26], the sequence
(
(1− ‖zk‖2)B−1zk

)
k

is contained in

the closed unit ball of L(Z). While compactness in finite dimensions guarantees (2), this
is not the case in infinite dimensions. For this reason, Z will henceforth be of finite rank
r. The norm is then equivalent to a Hilbert norm making B weakly compact [24]. We
must, of course, overcome the significant fact that Jordan properties do not, in general,
pass to weak limits [27].

We begin with the spectral decomposition of ξ, ξ = µ1e1+· · ·+µrer where {e1, · · · , er} is a
frame and 0 ≤ µ1 ≤ · · · ≤ µr = ‖ξ‖ = 1. Let p ∈ {0, . . . , r−1} satisfy µp+1 = · · · = µr = 1
and if p 6= 0 then µp < 1. Then

(3) ξ = e+ v, for e =
r∑

i=p+1

ei where, if p 6= 0, v =

p∑
i=1

µiei (and v = 0 if p = 0).

Then e⊥v, v ∈ B and e ∈ ∂B is the unique tripotent determining the boundary component
of ξ with Kξ = Ke [23]. Moreover p =rank(e).
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Similarly, for k ∈ N , each zk also has Peirce decomposition,

(4) zk = γk1ek1 + · · ·+ γkrekr

where 0 ≤ γk1 ≤ · · · ≤ γkr = ‖zk‖ and {ek1, . . . , ekr} is a frame. Define γi := limk γki
(passing to a subsequence if necessary), for 1 ≤ i ≤ r. Clearly 0 ≤ γ1 ≤ · · · ≤ γr = 1.
Define q ∈ {0, . . . , r − 1} so that γq+1 = · · · = γr = 1 and if q 6= 0 then γq < 1. Write

(5) wk =
r∑

i=q+1

γkieki and, if q 6= 0, xk =

q∑
i=1

γkieki (and xk = 0 if q = 0).

Then

(6) zk = wk + xk wk ⊥ xk, ‖zk‖ = ‖wk‖ = γkr, ‖xk‖ = γkq < α < 1 (some 0 < α < 1).

As B is weakly compact (passing to a subsequence if necessary) (eki)k has a weak limit,
di := w- limk eki in B, for 1 ≤ i ≤ r. As we must marry the weak topology with the triple
product - which is not weakly continuous - effort is both required and justified to establish
certain crucial weak limits as norm limits. As the invariant domains turn out (Theorem
2.7) to depend only on the boundary component of ξ, determined by e = ep+1 + · · ·+ er,
the crucial weak limits will turn out to be dp+1, . . . , dr. Of course, weak limits are not
generally norm limits, but techniques including functional calculus, the algebraic norm
and considerations of rank are used to obtain the first central result below. This theorem
thereafter enables us to revert, more or less, to the norm topology. For clarity, three
lemmata establishing simple facts on the rank of some weak limits, are given after the
Theorem.

2.1 Theorem. With notation as above, then

p = q and ei = di = lim
k
eki, for p+ 1 ≤ i ≤ r.

In particular, e = limk wk and v = limk xk.

Proof. By uniqueness of limits w- limk zk = limk zk = ξ so (3) and (4) give

(7) γ1d1 + · · ·+ γqdq + dq+1 + · · ·+ dr = e+ v.

Fix n ∈ IN and let hn(t) be the odd real polynomial hn(t) = t2n+1. By continuity of the
functional calculus [26, Lemma 2.2] limk zk = ξ implies limk hn(zk) = hn(ξ) = e + v2n+1.
On the other hand, from (4),

hn(zk) = γ2n+1
k1 ek1 + . . .+ γ2n+1

kq ekq + γ2n+1
k(q+1)ek(q+1) · · ·+ γ2n+1

kr ekr

so w- lim
k
hn(zk) = γ2n+1

1 d1 + · · ·+ γ2n+1
q dq + dq+1 · · ·+ dr.
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Therefore e+ v2n+1 = γ2n+1
1 d1 + · · ·+ γ2n+1

q dq + dq+1 + · · ·+ dr and limiting over n gives

(8) e = ep+1 + · · ·+ er = dq+1 + · · ·+ dr = w- lim
k
wk

and hence then from (7) v = γ1d1 + · · ·+ γqdq = w- limk xk.

Now limk ‖wk‖2a = limk

∑r
i=q+1 γ

2
ki =

∑r
i=q+1 γ

2
i = r − q. From (8) e = w- limk wk, so

(9) r − p = ‖e‖2a ≤ lim inf
k
‖wk‖2a = r − q.

Similarly,

(10) ‖v‖2a ≤ lim inf
k
‖xk‖2a = lim

k

q∑
i=1

γ2ki =

q∑
i=1

γ2i .

On the other hand, ξ = limk zk gives

(11) ‖ξ‖2a = lim
k
‖zk‖2a =

(
q∑
i=1

γ2i

)
+ r − q.

From (3), ξ = e+ v for v⊥e so

(12) ‖ξ‖2a = ‖e‖2a + ‖v‖2a.
Combining (11), (12), (9) and (10) we have(

q∑
i=1

γ2i

)
+ r − q = ‖ξ‖2a = ‖e‖2a + ‖v‖2a ≤

(
q∑
i=1

γ2i

)
+ r − q.

Therefore we must have equality in (9) and (10), namely,

p = q, ‖e‖2a = lim
k
‖wk‖2a and ‖v‖2a = lim

k
‖xk‖2a.

Property (1) and (8) then implies e = limk wk and v = limk xk.
Lemma 2.3 below gives di = αiui, for 0 ≤ αi ∈ IR and ui a non-zero minimal tripotent
and (8) becomes

(13) ep+1 + · · ·+ er = αp+1up+1 + · · ·+ αrur.

Moreover, rank(di) ≤ rank(ui) = 1, with equality if, and only if, αi 6= 0, 1 ≤ i ≤ r. From
Lemma 2.4 below rank(dp+1 + · · · + dr) ≤ rank(dp+1) + · · ·+ rank(dr), with equality if,
and only if, di ⊥ dj, p+ 1 ≤ i 6= j ≤ r. Thus (13) gives

r − p = rank(dp+1 + · · ·+ dr) ≤ rank(dp+1) + · · ·+ rank(dr)

≤ rank(up+1) + · · ·+ rank(ur) = r − p

and therefore αi 6= 0 and ui ⊥ uj, for p + 1 ≤ i 6= j ≤ r. In other words, {up+1, · · · , ur}
is a set of (non-zero) mutually orthogonal minimal tripotents. Uniqueness of the Peirce
decomposition and (13) then imply that αp+1 = · · · = αr = 1 and (relabelling if necessary)
ei = ui = di = w- limk eki, p + 1 ≤ i ≤ r. Since 1 = ‖ei‖a = limk ‖eki‖a then (1) implies
ei = limk eki, p+ 1 ≤ i ≤ r and we are done.
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2.2 Lemma. Let Z be a finite rank Cartan factor, (fk) be a sequence of minimal tripo-
tents in Z and d = w- limk fk. Then rank(d) ≤ 1.

Proof. For a description of the Cartan factors see [13, Example 9.2]. Let Z be a finite
rank Cartan factor and d = w- limk fk, where each fk is a minimal tripotent. If Z is of type
II, III, V, or VI and finite rank, then Z is finite dimensional giving d = limk fk and hence
d is a tripotent. Since each fk is minimal, ‖fk‖a = ‖fk‖ for all k and hence ‖d‖a = ‖d‖,
so rank(d) ≤ 1. If Z is of type I or IV, it can be embedded as a subtriple Z ⊂ L(H), for
some Hilbert space H. Assume d 6= 0 and let 0 < t =rank(d) ≤ r. Spectral decomposition
gives d = α1g1 + · · · + αtgt, for real numbers 0 < α1 ≤ . . . ≤ αt = ‖d‖ and {g1, · · · , gt}
a mutually orthogonal set of non-zero minimal tripotents. Let g = g1 + · · · + gt. Then
g is a tripotent and let Z = Z1 ⊕ Z1/2 ⊕ Z0 (Zi = Zi(g)) be the corresponding Peirce
decomposition of Z. As Z ⊂ L(H), for V = ker(g), U = V ⊥, U1 = g(U), V1 = U⊥1 then
H = U ⊕ V = U1 ⊕ V1 and dim(U) = dim(U1) =rank(g) = t. Let z ∈ Z have Peirce
decomposition (with respect to g) z = z1 + z1/2 + z0. Then z can be represented (cf [36,
Example 21.10]) as

z =

[
z1 z12
z21 z0

]
∈
[
L(U,U1) L(V, U1)
L(U, V1) L(V, V1)

]
z1 ∈ Z1, z1/2 = z12 + z21 ∈ Z1/2, z0 ∈ Z0.

In particular, choosing suitable co-ordinates, g =

[
I 0
0 0

]
, and d =

[
d̃ 0
0 0

]
, for I the t× t

identity matrix and d̃ the diagonal matrix with α1, . . . , αt on the diagonal. Note that
dim(d(H)) = dim(g(H)) = t = rank(d), that is, the triple rank and the operator rank

of d coincide here. As above, write fk =

[
fk1 fk12
fk21 fk0

]
. Then d = w- limk fk in Z implies

d̃ = w- limk f
k
1 in L(U,U1). Since L(U,U1) is finite dimensional, this gives d̃ = limk f

k
1 .

L(U,U1) may be identified with the set, Mt, of all t × t matrices, where if A = limk Ak
in Mt then rankM(A) ≤ limkrankM(Ak), where rankM(A) denotes the usual matrix (or

operator) rank of A. Therefore t =rankM(d̃) ≤ limk rankM(fk1 ) ≤ limk rankM(fk) ≤ 1, as
each fk is a minimal tripotent and we are done.

2.3 Lemma. Let Z be a finite rank JB∗-triple, (fk) be a sequence of minimal tripotents
in Z and d = w- limk fk. Then rank(d) ≤ 1.

Proof. By [24, 25, 15] every finite rank JB∗-triple is isometrically isomorphic to an
l∞ direct sum of finite rank Cartan factors. Thus Z =

⊕∞
i∈I Ci , where for each i ∈ I, Ci

is a finite rank Cartan factor, and ‖z‖ = supi ‖zi‖, for z = (zi)i, zi ∈ Ci. Let now d =
w- limk fk, where each fk is a minimal tripotent in Z. Then di = w- limk(fk)i ∈ Ci, i ∈ I.
We note that, by minimality, each fk has at most one non-zero component, namely, if
(fk)i 6= 0 then (fk)i is a minimal tripotent in Ci and (fk)j = 0 for all j 6= i.
Assume that d 6= 0. Then di 6= 0 for some i ∈ I. Fix this i. As di = w- limk(fk)i ∈ Ci
then 0 < ‖di‖ ≤ lim infk ‖(fk)i‖. Thus there exists K ∈ IN such that for k > K, (fk)i 6= 0

8



P. Mellon A Wolff Theorem

and hence (fk)i is a minimal tripotent in Ci and (fk)j = 0 for j 6= i. Lemma 2.2 then
implies di is a multiple of a minimal tripotent, say gi in Ci. On the other hand, for j 6= i,
dj = w- limk(fk)j = 0 from above. In other words, d has at most one non-zero component
di = αigi and we are done.

2.4 Lemma. With di = w- limk eki as in (4) earlier, then

rank(dp+1 + · · ·+ dr) ≤ rank(dp+1) + · · ·+ rank(dr)

with equality if, and only if, di ⊥ dj for all p+ 1 ≤ i 6= j ≤ r.

Proof. Z =
⊕∞

i∈I Ci, Ci a finite rank Cartan factor, and rank(z) =
∑

i∈Irank(zi) (at
most finitely many terms in this sum are non-zero) for z = (zi)i, zi ∈ Ci. Fix i ∈ I.
(i) For Ci finite rank of type II, III, V or VI: as Ci is finite dimensional, (dn)i =
w- limk(ekn)i implies (dn)i = limk(ekn)i and hence {(dn)i, (dn)i, (dm)i} = limk{ekn, ekn, ekm}i =
0 since ekn ⊥ ekm, for 1 ≤ n 6= m ≤ r and all k. Thus, (dn)i ⊥ (dm)i, 1 ≤ n 6= m ≤ r and
therefore rank((dp+1)i + · · ·+ (dr)i) = rank((dp+1)i) + · · ·+ rank((dr)i).
(ii) For Ci finite rank of type I or IV: as in Lemma 2.2, Ci ⊂ L(H), for some Hilbert space
H. From Lemma 2.2, rank((dn)i) ≤ 1, 1 ≤ n ≤ r. Therefore
rank((dp+1)i + · · ·+ (dr)i) ≤ rank((dp+1)i) + · · ·+ rank((dr)i) with equality if, and only if,
(dn)i ⊥ (dm)i, for all p+ 1 ≤ n 6= m ≤ r, cf [19].

Hence, rank(dp+1 + · · ·+ dr) =
∑
i∈I

rank((dp+1)i + · · ·+ (dr)i)

≤
∑
i∈I

rank((dp+1)i) + · · ·+ rank((dr)i) (from (i) and (ii) above)

= rank(dp+1) + · · ·+ rank(dr)

with equality if, and only if, (dn)i ⊥ (dm)i for all i ∈ I, namely, dn ⊥ dm, p + 1 ≤ n 6=
m ≤ r.

We return now to (2) and use spectral theory to get an alternative description of B−1z .

2.5 Theorem. Let z ∈ B. Then B−1z = B(q, y), where q = z√
1−|z|2

and y = −z
1+
√

1−|z|2

are calculated in Zz. In addition,

(14) ‖q‖ =
‖z‖√

1− ‖z‖2
and ‖y‖ =

‖z‖
1 +

√
1− ‖z‖2

.

In particular, ‖y‖ ≤ ‖z‖ so y ∈ B.

Proof. Fix z ∈ B and let S := Sz ⊆ [0, ‖z‖] ⊂ [0, 1) be the triple spectrum of z so that
Zz ∼= C0(S) with z(s) = s, s ∈ S. Consider real odd functions q and y in C0(S), given by

(15) q(s) =
s√

1− s2
, y(s) =

−s
1 +
√

1− s2
, and (1− q(s)y(s))2 =

1

1− s2
, s ∈ S.

9
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Then q, y ∈ Z and restricting maps B(q, y) and B−1z in L(Z) to the subspace Zz ∼= C0(S)
gives, from (15)

B(q, y)(x)(s) = (1− q(s)y(s))2x(s) =

(
1

1− s2

)
x(s) = B−1z (x)(s), for x ∈ C0(S), s ∈ S.

Therefore B−1z and B(q, y) agree on Zz and since B−1z is uniquely determined by its action
on Zz [26, Proposition 2.5, Theorem 3.5], we have B−1z = B(q, y) in L(Z). Since q and
−y are both strictly increasing on S, it follows that ‖q‖ = q(‖z‖) and ‖y‖ = ‖ − y‖ =
−y(‖z‖).

The next result is a useful linearisation of [31, Lemma 2.5].

2.6 Lemma. Let a⊥b in Z. Then
Ba+b = Ba ◦Bb in L(Z). In particular, Ba and Bb commute.

Proof. Let a⊥b ∈ B. [31, Lemma 2.5] implies ga+b = ga ◦ gb = gb ◦ ga. As g′a(z) =
BaB(z,−a)−1 this gives Ba+b = g′a+b(0) = g′a(b) ◦ g′b(0) = g′b(a) ◦ g′a(0). In other words,
Ba+b = Ba◦B(b,−a)−1◦Bb = Bb◦B(a,−b)−1◦Ba. As a� b = 0, the Jordan triple identity
implies Q(a)Q(b) = 0 so that B(a,−b) = B(b,−a) = I.

The following result shows that property (2) holds and therefore, by [30, Theorem 3.8], a
Wolff theorem exists for all finite rank triples.

2.7 Theorem. Let Z be a finite rank JB∗-triple. Let e =
∑r

p+1 ei be the unique tripotent
determining the boundary component of ξ. Then

R = lim
k

(1− ‖zk‖2)B−1zk = Q(u)Q(u), for u ∈ ∂B given by u =
r∑

i=p+1

a
1/4
i ei,

where ai = limk
1−γ2kr
1−γ2ki

, 1 ≤ i ≤ r.

Proof. Since (6) zk = wk + xk, wk ⊥ xk and ‖zk‖ = ‖wk‖, Lemma 2.6 gives Bzk =
Bwk
◦Bxk = Bxk ◦Bwk

and hence

lim
k

(1− ‖zk‖2)B−1zk = lim
k

(1− ‖wk‖2)B−1xk B
−1
wk

= lim
k

(1− ‖wk‖2)B−1wk
B−1xk .

The map x → B−1x is continuous on B and since, from Theorem 2.1, v = limk xk ∈ B
then limk B

−1
xk

= B−1v and hence

(16) lim
k

(1− ‖zk‖2)B−1zk = B−1v

(
lim
k

(1− ‖wk‖2)B−1wk

)
=
(

lim
k

(1− ‖wk‖2)B−1wk

)
B−1v .

10
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Fix k ∈ N . Theorem 2.5 gives B−1wk
= B(qk, yk), for qk = q(wk) and yk = y(wk) and hence

(1− ‖wk‖2)B−1wk
= (1− ‖wk‖2)I − 2(1− ‖wk‖2)qk �yk + (1− ‖wk‖2)Q(qk)Q(yk).

From (14)

‖qk �yk‖ ≤ ‖qk‖‖yk‖ =
‖wk‖2

(
√

1− ‖wk‖2)(1 +
√

1− ‖wk‖2)
≤ 1√

1− ‖wk‖2
.

In particular, ‖(1− ‖wk‖2)qk �yk‖ ≤
√

1− ‖wk‖2 →k 0 and hence

(17) lim
k

(1− ‖wk‖2)B−1wk
= lim

k
Q(
√

1− ‖wk‖2qk)Q(yk).

By Theorem 2.1, limk wk = e. Now y ∈ C[0, 1] so by continuity of the functional calculus
[26] limk yk = limk y(wk) = y(e) = −e and hence limkQ(yk) = Q(−e) = Q(e). Since q is
not continuous at 1, we cannot use the same method for qk. From (5) and Theorem 2.1
wk =

∑r
i=p+1 γkieki and ‖wk‖ < 1 so [26, Theorem 3.5]

qk = q(wk) =
r∑

i=p+1

q(γki)eki =
r∑

i=p+1

γki√
1− γ2ki

eki.

Therefore √
1− ‖wk‖2q(wk) =

√
1− γ2krq(wk) =

r∑
i=p+1

√
1− γ2kr
1− γ2ki

γkieki.

Passing to a subsequence if necessary, consider the real limit

(18) ai := lim
k

1− γ2kr
1− γ2ki

∈ [0, 1], for 1 ≤ i ≤ r.

Then 0 = a1 = · · · = ap ≤ ap+1 ≤ · · · ≤ ar = 1. Theorem 2.1 then gives

lim
k

√
1− ‖wk‖2q(wk) =

√
ap+1ep+1 + . . .+

√
ar−1er−1 + er.

Let x :=
√
ap+1ep+1 + . . .+

√
ar−1er−1 +er. Continuity of the triple product and (17) gives

limk(1−‖wk‖2)B−1wk
= Q(x)Q(e) and hence (16) gives limk(1−‖zk‖2)B−1zk = B−1v Q(x)Q(e).

For i 6= j, ei⊥ej and applications of the triple identity give 0 = Q(ei)Q(ej) = Q(ei){ei, ·, ej} =
{ei, Q(ej)(·), ej}. Expanding thus gives Q(x)Q(e) = Q(u)Q(u) for u =

∑r
p+1 ai

1/4ei. As
ar = 1, u ∈ ∂B. As v⊥ei for p + 1 ≤ i ≤ r, so v⊥ u and hence Zv ⊥ Zu. From Theorem
2.5 B−1v = B(q, y), for q = q(v), y = y(v) ∈ Zv and therefore q, y ⊥ u. The triple identity
then yields

q�y ◦Q(u)Q(u) = 0 and Q(q)Q(y)Q(u)Q(u) = 0.

In other words, B−1v = B(q, y) restricts to the identity map on the subspace Q(u)Q(u)Z
and therefore

lim
k

(1− ‖zk‖2)B−1zk = B−1v Q(u)Q(u) = Q(u)Q(u).

11
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Our main result below is now a Wolff theorem which provides explicit descriptions of f -
invariant subdomains of B in terms of invertible linear maps expressed solely in terms of
the triple product. These convex f -invariant domains have the affine structure of operator
balls and exist at all points of B.

2.8 Theorem. Let Z be a finite rank JB∗-triple with open unit ball B. Let f : B → B
be a compact holomorphic fixed-point free map. Then there exists e ∈ ∂B, such that for
all λ > 0, there is cλ ∈ B and Tλ ∈GL(Z) such that the operator ball

Eλ = cλ + Tλ(B)

is a convex f -invariant domain in B containing e in its boundary.
Moreover, for each y ∈ B, there is λy > 0 with y ∈ ∂Eλy .

To be precise, let e be the unique tripotent in the boundary component of ξ and let
e = e1+ · · ·+es be its Peirce decomposition. Then there are scalars 0 ≤ a1 ≤ . . . ≤ as = 1
such that

cλ =
s∑
i=1

(
ai

ai + λ

)
ei, vλ =

s∑
i=1

siei, and Tλ = B(vλ, vλ)

where si satisfies (1− s2i )
2

= λ
ai+λ

, 1 ≤ i ≤ s.

In particular, e = cλ + Tλ(e) ∈ ∂Eλ, for all λ > 0.

Proof. With notation as earlier, Theorem 2.7 proves that condition (2) is satisfied with

R = limk(1 − ‖zk‖2)B−1zk = Q(u)Q(u), where u =
∑r

p+1 a
1/4
i ei ∈ ∂B, for ai = limk

1−γ2kr
1−γ2ki

,

1 ≤ i ≤ r (0 = a1 = · · · = ap ≤ ap+1 ≤ · · · ≤ ar = 1). Fix λ > 0 arbitrary. Theorem 3.8
of [30] then gives that

Eλ = {w ∈ B : ‖B−1w B(w, ξ)R‖ < λ}

is f -invariant and, in addition, is the limit of the sequence of Kobayashi balls

Dk := D(zk, rk), for rk :=
√

1− (1−‖zk‖2)
λ

, namely,

if z ∈ Eλ then z ∈ Dk for all k large and, conversely,

if z ∈ Dk for all k large, then z ∈ Eλ.
(19)

Corollary 1.4 gives Dk = ck + Tk(B) for

ck =
r∑
i=1

(
1− r2k

1− r2kγ2ki

)
γkieki, vk =

r∑
i=1

skieki and Tk = rkB(vk, vk),

where ski satisfies (1 − s2ki)2 =
1−γ2ki

1−r2kγ
2
ki
, 1 ≤ i ≤ r. The following real limits have been

computed in [30, Theorem 3.10], namely,

(20) lim
k

(
1− r2k

1− r2kγ2ki

)
=

ai
ai + λ

and lim
k

1− γ2ki
1− r2kγ2ki

=
λ

ai + λ
, 1 ≤ i ≤ r.

12
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Then si := limk ski satisfies (1− s2i )
2

= λ
ai+λ

, 1 ≤ i ≤ r, and ai = si = 0, for 1 ≤ i ≤ p.
Let now

cλ :=
r∑

i=p+1

(
ai

ai + λ

)
ei, vλ :=

r∑
i=p+1

siei and Tλ := B(vλ, vλ).

Theorem 2.1 gives limk eki = ei, for p+ 1 ≤ i ≤ r and therefore

cλ = lim
k
ck, vλ = lim

k
vk and Tλ = lim

k
Tk.

Clearly cλ, vλ ∈ B so T ∈ GL(Z) [21]. For convenience, we relabel ep+1, . . . , er as e1, . . . , es
for s = r − p and relabel ai, si similarly.
For y ∈ B, let λy := ‖B−1y B(y, ξ)R‖. Then y ∈ ∂Eλy . The proof that Eλ = cλ + Tλ(B)
we remove for clarity to Proposition 2.9 below. Eλ is clearly then convex and non-empty.
Direct calculation gives e = cλ + Tλ(e), so that e ∈ ∂Eλ.

2.9 Proposition.
Eλ = cλ + Tλ(B) for all λ > 0.

Proof. All notations are as in Theorem 2.8. Fix λ > 0 and let c := cλ and T := Tλ.
Let E := Eλ and G := c + T (B) = {w ∈ B : ‖T−1(w − c)‖ < 1}. We note that
Dk = ck + Tk(B) = {w ∈ B : ‖T−1k (w − ck)‖ < 1}, for all k. We write Ao for the interior

of the set A. Invertibility of T gives (G)
o

= (c+ T (B))
o

= c+ T ((B)
o
) = c+ T (B) = G.

Let z ∈ E. From (19) then z ∈ Dk and hence ‖T−1k (w − ck)‖ < 1‖ for all k large, so that
‖T−1(w − c)‖ ≤ 1 giving z ∈ c+ T (B) = G. In other words, E ⊆ G and since E is open

(21) E ⊆ (G)
o

= G.

In the opposite direction, let x ∈ G so that ‖T−1(w − c)‖ < 1 and hence, for k large,
‖T−1k (w−ck)‖ < 1 and x ∈ Dk. Then (19) gives x ∈ E so that G ⊆ E. Write x = c+T (y),
some y ∈ B and choose ε > 0 such that B(y, ε) ⊂ B. Then

(22) c+ T (B(y, ε)) ⊆ G ⊆ E.

Let ν = ε
‖T−1‖ and fix any z, ‖z‖ < ν. Let u = z

ε
and w = T−1(u). Then z = εT (w), for

‖w‖ < 1. In particular, x + z = c + T (y + εw) ∈ E from (22). Thus B(x, ν) ⊂ E and
hence x ∈ E. In other words G ⊆ E and from (21) then E = G.
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