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Social relationships consist of interactions along multiple dimen-
sions. In social networks, this means that individuals form multiple
types of relationships with the same person (an individual will not
trust all of his/her acquaintances, for example). Statistical models for
these data require understanding two related types of dependence
structure: (i) structure within each relationship type, or network view,
and (ii) the association between views. In this paper we propose a
statistical framework that parsimoniously represents dependence be-
tween relationship types while also maintaining enough flexibility
to allow individuals to serve different roles in different relationship
types. Our approach builds on work on latent space models for net-
works (see Hoff et al. (2002), for example). These models represent
the propensity for two individuals to form edges as conditionally
independent given the distance between the individuals in an unob-
served social space. Our work departs from previous work in this
area by representing dependence structure between network views
through a Multivariate Bernoulli likelihood, providing a representa-
tion of between-view association. This approach infers correlations
between views not explained by the latent space model. Using our
method, we explore 6 multiview network structures across 75 villages
in rural southern Karnataka, India (Banerjee et al., 2013).

1. Introduction. Understanding structure in social networks is essen-
tial to appreciating the nuances of human behavior and is an active area
of research in the social sciences. Typically, human interactions occur on
multiple dimensions. Individuals may be friends and co-workers, for ex-
ample. The same individuals may also share membership in the same
religious or professional organization. In this paper, we present a statis-
tical model designed to glean structure from social network data collected
about multiple relationships, or views. Our model builds on an active line
of literature (see Hoff et al. (2002)) which uses low-dimensional geometric
projections to represent the (likely high-dimensional) dependence struc-
ture in network data. We draw on recent and classic work on models for
multivariate binary data to encode dependence between network views in
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2 SALTER-TOWNSHEND AND MCCORMICK

the likelihood. This approach models dependence within a network view
using the latent space model, while also expressing association between
network views.

In particular, we address two primary statistical challenges.

1. First, our model must represent dependence structure within each
view. A fundamental challenge in analyzing social network data
arises because dependence between individuals” responses violates
independence assumptions underlying traditional models. We wish
to model the dependence that is unique to each relation.

2. Second, we wish to model associations between views. Conditional
on the structure within a particular view, our model should also rep-
resent dependence between tie probabilities across views. We require
this summary to be parsimonious so that we can easily compare
structure across multiple similar multiview networks.

Our approach to addressing these challenges is motivated by data, pre-
sented in Section 1.1, consisting of social and financial relationships be-
tween households in 75 villages in India. Village composition differs on
several key observed covariates, including religion, language and ethnic-
ity. For a given village, we would like to understand how these covari-
ates relate to different types of relationships. Recent work in the United
States (e.g. DiPrete et al. (2011)), compares polarization in two network
views: core association networks and broader acquaintanceship networks.
DiPrete et al. (2011) write, for example, that “acquaintanceship networks
are at least as segregated as are core networks.” The Karnataka data con-
tains a much more diverse set of views that were available to DiPrete et
al. (2011). It is possible to explore, for example, how homophily based
on religion in social relationships compares to the level of polarization in
practical relationships such as lending goods.

The Karnataka data also present a unique opportunity to explore struc-
ture between villages. Since communication between villages is negligible,
these data can be conceptualized as multiple “realizations” of a population-
level model of social network formation. Using this “n = 75 sample” of
networks, then, we would like to compare structure across villages, partic-
ularly as this structure relates to observable covariates and the relationship
between views. Though it is rare to observe multiple nearly independent
networks, we contend that this perspective applies more broadly to large
graphs comprised of multiple, weakly connected communities.

Given the richness of these data, we propose a model that represents
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LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA 3

structure on multiple scales. The substantive questions of interest differ
depending on the scale of analysis. At the finest level, within a single
view in a given village, our goal is to understand the dynamics of social
structure as a function of observed household demographic differences.
At the next level, we wish to understand associations across views for a
given village. To truly leverage the richness of this data, we also require
a measure that compares relations between views across villages. At this
highest level we would also like to understand how associations between
views differ based on observable village characteristics.

With these data in mind, we now return to the challenges that arise
when modeling both within and between view structure. We also present
relevant related work. First, a key statistical challenge for modeling so-
cial network data (either with multiple views or a single view) is repre-
senting the likely high dimensional dependence structure in the data in a
parsimonious and interpretable way. This dependence occurs because the
propensity for any two individuals to form a network relation, or edge,
depends on the other edges in the network. A common network property
known as transitivity, for example, implies that “a friend of a friend is
likely a friend.” This feature of network data means that statistical models
developed for independent observations are not appropriate. One mod-
eling approach, the latent space model (Hoff et al., 2002), represents this
high-dimensional structure through a projection onto a lower dimensional
latent social space. The latent social space, according to Hoff et al. (2002),
represents “the space of unobserved latent characteristics that represent
potential transitive tendencies in network relations.” The geometry of the
social space becomes a modeling decision with substantive consequences.
A latent space defined with a geometry and distance measure that satisfy
the triangle inequality, for example, encodes transitivity. Since Hoff et al.
(2002) proposed the latent space model for network data, the framework
has been adapted to include model-based clustering (Handcock et al., 2007;
Krivitsky et al., 2009) and indirectly observed network data (McCormick
and Zheng, 2012). Variational approximations also facilitate using the la-
tent space approach on larger networks (Salter-Townshend and Murphy,
2013).

Perhaps the closest alternative to the latent space approach are the vari-
ous stochastic blockmodel methods. In the simplest stochastic blockmodel,
each node belongs to a block or group; there are a low number of blocks
and the probability of an edge between two nodes depends on the block
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4 SALTER-TOWNSHEND AND MCCORMICK

memberships of the nodes. Each pair of blocks has a fixed rate of edge
formation between them and each block also has an internal edge forma-
tion rate. Inference then concentrates on learning the block membership
vectors of each node rather than the latent positions that is our focus. The
mixed-membership stochastic blockmodel (MMSB) introduced by Airoldi
et al. (2008) extends this model so that the nodes select from a probability
of block membership vector for each potential node formation; thus they
exhibit membership of different blocks when interacting with different
other nodes. Airoldi et al. (2008) demonstrate fast approximate variational
Bayesian inference for the model. This model has been shown to fit well
to a wide variety of real world network dataset, including document net-
works (Chang et al., 2010) and protein-protein interactions (Airoldi et al.,
2006). The latent position cluster model (Handcock et al., 2007) extension to
the latent space model is perhaps closest of all to the stochastic blockmodel
as the cluster memberships, cluster-specific spreads and inter-cluster dis-
tances correspond closely to the block memberships, internal rate of edge
formation and inter-block edge formation rates respectively. Latent space
models necessarily cluster together actors with connections to each other
(affiliation) but the stochastic blockmodel is more flexible in that low inter-
nal edge formation rates can be chosen so that there are fewer intra-block
than inter-block edges. We choose to pursue the latent space model here
as we wish to enforce affiliation and because of the high transitivity exhib-
ited by the networks in our motivating dataset, however we believe that
extension of the MMSB to the multiview setting in a similar way to this
paper would be both straightforward and interesting.

The second main statistical challenge in modeling multiview network
data arises when considering the relationship between different types of
network connections. We focus again on latent space models and review
recent statistical work for multiview data in detail in Section 2. We can
summarize this rapidly growing literature as two general approaches. The
first set of methods accounts for multiple relations through additional
structure in the latent space. This approach amounts to adding additional
structure to the residual term. A second approach focuses on the data, us-
ing low dimensional representations of similarity to construct “aggregate”
networks.

We present an alternative, fundamentally different, approach to model-
ing the relationship between network views. More formally, we model the
vector of responses for each pair of individuals as arising from a distribu-
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LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA 5

tion, which we refer to as the Multivariate Bernoulli Distribution (MVB),
for multivariate binary data. We note that this model differs from a multi-
nomial representation because individuals are allowed (and in some cases
expected) to have ties across multiple views, meaning the marginal tie
probabilities across all views are not restricted to sum to one (or any other
total). To account for dependence between dyads, we use a conditional
latent space model for each network view. This combination provides a
parsimonious representation of the association between views while also
encoding network structure within each view. A simple representation of
association between views is essential in our case to represent patterns of
associations across the 75 villages.

There is an extensive literature on statistical models for multivariate bi-
nary data. The model we present is most related to work arising from
classical literature in loglinear models (see Cox (1972), for example). The
likelihood framework we present was first described in this literature, then
presented again recently in Dai et al. (2013) where the authors prove sta-
tistical properties of the MVB distribution. These models are described,
among other places, in the seminal text of Bishop et al. (1975) and more
recently in Wakefield (2013).

Previous work has also explored multivariate likelihoods for network
data. Fienberg et al. (1985), for example, model multiview network data
using a generalization of the p; models presented in Holland and Lein-
hardt (1981). Our approach differs from this earlier work in the way that
we represent structure in the network, opting for the more flexible latent
space representation rather than parameterizing in terms of network at-
tributes. The p; model also explicitly includes both sender and receiver
effects and, thus, is designed for directed networks. Our main motivating
example for this work, presented in the next section, is undirected. Fien-
berg et al. (1985) also focus on data which fall in to natural, labelled sub-
groups, which we do not expect a-priori in our case. Additionally, our main
focus in this work is on the relationship between network views. Despite
modeling multiview structure, the Fienberg et al. (1985) model does not
provide a simple representation for between-view dependence. To further
explore the relationship between our work and the Fienberg et al. (1985)
model, we would like to fit both models to the same data. As mentioned,
this is not possible using the data which motivate our work. We instead
provide a comparison using an alternate data source, the Sampson (1969)
data used in the Fienberg et al. (1985) paper, in the Online Supplement.
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6 SALTER-TOWNSHEND AND MCCORMICK

More recent work (Pattison and Wasserman, 1999) includes additional
network features, but compares similarly. They note that “there is a likely
dependence between different ties linking any given pair of individuals.
The essence of the claim is that the presence of one type of tie between
individuals is likely to affect the presence of other types of tie.” They
discuss various options for modeling such dependence and, like us, they
employ conditional log-odds models albeit in the context of p* or Expo-
nential Random Graph Models (ERMGs). The key element in modeling
non-independent multiview networks in Pattison and Wasserman (1999) is
to model a p* for each pair of intersecting views as well as each individual
view. They condition on the complement adjacency matrix for each view
at each dyad ij (that is the sociomatrix with entry ij set to undefined) and
proceed using maximum pseudolikelihood estimation (MPLE; see Robins
et al. (2007) or Strauss and Ikeda (1990) for the original work). This infer-
ence is performed jointly for all views with the change in network sum-
mary statistics calculated simultaneously for both individual views and
the intersecting pairs that include that view. This approach produces a
“multiplexity” coefficient that is similar to our between-view association
parameter. They note that “the small frequency of BN N ties implies that
the MPLE of its corresponding parameter is likely to have a large standard
error.” Further, their framework estimates the overall level of “multiplex-
ity” in the array. In our example we wish to disentangle the relationships
between specific view, which we could not accomplish with a single over-
all measure of association.

Another possible approach for modeling these data arises through fac-
torization. Using recent work such as Hoff (2011a) or Hoff (2011b), we
could view these data as multiway arrays. A low rank approximation to
the array, then, would provide insights about social structure. This ap-
proach is again fundamentally different from our work in that we model
between view dependencies as part of the likelihood, rather than as part of
the latent structure. In their example with longitudinal relational data, for
example, Hoff (2011a) model the relations between actors at a given time
using a conditionally independent ordered probit likelihood. Instead, we
opt to view relations within a view as conditionally independent, but ex-
plicitly model association structure between views in the likelihood. This
distinction provides guidelines for the use of both models. Hoff (2011a)
states the model components associated with multiview structure are de-
signed to capture “heterogeneity” across views. The goal of our approach,
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LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA 7

in contrast, is modeling “association” between views. Hoff (2011a) has
a rich set of covariates about nodes (nations in that case) and multiview
structure that arises from networks observed at multiple time points, a sit-
uation where ascertaining variation could be the main goal. In our case,
however, we have a rich set of village-level covariates and wish to under-
stand how those characteristics relate to associations between views.

In the remainder of this section, we present details of data collected as
part of a micro finance experiment in Karnataka, a state in southern In-
dia. We are interested in a joint characterization of between network view
dependencies and within network view structure. Section 2 presents re-
cent work on latent space models for networks, providing further context
for our proposed novel model, which is described in Section 3. We imple-
ment our model on the Karnataka data in Section 4. Section 5 provides a
discussion and addresses future challenges.

1.1. Multiview network data from Karnataka, India. We examine data con-
sisting of multiple network views collected from 75 villages in rural south-
ern Karnataka, India. The data were collected as part of a micro finance
experiment and, thus, contain both views related to social and familial
interactions (being in the same family or attending temple together, for
example) and views related to economic activity (lending money or bor-
rowing rice/ kerosine, for example). All data in this example are undi-
rected (i.e. the adjacency matrices are symmetric). Work in the economics
literature has addressed the importance of the relationship between these
views in outcomes such as sharing risks or exchanging favors. Jackson et
al. (2012), for example, construct a measure of social support in each view
and compare the relative level of support provided by each view within
the same village. Jackson et al. (2012), find that their measure of support
is consistently (72 out of 75 villages studied) higher for closer social re-
lationships (such as visiting) than for “intangible” relationships (such as
attending the same temple).

For each village, data consist of a census of all households in the vil-
lage and detailed network information from a subset of village members.
Villages range in size from about 350 members to about 1800, correspond-
ing to approximately 75 to 350 households. Villages vary substantially in
terms of wealth, religion, and language. Bharatha Swamukti Samsthe (a
microfinance institution) identified these villages as places it planned to
begin operations, with rollout happening during the data collection pe-
riod. Data about participation in the microfinance program can be linked
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F1cG 1. Social networks within a village. Actors are arranged in identical order around the outside
of the graphs with lines representing edges on a given relationship.

to the household census.

One of our goals is to describe the dependence structure between these
various types of relationships between individuals. To illustrate the com-
plexity of this task, Figure 1 shows the six network views we will model
for one village. These views arise by collapsing the twelve views in the
data into six major categories (see Section 4). Actors are arranged in the
same order around all panels. The views differ in terms of both volume
and structure. The graph representing family, for example, is as expected
relatively sparse in this village. The panel representing social interactions,
however, is quite dense. Describing structure across the views is also chal-
lenging. There are some persistent interactions, indicated most clearly in
Figure 1 by the persistent horizontal lines about one-third of the way down
the circles. A large portion of individuals, however, interact with one an-
other on only some subset of these relations. Furthermore, each view has
its own dependence structure with broad network properties, such as tran-
sitivity, playing different roles in each view. There is also considerable
variability across villages.

2. Latent space models for network data. In this section we review
a substantial literature in latent space models for networks. We begin by
presenting the latent space model for a single network view. We then pay
particular attention to latent space approaches to multiview network data.

imsart-aoas ver. 2013/03/06 file: perp_ls_paper_revise_R4_vl.tex date: April 24, 2016



LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA 9

2.1. Models for a single relation. Although our model for multiple net-
work views can be used to extend any statistical model for single view
networks, we will introduce it with the latent space suite of models. We
therefore frame our discussion entirely in this setting. The latent space
model for networks (Hoff et al., 2002) assumes that the propensity for pairs
of actors to form edges is conditionally independent given the positions
of the actors in an unobserved low dimensional social space. That is for
actors i and j with latent position vectors z; and z; and with a network
density «,

P(i — jlo,zi,zj) « f(z;,zj, ).

If y;j = 1 in the presence of an edge from i to j and y;; = 0 in the absence
of an edge from i to j, then we model the data using a logistic regression
model with the latent space having a Euclidean distance measure;

POYD, ... YRy, 7) = H(logirl(a—yzi—z]-y))y”
ij

1y,
X (1 —logit ' (a — |z; — zj])) "

Note that the likelihood is effectively a Bernoulli likelihood for each link
and that these are conditionally independent given the latent space posi-
tions and density parameter.

2.2. Models for multiple relations. Consider now the case where yfjr) =1
if there is a edge from i to j on relation r, with data onr = 1,...,R
and R > 1. We assume that the relations are distinct, though in practice
dependent since they are all realizations given one particular set of actors.

We might choose to model all views separately and sequentially (in-
dependence model), collapse all views into an single aggregate network
or model all views as depending on the same underlying latent space
variables. The aggregation model and the dependence model are closely
related; in the aggregation model if any y(lr]) = 1 then the aggregated y;; = 1
r

whereas in the dependence model all y;;° are included in the likelihood.
Our proposed method is one of several emerging approaches to handle
multiple view networks that look to compromise between the two ex-
tremes of fully dependent and fully independent network views. We also
briefly discuss two other emerging methods for modelling multiple view
networks in this section, one of which also uses the latent space approach
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and one that does not. We argue that our approach provides the clearest
and most interpretable estimate of the inter-view dependence.

Independence model. Each relationship has its own, independent, latent
space.
mwQ“VWWMQZW)::Eﬂgﬁ%ﬁ%ﬂﬂ—w”—#myy
71—y
(1 — logit 1 (al”) — ]zl@ - z](.y)])> "
Note that inference on each view r may be performed independently.

Dependence model. Under this model the unobserved social structure is
the same for all relations. That is,

(r)
PO, YWl ) = TITT (logit™(a ~ =i~ =)
oo,

71—y
(1 - togit™" (2 — |z — 7)) W

Aggregation model. Under this model the various network views are col-
lapsed to a single view such that if any yl(jr) = 1 then the aggregated
7ij = 1, otherwise 7;; = 0. Again, a single latent space is used to model the
probability of a link.

PYDW,. .., YR, z) = H(logit_l(oc—\zi—zj\))yij
ij
1—3;
(1 —logit ™ (a« — |z; — z]-|)> Y ,

with

__J0 @25:1%@:0
SR @Zf_wigf)ﬂ

Unified Graph Representation. Greene and Cunningham (2013) propose the
creation of an aggregated single relation network based on the combina-
tion of the k-nearest neighbour sets for users derived from each network
view. This is more sophisticated than the simple aggregation. In Greene
and Cunningham (2013) the algorithm to create the aggregated network is
given as:

imsart-aoas ver. 2013/03/06 file: perp_ls_paper_revise_R4_vl.tex date: April 24, 2016
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1. For each view j = 1 to R, compute a similarity vector 7;; between u;
and all other users present in that view, using the similarity measure
provided for the view.

2. From the values in j;;, produce a rank vector of all other (n — 1) users
relative to u;, denoted §;;. In cases where not all users are present in
view j, missing users are assigned a rank of (1} + 1), where } is the
number of users present in the view.

3. Stack all R rank vectors as columns, to form the (n — 1) x R rank
matrix S;, and normalise the columns of this matrix to unit length.

4. Compute the SVD of S!, and extract the first left singular vector.
Arrange the entries in this vector in descending order, to produce a
ranking of all other (n — 1) users. Select the k highest ranked users
as the neighbour set of u;.

Unlike our proposed method, the approach does not yield a clearly in-
terpretable estimate of associations between the network views. This is of
primary interest in our motivating problem of the Karnataka dataset.

Latent space joint model. Gollini and Murphy (2014) jointly models multi-
ple network views by assuming that the probability of a node being con-
nected with other nodes in each view is explained by a unique latent vari-
able. This is the closest in spirit to the model we propose here insofar
as it extends the latent space model to the multiple view setting. Unlike
our proposed method, the approach does not yield a clearly interpretable
estimate of associations between the network views. There are per-view
network density scalar parameters a and a single latent space to model
the underlying network structure. They employ a variational Bayesian al-
gorithm to perform approximate Bayesian inference in the spirit of Salter-
Townshend and Murphy (2013). The algorithm first finds estimates ob-
tained from fitting a latent space to each network view independently.
These are then used to find the joint posterior distribution of the “Latent
Space Joint Model”. These results are then used to update the parameter
estimates of each views Latent Space Model and this process is iterated
until convergence. Note that Gollini and Murphy (2014) use the square of
the Euclidean distance as it gives proportionally higher probability of a
link between two nodes that are close than the usual Euclidean distance.
It also requires one less approximation to be made to the log-likelihood
in their Variational Bayes algorithm. We repeat the choice here for similar
reasons.
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Graph Correlation. Butts and Carley (2005) describe a method for measur-
ing the correlation between multiple networks defined on the same nodes.
As our interest lies in estimating the relationships between the multiple
views in the Karnataka dataset, this simple calculation is close to what we
want. However, as Appendix A shows, this is not the same as the correla-
tions we model in the next section.

The difference is that the raw graph correlations of Butts and Carley
(2005) are marginal whereas the correlations we ultimately report are from
a joint model including a latent space model for each network view and are
thus conditional upon the latent transitive structure inherent in each view.
The graph correlations are averaged across these latent network topologies
and are heavily influenced by them. Appendix A discusses the differences
in more detail but the basic intuition is that our method and the graph cor-
relations will be closely similar for networks with no underlying structure
(i.e. Erd6s-Rényi) but different when the views are transitive, etc.

3. Multivariate Bernoulli latent space model. We now describe the
Multivariate Bernoulli latent space model in detail. The key feature of our
model is a multivariate likelihood that represents dependence structure
between views. We couple this likelihood with latent representations of
social structure within each view via a latent space model. We should note
that our approach is generalisable to almost any choice of probabilistic
network model for the individual network views. The only constraint is
that the probability of a link a view is a link-function of a linear sum. See
Salter-Townshend et al. (2012) for a review.

We refer to the likelihood used for our model as the Multivariate Bernoulli
distribution (MVB). As noted in Section 1, a representation of the MVB dis-
tribution is well-known in the loglinear models literature, though (to the
authors” knowledge) not referred to by a specific name, and arises again in
recent work by Dai et al. (2013). The MVB extends the Bernoulli to multiple
trials whose successes may be correlated. Note that unlike the Multinomial
logit (and related models including correlation) for compositions, the total
number of successes is not fixed. A Multinomial logit model where the
number of trials is equal to the total number of links across the views for
each dyad could also be performed. The total number of links follow a
Binomial distribution on R trials and one could model the probability of a
success in each trial as a function of a single latent space distance but we
do not make use of that approach here.

Note that the likelihoods for the network models in Section 2 were all
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of the univariate Bernoulli form. The probability of an edge between i and
j is given by:
P(yi) = p¥ (1—p)' ™%

The Bernoulli distribution is the most common model for binary variables,
including binary network data. Various models for p are what distinguish
the common approaches to probabilistic social network analysis. Our ap-
proach brings together these models for p with a rich literature on loglin-
ear models for multivariate binary outcomes. Although we have chosen to
focus on latent space models wherein p is modelled as the inverse logit of
the Euclidean distances between points in a low dimensional latent space,
the MVB extension we propose works just as well with any other latent
variable model for p. See Salter-Townshend et al. (2012) for a review of
such models, including worked out examples.

We adapt the MVB theory of Dai et al. (2013) to the network setting,
replacing the Bernoulli likelihood with the MVB. Thus association be-
tween views enters the model through the likelihood and we will perform
Bayesian inference on the association terms as well as the latent space vari-
ables. For each vector yl(jl), ey yl(f), the MVB distribution explicitly allows
correlation across relationships. The MVB distribution is an exponential
family distribution and, thus, much of the model development remains
conceptually unchanged. The model could also be generalized to continu-
ous or valued associations using a multivariate Gaussian distribution.

We now define an MVB distribution for a single pair i, ;.

1 . (2)

Let yij = (yi] Vi --,yl(jR)), then

(I8 (1-y7))

p(¥i) = Po.oo
% p10..o TH-20-4)
XP01..,o(y§f2)(1‘y§;))l‘[r#z(l—yf}?))
X ...
(1) Xpll,,,l(nleyfj’))‘

Note that for two relations, the probabilities p1o, poo, po1, p11 define the
probability that (y() = 1,y = 0) and so forth. The ps are constrained to
sum to unity and so we perform inference on unconstrained transforma-
tions of these variables. Following Dai et al. (2013), we refer to these as the
natural parameters. For now we will concentrate on two latent spaces and
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14 SALTER-TOWNSHEND AND MCCORMICK

two relations. Extension to more is straightforward. We will also assume
that each latent space is responsible for each relation in turn.
The natural parameters are given by:

P10
1 710
°8 < Poo )
Po1
1 Fol
f °8 (POO)

POOPll
— Jog ( PooPu
P12 & <P10P01 >

f

Examination of the terms shows that f; is the log odds of getting a
1 in the first relation only over getting two zeros, f, is the log odds of
getting a 1 in the second relation only over getting two zeros and ¢y is
related to the log of the covariance (see Section C). We will refer to such
doubly subscripted natural parameters ¢ as association parameters. Given
R views of a network we have (122) such association parameters.

Due to the constraint that pog + p1o + po1 + p11 = 1 we can also calculate
all ps from these fs:

1
PO = T exp(fi) +exp(fa) + exp(fi + fo + o)
oy = exp(f1)
1+exp(f1) +exp(f2) +exp(fi+ f2+ ¢12)
_ exp(f2)
PU T T exp(fi) + exp(f2) + exp(fi + fo + 912)
- exp(f1 + f2 + P12)

L+exp(f1) +exp(f2) +exp(fi + f2 + ¢12)

In the general case of R views, the probability for all possible vectors of
edges for a dyad is given by Equation 1 with each component given by:

exp(Zle (erfr) + Yi<s<t<R (eserpst))
1+ 25 exp(fr) + exp(Zle fr+ Yi<s<t<r Pst)

where ¢, are indicator variables where a zero denotes no edge observed
in view r and a 1 implies there is an edge. f, is the log odds of a 1 in the
" relation over all relations being zeros and ¢ is the association between
views s and t. This equation allows us to calculate the probability of an
observed edge from the set of natural parameters. We can also calculate

(2) Pey...ex =
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the natural parameters uniquely from the probability vectors although that
calculation is not required for our inference.
The correlation between two views is given by

3) - PooP11 — P1opPo1

v (Poo + p10) (poo + po1) (p11 + po) (P11 + por)

The exponent of ¢1» will be 1 for uncorrelated networks, less than 1 for
negatively correlated networks and greater than 1 for positively correlated
networks. Thus ¢, will be 0 for uncorrelated networks, negative for nega-
tively correlated networks and positive for positively correlated networks.
Appendix C demonstrates the relationship between ¢, the network den-
sity, and p graphically and shows why p will most often take small values
even when there is a strong inter-network relationship.

Our approach will be to fit a latent space model for each of the f. natural
parameters. The interpretation of these latent spaces is conditional on the
absence of ties in all other views. In sparse graphs, these can be viewed
as approximating the latent spaces for marginal tie probabilities. We dis-
cuss the importance of this nuanced interpretation further in our conclu-
sion. We then estimate a single ¢ parameter for each pair of relations in a
given network. This amounts to estimating a completely unrestricted co-
variance matrix between the relations. For very large numbers of relations
we may wish to consider limiting consideration to specific types of covari-
ance matrices. We also model between view associations hierarchically as
a function of observed village-level covariates.

Data Generation Mechanism. We now describe the data generating mech-
anism for the latent space component of the model. We can sample the
adjacency matrices for the views given our model as follows:

1. forr={1,...,R}:
(a) Draw intercepts alr),
(b) for all i nodes:
i. Draw latent positions zfr).
2. for1 <s<t<R:
(a) Draw association parameter ¢s;.
3. foralli,j # i dyads:

(a) forr={1,...,R}:
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16 SALTER-TOWNSHEND AND MCCORMICK

i fp=al) - |z§r) - z]<7)|2.

(b) Calculate all p values using Equation 2.

(c) Simulate {yl(jl), .. .,yl(]-R)} via a Multivariate Bernoulli distribu-
tion with parameter vector p.

Note that as per Section 2.2, we have chosen to model the log-odds of a
link as linearly dependent on the squared Euclidean distances. Another
approach would be to fit the latent space model to each view indepen-
dently and to look at the difference between the correlations in latent dis-
tances and graph correlations. This is of course more ad-hoc than our
joint modeling of the latent positions and graph associations. Further, we
show empirical evidence of the superiority of our method through a cross-
validation simulation study provided in the Online Supplement.

Regression Model. A main goal of our analysis is understanding how the
association between views differs based on observable village-level covari-
ates. We accomplish this using a hierarchical regression model where the
outcome is the village-level association parameter and covariates are vil-
lage level observable characteristics. We expect that there will be variability
in the village level association parameters. To incorporate this uncertainty
into our regression estimates, we fit the regression as part of a unified
hierarchical model. Conditional on the village level parameters, we fit a
Bayesian regression model with diffuse Gaussian priors on each coeffi-
cient. Our sampler then marginalizes over the variation in the association
parameters, incorporating this variation into our resulting regression in-
terval estimates.

Full Posterior. Bringing together the previous two components of the mode
the full posterior for our model given the data is:
re(a, Z,p|Y) e 7e(Y[p)re(a) e (Z) 7e(p)-
Each ygjr) is Bernoulli given the ' entry of the probability vector p. For
each ij dyad p is calculated from the intercepts («), the latent positions of
nodes i and j in each of the " Jatent space dimensions (Zi(V) and Z]m) and
the association parameters (¢) using Equation 2. The values of f are calcu-
lated as in the Data Generation Mechanism above. We place uninformative
Gaussian priors for the unconstrained «, Z and ¢.

4. Results using Karnataka data. In this section we provide results us-
ing the Karnataka India Data. These data are publicly available online at
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http://economics.mit.edu/faculty/eduflo/social. As mentioned pre-
viously, a main challenge with these data is differentiating structure at
multiple levels of analysis. In the results that follow, we contend that
the substantive questions of interest also change depending on the anal-
ysis scale. In Section 4.1, we present visualizations of the latent space
within a particular village broken down by household characteristics. For
these finer scale analyses we are interested in understanding how struc-
ture within a village relates to these observable characteristics. Also of
interest is the variability between views. Moving to Section 4.2, we exam-
ine how our village-level between view association parameter is related
to village-level covariates. At this higher level of analysis, the goal is to
understand relationships across villages, controlling for aspects of social
structure unique to each village and view.

We implement our model using the emerging No-U-Turn sampler (Hoff-
man and Gelman, 2013), a variant of Hamiltonian Monte Carlo. The rea-
sons for this choice are that it gives us good mixing due to the Hamil-
tonian calculations used to optimize the multidimensional proposals in
the MCMC chain and there is already software available to run it (Stan
Development Team, 2013). For each village, we ran four chains initialized
using distinct, randomly selected starting values. Computation time for
a particular village ranged from under an hour for the smallest village
to several days for the largest village. Additional computational details
and convergence diagnostics are presented in the Online Supplement. We
could also have used a Variational Bayes approach such as that used in
Salter-Townshend and Murphy (2013) but we wish to retain as much of
the posterior dependency structure as possible.

4.1. Village level results. In this section we present a small subset of the
latent space results within each village. We provide results for all villages
in the Online Supplement. We fit our model to multiview data describing
6 social relations between households in Karnataka, India. As discussed
previously, these data arise from 75 villages with little interaction between
villages and thus provide a unique opportunity to explore how diversity
in network structure across villages is related to association across views.
In addition to information on network structure for multiple views, we
also have household and individual level covariates that we aggregate to
construct village-level characteristics. Within each village, our goal is to
relate social structure for a particular view to a set of household-level co-
variates. Our proposed model accomplishes this through the latent space
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F1c 2. Latent space for Village 71 by religion. Maximum a-posteriori latent position for each
relation, adjusted to a common orientation based on “Interact socially.”

model within each village and each view. Next, we also wish to compare
the association between views across villages. The scale of this question
requires a more parsimonious representation of the relationship between
views.

We find that each network view in the Karnataka dataset is strongly
transitive. We used cug.test in the R package sna (Butts, 2010) to deter-
mine the probability that a random graph with the same number of edges
exhibits as high or higher a transitivity measure as each of the Karnataka
network views. In all cases the empirical p-value returned was within ma-
chine precision of zero, showing that the transitivity of the graphs of each
network view were not from a random graph with no structure. As per
Butts (2008), the random graphs were conditioned on having the same
number of edges. This result motivates our choice of a Euclidean latent
space. Figures 2 and 3 show the maximum a-posteriori latent position for
respondents in two villages. Figure 2 is colored by religion, whereas Fig-
ure 3 is colored by caste. In both figures we used a Procrustes transforma-
tion (see Hoff et al. (2002)) to rotate the points to an orientation that most
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matches the “interact socially” view. As noted in the model description,
these latent spaces are on the natural parameters of the MVB distribution.
As with other latent space approaches, we must choose the dimension of
the latent space beforehand. We used BIC (see supplement to paper) to
evaluate the goodness-of-fit of the model using latent spaces ranging from
one to five dimensions. Latent spaces of two and three dimensions yielded
the best performance, with performance in the three dimensional case be-
ing slightly superior; we opted to present results with two dimensions for
ease of visualization. We present these results in full detail in the Online
Supplement, where we also present regression results in three dimensions
to demonstrate that our substantive conclusions are qualitatively similar.
If the primary goal were, for example, link prediction, we could select a
latent dimension based on hold-out data experiments.

Several striking patterns emerge in the figures. First, the figures demon-
strate that there is substantial variability in the latent structure across
views. For these villages, the views representing social interactions and
money exchange are most concentrated around the origin, giving the small-
est latent distances between individuals. These smaller latent distances
imply that the model is less reliant on higher order terms in estimating in-
teraction frequency. The view encoding being related has the most diffuse
latent structure. Such structure occurs because individuals linked by famil-
iar ties form relatively small, dense clusters and there is a high propensity
for ties within a cluster but few opportunities for ties between. Second, we
see substantial homophily based on religion across all views in Figure 2.
There is also evidence of homophily based on caste though it is more con-
centrated in some views than others. The interact socially and exchange
money views, for example, demonstrate the most homophily based on
caste in Figure 3. The view encoding familial ties displays pronounced
homophily, but again remains the most diffuse of the views as there are
comparatively few connections across family units even within the same
caste. Third, despite applying a Procrustes transformation, the orientation
of the latent spaces still varies across views. In Figure 2, for example, we
see that the latent positions of individuals practicing Islam are generally
to the upper right of individuals practicing Hinduism on the view related
to financial advice, whereas they are to the upper left for the view measur-
ing medical advice. With heterogeneous network structure, the Procrustes
transformation is unable to match these orientations. Isolates also play a
substantial role; making this observation a byproduct of sparsity in the
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F1G 3. Latent space for Village 29 by caste. Maximum a-posteriori latent position for each relation,
adjusted to a common orientation based on “Interact socially.”

Moving to the next level of analysis, we can also explore the associa-
tion between views within a given village. For interpretability, we express
these results in terms of the correlation parameter from the MVB. To get
this parameter, we first convert the association parameter, ¢ in our model
to correlation. We calculate the pairwise probability of each possible com-
bination of links for two network views using Equation 2. The correla-
tion between the two network views is then calculable using Equation 3.
Figure 4 shows results for the raw graph correlation (Butts and Carley,
2005) and the correlation posterior means and standard deviations from
our model for the 6 network views. This figure uses the same village as in
Figure 2.

The proposed measure represents the excess correlation after “factoring
out” social structure encoded within each network view. We contrast this
conditional correlation measure with the marginal measure obtained using
graph correlation. In Figure 4 we see that controlling for structure within
each view can substantially change our interpretation of the association
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between views. The exchange goods/interact socially pair, for example,
is one of the least correlated when considering the marginal measure of
graph correlation, but has the strongest association when using the pro-
posed conditional measure. When interpreting the results, the conditional
approach provides a measure that accounts for both changes in density be-
tween views and differences in higher order interaction terms. The graph
correlation measure adjusts for density, but the relation between views is
still confounded with network structure beyond that present in an Erd&s-
Rényi graph. Overall, the conditional correlation approach also produces a
more pronounced distribution of associations, with few associations stand-
ing out as clearly the largest. We investigate these differences further with
a simulation study in Appendix A.

The proposed metric produces correlations that are very small for the
village presented in Figure 4. The absolute value of the coefficients is mis-
leading, however, as the range of possible values depends on the structure
of the graph. For both the graph correlation and our conditional approach,
the overall density of the network is influential. Large negative correlation
is only possible in very dense networks and large positive correlation only
in very sparse networks. The presence of latent structure shifts the distri-
bution of possible correlation values for our method to the left. Graph cor-
relation, in contrast, does not account for higher order network structure
and thus is unaffected. We explore this dependence further in Appendix C.

1-Exchange money
2-Personal decision

1-Exchange money
2-Personal decision

1-Exchange money
2-Personal decision
3-Exchange goods
4-Medical advice
5-Social interaction
6-Family

1 3 3 3 5 [

3-Exchange goods T 3-Exchange goods
4-Medical advice ) 4-Medical advice
5-Social interaction 5-Social interaction
6-Family . 6-Family

1 3 3 ) 5 [

F1G 4. Plot of correlation (p) matrices for village 72 using gcor (Butts, 2010) (left), the posterior
mean (middle) and posterior standard deviation (right) from our model. Red implies a stronger
correlation but note the difference in scale. The difference under the two approaches is due to the
incorporation of the latent space component in the second approach and is discussed in Appendix A.
Figure C shows that large negative correlation is only possible in very dense networks and large
positive correlation only in very sparse networks.
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F1G 5. Association results using Karnataka data. Each plot represents a regression model for a partic-
ular view pair. Solid dots represent coefficient estimates in a model where covariates are village-level
measures of socioeconomic and demographic characteristics for villages. The outcome is either the
graph correlation (blue) or the association parameter from the MVB latent model (orange). The
results indicate that accounting for network structure through the MVB cluster model can have a
substantial impact. All variables are standardized for comparison across models. Additional results
are presented in Appendix B.

4.2. Cross-village results. We now move to our results across villages.
In contrast to the previous results where our substantive questions were
focused mostly on understanding properties of local graph structure, we
are now interested in broad trends in association between views based on
observable village level characteristics. For each village we now have an es-
timated association based on the MVB latent model and a series of village-
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level covariates. Our hierarchical model facilitates including a regression
component on the between-view associations. That is, we construct regres-
sion models where the response variable is the MVB latent model associ-
ation parameter and the predictor variables are our observed covariates.
We used covariates related to the socioeconomic status (e.g. proportion of
households with a latrine, proportion with a number of different types
of roof, or average number of rooms per home), household characteristics
(proportion of households that report having a leader), and demographics
(average time in the village). We also experimented with models includ-
ing other village-level covariates (including average age, language, and
religion) though these models did not perform as well using measure of
model fit such as AIC. For comparison, we performed the regressions us-
ing graph correlation as a response variable.

Figure 5 presents the results from our regression models for four view
pairs. Since we used six network views, there are a total of fifteen view
pairs. The remaining views are presented in Appendix B. For each regres-
sion coefficient, we can interpret the result using graph correlation as an
increased (or decreased) propensity for people in villages with high levels
of the covariate with an interaction on one view to also have an inter-
action on the second view. For example, the coefficients for proportion
with a tile and stone roof in the pair medical advice/family indicate that
in villages where more individuals have tile roofs there is an increased
propensity for those who are related also share medical advice. The roof
type variables can be interpreted as a crude measure of socioeconomic sta-
tus with the thatched roof indicating the most impoverished individuals
and RCC (concrete) among the most affluent. The thatched roof category
does not follow the general trend between roof type and model coeffi-
cients. The number of households in the thatched roof category is very
small (less than 2% of the data), however, so there is very little data to
estimate these coefficients. On both the family/medical advice and fam-
ily /exchange money associations there is a consistent trend based on roof
type. Looking first at the family /money association, households in villages
with (roughly speaking) lower socioeconomic status were less likely to ex-
change money with individuals they are related to. This trend is reversed
for medical advice, however. Individuals in villages with lower status, as
measured by the fraction of lower quality roofs, were more likely to share
medical advice with family members. In both cases, these effects are after
accounting for the nuances of within-network structure in each network.
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The results using graph correlation do not control for network structure
within each view, meaning that the effect of association between views
is potentially confounded with local graph structure. Using the MVB la-
tent space model, in contrast, we can explore association between views
while controlling for network structure within each view. In terms of in-
terpretation, the coefficients for the MVB latent space model now reflect
the increased (or decreased) propensity for individuals in villages with
a high value of a given covariate to interact on a second view once they
already interact on one view in the pair, while controlling for the role in-
dividuals play within a given network. Turning back to Figure 5, we see
that this distinction has significant implications in some circumstances. In
the exchange money/family pair, for example, we see that the sign of the
coefficients changes from positive using graph correlation to negative with
the MVB latent space model. This implies that the positive association be-
tween these views for villages with large proportions of tile or stone roofs
(individual with relatively low socioeconomic status) seen by graph cor-
relation is confounded with network structure within each view. In other
words, the MVB latent space results indicate that, controlling for whether
individuals are related, individuals within villages with relatively low SES
were less likely to also exchange money. This result is not, in contrast, due
to confounding with network structure when looking at the medical ad-
vice/family pair. As expected, we also see that controlling for structure
through the MVB latent space model also serves to decrease the size of
coefficients in several other cases as can be seen with coefficients in the
medical advice/social pair or the financial advice/social pair.

5. Discussion and conclusion. We present a statistical model for mul-
tiview network data. Our model builds on previous work on latent space
models for networks as well as a deep literature in modeling discrete
multivariate data. The proposed method uses a multivariate likelihood to
model associations between views, which provides a parsimonious repre-
sentation of between-view structure. Conditional latent space models ac-
count for dependence arising from social network structure. Importantly,
ours is the only model we know of that can not only capture but also es-
timate negative correlation between multiple network views jointly with
complex network topography. In our results we present a comprehensive
comparison across all fifteen possible combinations of six views. This ap-
proach leads to testing a very large number of hypotheses, which should
be considered when using this method.
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The importance of multiview network models also rises with increas-
ing ability to measure various types of networks using technology. Social
media data such as Twitter or Facebook, for example, provide access to a
wealth of data consisting of multiple types of communications. In Twitter,
for example, users can also communicate in either passive or active re-
lationships. “Following” in Twitter terminology allows a users to see up-
dates from another user but typically does not require approval or interac-
tion with the user being followed. Interactions can also be more active and
conversational, however, with the individuals using the @reply command
or contributing to broader conversations by including a #hashtag identi-
fier in their tweet. Twitter users project their thoughts toward an imagined
audience of networked individuals, some of whom bear reciprocal edges
to the users themselves and some of whom do not. This interesting mix of
public and private attention requires users to maintain a balance between
transparency and authenticity in the material they choose to tweet.

The conditional latent space approach provides flexibility in modeling
social network structure within each view. Our method does, however,
share difficulties related to model selection that are common in latent
space models. Selecting the dimensionality of the latent space remains a
topic of research with these models. In our case, we use the latent space to
account for within-view structure but do not emphasize interpretation of
the latent representation. We fixed the dimensionality of the latent space to
be the same across all views to encourage comparable interpretation across
views. We experimented with multiple latent dimensions and found that
the association measures were relatively insensitive, though more explo-
ration of this area could be done for different modeling objectives. In our
case we value the interpretation of the latent space approach, though we
could also approach the within-view modeling using other social network
models. The behavior of the MVB framework under other models and
model misspecification is an open area for future work.

The conditional representation also makes interpretation of the latent
distances a challenge. This issue is well-known in the loglinear models
literature. Alternative models for multivariate binary data have been pro-
posed, but these models also have substantial issues with interpretation,
often in ways that are less straightforward to interpret than the likelihood
used here (see Wakefield (2013) for a review). In our application, the main
focus is on understanding the association between village-level covariates
and views. In other applications, however, interpreting marginal tie prob-

imsart-aoas ver. 2013/03/06 file: perp_ls_paper_revise_R4_vl.tex date: April 24, 2016



26 SALTER-TOWNSHEND AND MCCORMICK

abilities within a view may be a priority. In such instances, we can obtain
posterior distributions over these probabilities during sampling, or decom-
position methods could be considered (e.g. Hoff (2011a)).
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APPENDIX A: DIFFERENCE BETWEEN MARGINAL AND
CONDITIONAL GRAPH CORRELATIONS

In order to demonstrate the difference between the conditional corre-
lations inferred by our model and raw (marginal) graph correlations, we
present results on some simulated datasets. We will show that in the ab-
sence of any underlying latent structure to each network view (effectively
Erd6s-Rényi graphs), our method returns values close to the graph corre-
lations. However, when there is a non flat network topography our method
is preferable to such marginal correlations. We simulated 3 networks with
a ground truth association matrix given by

NA 442 349
¢t = | 442 NA —1.50
349 —-150 NA

As this is a symmetric matrix with just 3 unique terms we will report it
and related matrices as vectors of length 3 with terms corresponding to
view pairs (1,2), (1,3) and (2, 3) respectively. Thus the association values
used to generate the data are

(12, P13, P23) = (4.42,3.49, —1.5).

We explore two versions of the simulated data here. The first version
has all latent positions in each network view set to zero (i.e. no latent
space structure) and the second version has randomly generated latent
positions. We report results for multiple (20) runs of both versions, each
involving the generation of random data and subsequent application of
geor (Butts, 2010) and our method to infer inter-network-view correlations.
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In both versions, we simulated the joint 3-network-view links as per our
Multivariate Bernoulli Distribution.

A.1. With No Latent Structure. For the version with no latent struc-
ture the ground truth correlations p between each pair of views is constant
across simulation runs and is calculated using Equation 3 to be

ground truth: p = (p12, 013, p23) = (0.383,0.349, —0.067).

The raw graph correlations mean and standard deviations across the 20
simulations were found to be:

geor:  p = (0.515,0.307, —0.001) s, = (0.027,0.020,0.018).

We then fit our model using our MCMC algorithm and obtain draws
from the posterior for the latent positions Z, intercepts a and associations
¢. We find that the mean across 20 simulations of the posterior means and
standard deviations for the posterior means for the associations are

~

MLSM: ¢ = (4.661,3.635, —1.589) s¢ = (0.224,0.187,0.160).

We then calculate the pairwise correlations for given values of the inter-
cepts a and distances between latent positions Z. We average these values
across the MCMC iterations Equation 3 to get:

MLSM: p = (0.367,0.333, —0.067) sp = (0.012,0.013,0.008).

Thus the algorithm was able to capture the correct associations and corre-
lations across simulations.

Although the results from gcor are comparable to the results using our
method for this simulated data without latent structure in the networks,
we note that gcor failed to capture the correct p values within the range
of values across the 20 simulation runs, whereas our results for posterior
means span the true values for both ¢ and p and are centered on them.
This is hardly surprising of course as we are fitting the same model used
to generate the data (apart from the inclusion in the inference of latent
positions which were set to zero to generate the data).

We can also examine 95% credible intervals based on the MCMC output
for each of the 20 simulations. We found that these intervals included the
correct values of ¢, averaged across the 3 view pairings, 90% of the time.
For p, it was 85%. Thus, even within a simulation, our posterior does a
good job of inferring the correct association values.
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A.2. With Latent Structure. We now report results for a simulation
study including randomly generated latent positions associated with each
network view. We observe that the p values found by our method now
differ more substantially from the graph correlations. Note that due to the
simulation of random latent space positions, the true p values now vary
across simulation runs. The ¢ values are the same as per the simulations
with no latent structure. The true (i.e. values used to generate the simu-
lated datasets) mean and standard deviations of p were:

ground truth: p = (0.052,0.037, —0.003) sp = (0.006,0.005,0.000).

Note that the standard deviation of these values across simulations is low.
The raw graph correlations mean and standard deviations were calcu-
lated to be:

geor: = (0.634,0.439,0.145) s, = (0.057,0.065,0.068).

These values are far removed from the ground truth, with all 3 far too
strongly positive. This is because correlation due to the latent structure is
dominating the correlations.

Conversely, our method found values of

MLSM: p = (0.029,0.018, —0.002) sp = (0.006,0.004,0.000),

which are more in line with the ground truth. Across the 20 simulation
runs, we captured the ground truth value of p in the 95% credible inter-
val 60% of the time. Thus, in the presence of latent structure underlying
the multiple networks, the graph correlation does a far poorer job of cap-
turing the true correlation between the views. For real datasets, such as
our motivating example, we therefore advocate using a model that jointly
estimates the correlations and the latent structures of the multiple views.

APPENDIX B: ADDITIONAL RESULTS FOR KARNATAKA

In this section, we present results for the remaining views not presented
in Figure 5. Figure B presents plots giving point estimates and error bars
for regression models where the outcome is either the graph correlation
or the association parameter of the MVB latent model. Covariates are vil-
lage level measures of demographic and socioeconomic composition. The
results support the discussion in Section 4.
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APPENDIX C: RELATIONSHIP OF CORRELATION p TO DENSITY «
AND ASSOCIATION ¢

It is interesting to observe how p varies with network density « and as-
sociation ¢. Figure C presents a contour plot of the correlation p1, against
« and ¢12. Note that the distances in the latent spaces are set to zero before
using Equations 2 and 3. The effect of having equal but non-zero distances
is to shift the plot to the right of zero on the x-axis. If the distances are
unequal in the two views, the contours also move away from zero in the y
direction.

It can be seen from Figure C that the absolute correlation is largest for
either high density networks with large negative association parameter or
low density networks with large positive association parameter. The sign
of the correlation is the same as the sign for the free association parameter
but the actual correlation values will be small in magnitude even if the
free parameter is large for many networks.
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Fi1G B. Results for additional view pairs. These plots present coefficients and error bars for the re-
maining relations not presented in Figure 5. Each plot represents a single view pair. Dots represent
point estimates in a regression model where the outcome is either graph correlation or the associa-
tion parameter in our MVB latent model for a particular village and village level covariates. Bars
represent 80% uncertainty intervals. We standardized all variables for comparison across outcomes.
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association @
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network density o

Fic C. Contour plot of how the correlation p between two views varies as a function of the density
of the networks « and the association term ¢qp. Note that for sparse networks (towards the left),
positive associations can lead to large positive multiview correlations; however negative correlations
are limited to be small in magnitude.
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