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ABSTRACT

We show that the set of Schur idempotents with hyperreflexive range is a

Boolean lattice which contains all contractions. We establish a preserva-

tion result for sums which implies that the weak* closed span of a hyper-

reflexive and a ternary masa-bimodule is hyperreflexive, and prove that

the weak* closed span of finitely many tensor products of a hyperreflexive

space and a hyperreflexive range of a Schur idempotent (respectively, a

ternary masa-bimodule) is hyperreflexive.

1. Introduction

Arveson’s distance formula [3] has played a fundamental role in operator algebra

theory since its discovery, inspiring a great deal of research in several distinct

settings (see [5] and [6] and the references therein). First established for nest

algebras [2], it is an estimate for the distance of an operator T to an operator

algebra A in terms of the norms of the compressions of T to suitable “corners”

arising from the invariant subspace lattice of A. A minimax property, the

distance formula is not easily verified in practice due to, firstly, the difficulty
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of computing specific operator norms, and secondly, the lack of knowledge of

the invariant subspaces of a general A. It however implies that A is a reflexive

operator algebra (see [3] and [14]); the presence of a distance formula for A is

hence known as the hyperreflexivity of A.

Arveson recognised the importance of maximal abelian selfadjoint algebras

(masas, for short) in the study of non-selfadjoint (non-abelian) operator alge-

bras [1] and pioneered the use of masa-bimodules in operator algebra theory.

These are precisely the weak* closed invariant subspaces of weak* continuous

masa-bimodule maps, also known as Schur multipliers – a class of transforma-

tions that has played a central role in operator space theory since Haagerup’s

characterisation [10]. In [8], we studied connections between Schur idempotents

and reflexive masa-bimodules. In [9], this study was extended by considering

tensor products and their relation to operator synthesis. These papers showed

that Schur idempotents are very instrumental in questions about reflexivity and

related properties, and can be particularly useful for establishing preservation

results.

The present article focuses on the role of Schur idempotents in hyperreflex-

ivity problems. After collecting necessary background and setting notation in

Section 2, in Section 3 we show that the set of all Schur idempotents with hy-

perreflexive ranges is a Boolean lattice. While we are not able to determine

whether every Schur idempotent Φ has hyperreflexive range, we show that, if

Φ belongs to the Boolean lattice C generated by the set I1 of contractive Schur

idempotents, then it does so. Our results can thus be viewed as a test for the

well-known (open) problem of whether the Boolean lattice C coincides with the

set of all Schur idempotents: the existence of a Schur idempotent with non-

hyperreflexive range would imply a negative answer to the latter question. As a

corollary, we show that all Schur bounded patterns [7] give rise to hyperreflexive

subspaces.

In Section 4, we examine the behaviour of hyperreflexivity with respect to

linear spans. We show that the sum of a hyperreflexive masa-bimodule and the

hyperreflexive range of a Schur idempotent is hyperreflexive, and use this to

obtain a general result about linear spans (Theorem 4.5) which implies that the

weak* closed linear span of a hyperreflexive masa-bimodule and a ternary masa-

bimodule is hyperreflexive. Ternary masa-bimodules are subspace versions of

type I von Neumann algebras and, together with the (more general) ternary

rings of operators, have been extensively studied (see, e.g., [4], [8] and [9]).
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In Section 5, we obtain results, analogous to the ones from Section 4, but for

intersections as opposed to linear spans. In particular, we prove that the inter-

section of an arbitrary hyperreflexive masa-bimodule and a subspace belonging

to a general class, containing all ternary masa-bimodules, is hyperreflexive.

In Section 6, we show that (finite, weak* closed) linear spans, each of whose

term is the tensor product of a hyperreflexive space and a ternary masa-bimodule,

is, under some natural condition, necessarily hyperreflexive (Theorem 6.6). This

is achieved by showing first that a similar result holds in the case where the

ternary masa-bimodules are replaced by hyperreflexive ranges of Schur idempo-

tents.

We wish to note that the results below are formulated for subspaces of opera-

tors acting on a single Hilbert space, but they hold more generally for subspaces

of operators between different spaces; we have chosen to work on one Hilbert

space in order to avoid somewhat cumbersome formulations.

2. Preliminaries

Throughout this paper, we fix a separable Hilbert space H and let B(H) denote

the space of all bounded linear operators on H. The norm on H and the uniform

operator norm on B(H) will both be denoted by ‖ · ‖. Let X be a subspace of

B(H). If T ∈ B(H), then the distance of T to X is

d(T,X ) = inf
X∈X

‖T −X‖

and the Arveson distance of T to X is

α(T,X ) = sup

{
inf
X∈X

‖Tξ −Xξ‖ : ξ ∈ H, ‖ξ‖ = 1

}
.

Trivially, α(T,X ) ≤ d(T,X ), and both d and α are order-reversing in the second

variable. We say that X is reflexive [14] if, whenever T ∈ B(H) is such that

Tξ ∈ X ξ for all ξ ∈ H, then T ∈ X . Reflexive spaces are necessarily closed in

the weak operator topology, and a weak* closed subspace X is reflexive precisely

when

α(T,X ) = 0 =⇒ d(T,X ) = 0, T ∈ B(H).

If X satisfies the stronger condition that there exist k > 0 with

(1) d(T,X ) ≤ k α(T,X ), T ∈ B(H),
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then X is said to be hyperreflexive; in this case, the least constant k for which

(1) holds is denoted by k(X ) and called the hyperreflexivity constant of X . The

space X is called completely hyperreflexive if X⊗̄B(H) is hyperreflexive, where

here and in the sequel H is a separable infinite dimensional Hilbert space and ⊗̄
denotes the spatial weak* closed tensor product. The complete hyperreflexivity

constant kc(X ) of X is by definition the hyperreflexivity constant of X⊗̄B(H).

We remark in passing that whether every hyperreflexive space is completely

hyperreflexive remains an open question [6].

We fix throughout a maximal abelian selfadjoint algebra (for short, masa) D
on H. We denote by P(D) the set of all projections in D. A Schur multiplier is

a weak* continuous D-bimodule map on B(H). The set of all Schur multipliers

is a commutative algebra under pointwise addition and composition. If Φ is a

Schur multiplier, we write ‖Φ‖ for the norm of Φ as a linear map on the Banach

space B(H).

A Schur idempotent is a Schur multiplier Φ that is also an idempotent. We

denote by I the collection of all Schur idempotents. It is easy to see that I is

a lattice under the operations Φ ∧ Ψ = ΦΨ and Φ ∨ Ψ = Φ + Ψ − ΦΨ, which

is moreover Boolean for the complementation Φ→ Φ⊥
def
= id−Φ. For Φ,Ψ ∈ I

we write Φ ≤ Ψ if ΦΨ = Φ, and we denote by Ran Φ the range of Φ. We refer

the reader to [8] and [13] for more details on Schur idempotents.

By a D-bimodule (or a masa-bimodule when D is clear from the context) we

mean a subspace X ⊆ B(H) such that DXD ⊆ X . All masa-bimodules in the

sequel are assumed to be weak* closed. If Φ ∈ I then Ran Φ is easily seen to

be a masa-bimodule.

The statements in the next remark are straightforward.

Remark 2.1: We have

α(T,X ) = sup{| 〈Tξ, η〉 | : ‖ξ‖ = ‖η‖ = 1, 〈Xξ, η〉 = 0, for all X ∈ X}.

Furthermore, if X is a D-bimodule then

α(T,X ) = sup
{
‖QTP‖ : P,Q ∈ P(D), QXP = {0}

}
.

3. The lattice of hyperreflexive ranges

In this section, we give a characterisation of the Schur idempotents with hy-

perreflexive ranges and show that they form a sublattice of the lattice I of all
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Schur idempotents. We start by formulating an alternative expression of the

Arveson distance which will prove useful in the sequel.

We write I1 = {Φ ∈ I : ‖Φ‖ ≤ 1} for the set of contractive Schur idempotents.

It was shown in [12] that a Schur idempotent Φ belongs to I1 if and only if there

exist families (Pi)i∈N and (Qi)i∈N of mutually orthogonal projections in D such

that

(2) Φ(T ) =

∞∑
i=1

QiTPi, T ∈ B(H),

where the series converges in the weak* topology.

Proposition 3.1: Let X ⊆ B(H) be a weak* closed D-bimodule. Then

α(T,X ) = sup{‖Φ(T )‖ : Φ ∈ I1 and Φ(X ) = {0}}.

Proof. Let M be the supremum on the right hand side. By Remark 2.1,

α(T,X ) = sup{‖QTP‖ : P,Q ∈ P(D) and QXP = {0}}.

Since any map of the form T 7→ QTP (where P,Q ∈ P(D)) is in I1, we have

α(T,X ) ≤ M . Conversely, suppose that Φ ∈ I1 and Φ(X ) = {0}. Represent

Φ as in (2); then QiXPi = {0} for each i. On the other hand, ‖Φ(T )‖ =

supi∈N ‖QiTPi‖ ≤ α(T,X ), so M ≤ α(T,X ).

If Φ ∈ I, write

N1(Φ) = {Σ ∈ I1 : ΣΦ = 0}.

The following corollary is a direct consequence of Proposition 3.1.

Corollary 3.2: If Φ ∈ I and T ∈ B(H) then

α(T,Ran Φ) = sup
Θ∈N1(Φ)

‖Θ(T )‖.

We next single out a simple condition that formally implies hyperreflexivity.

It is based on the fact that, if Φ is a Schur idempotent and T ∈ B(H), then

there is a canonical approximant of T within Ran Φ, namely the operator Φ(T ).

Definition 3.3: We write H for the set of Schur idempotents Φ ∈ I with the

following property: there exists λ > 0 such that

‖Φ⊥(T )‖ ≤ λα(T,Ran Φ), T ∈ B(H).

The least constant λ with this property will be denoted by λ(Φ).
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If Φ ∈ I and Ran Φ is hyperreflexive, it will be convenient to denote by k(Φ)

the hyperreflexivity constant k(Ran Φ).

Remark 3.4: Since d(T,Ran Φ) ≤ ‖T − Φ(T )‖ = ‖Φ⊥(T )‖, we see that if

Φ ∈ H, then Ran Φ is hyperreflexive and k(Φ) ≤ λ(Φ). We will show shortly

that H is precisely the set of Schur idempotents with hyperreflexive range.

Remark 3.5: In view of Proposition 3.1, if Φ is a Schur idempotent then

Φ⊥ ∈ H precisely when there exists λ > 0 such that

‖Φ(T )‖ ≤ λ sup{‖Θ(T )‖ : Θ ∈ I1,Θ ≤ Φ}.

In particular, if Φ ∈ I1, then Φ⊥ ∈ H and λ(Φ⊥) = 1.

Recall that B(H) is the dual Banach space of the trace class T (H) on H.

Every element ω ∈ T (H) is thus viewed as both an operator on H and as a

(weak* continuous) linear functional on B(H); we denote by 〈T, ω〉 the pairing

between T ∈ B(H) and ω ∈ T (H). If f, g ∈ H, we denote by f ⊗ g the

rank one operator on H given by (f ⊗ g)(ξ) = (ξ, g)f , ξ ∈ H. We have that

〈T, f ⊗ g〉 = (Tf, g), for a conjugate-linear isometry g → g on H. If ω ∈ T (H)

then ω =
∑∞
i=1 ωk in the trace norm ‖ · ‖1, where ωk, k ∈ N, are operators of

rank one such that
∑∞
k=1 ‖ωk‖1 <∞.

If X ⊆ B(H), let

X⊥ = {ω ∈ T (H) : 〈T, ω〉 = 0, for all T ∈ X}

be the pre-annihilator of X in T (H). The following result was proved by Arve-

son [3] in the case the space X is a unital algebra. The proof for the case where

X is a subspace is a straightforward modification of Arveson’s arguments; this

is also a special case of [11, Theorem 2.2].

Theorem 3.6: Let X ⊆ B(H) be a reflexive space. The following are equiva-

lent:

(i) X is hyperreflexive and k(X ) ≤ r;
(ii) for every ω ∈ X⊥ and every ε > 0 there exists a sequence (ωi)i∈N ⊂ X⊥

of rank one operators such that

∞∑
i=1

‖ωi‖1 < (r + ε)‖ω‖1 and ω =

∞∑
i=1

ωi,

where the latter series converges in the trace norm.
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If Φ is a Schur idempotent, we write Φ∗ for the predual of Φ, acting on the

trace class T (H).

Lemma 3.7: If Φ ∈ I and ω ∈ T (H) then Φ⊥∗ (ω) ∈ (Ran Φ)⊥.

Proof. If T ∈ Ran Φ then

〈T,Φ⊥∗ (ω)〉 = 〈Φ(T ),Φ⊥∗ (ω)〉 = 〈Φ⊥Φ(T ), ω〉 = 0.

Theorem 3.8: Let Φ be a Schur idempotent. The following are equivalent:

(i) Ran Φ is hyperreflexive;

(ii) Φ ∈ H.

Moreover, if these conditions hold then λ(Φ) ≤ k(Φ)‖Φ⊥‖.

Proof. (ii)⇒(i) was pointed out in Remark 3.4.

(i)⇒(ii) Let k = k(Φ) and fix T ∈ B(H). For ε > 0 there exist unit vectors

ξ, η ∈ H with

(3) ‖Φ⊥(T )‖ − ε < |(Φ⊥(T )ξ, η)| = |〈Φ⊥(T ), ξ ⊗ η〉| = |〈T,Φ⊥∗ (ξ ⊗ η)〉|.

By Lemma 3.7, Φ⊥∗ (ξ ⊗ η) ∈ (Ran Φ)⊥. Clearly,

‖Φ⊥∗ (ξ ⊗ η)‖1 ≤ ‖Φ⊥∗ ‖ ‖ξ ⊗ η‖1 = ‖Φ⊥‖.

By Theorem 3.6, there exist rank one operators ωk ∈ (Ran Φ)⊥, k ∈ N, such

that
∞∑
k=1

‖ωk‖1 ≤ (k + ε)‖Φ⊥‖ and Φ⊥∗ (ξ ⊗ η) =

∞∑
k=1

ωk.

By Remark 2.1 and (3),

‖Φ⊥(T )‖ − ε <

∞∑
k=1

|〈T, ωk〉| ≤
∞∑
k=1

‖ωk‖1α(T,Ran Φ)

≤ (k + ε)‖Φ⊥‖α(T,Ran Φ).

Since ε is arbitrary, ‖Φ⊥(T )‖ ≤ k‖Φ⊥‖α(T,Ran Φ). Thus, Φ ∈ H and λ(Φ) ≤
k‖Φ⊥‖.

We next prove that the set H is closed under the lattice operations.

Lemma 3.9: Let Φ ∈ H and Σ ∈ I1. Then the Schur idempotent Ψ
def
= (Φ⊥Σ)⊥

belongs to H and λ(Ψ) ≤ λ(Φ).
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Proof. Note that Ψ = Σ⊥ + ΦΣ. Thus, if Θ ∈ N1(Φ), then ΘΣ ∈ N1(Ψ). Let

T ∈ B(H); by Corollary 3.2,

‖Ψ⊥(T )‖ = ‖Φ⊥(Σ(T ))‖ ≤ λ(Φ)α(Σ(T ),Ran Φ)

= λ(Φ) sup
Θ∈N1(Φ)

‖ΘΣ(T )‖ ≤ λ(Φ) sup
Λ∈N1(Ψ)

‖Λ(T )‖

= λ(Φ)α(T,Ran Ψ).

Theorem 3.10: The set H is a sublattice of I.

Proof. Let Φ1,Φ2 ∈ H and write λi = λ(Φi) and Xi = Ran Φi, i = 1, 2. Set

X def
= X1 ∩ X2 = Ran(Φ1Φ2). For T ∈ B(H), we have

‖T − Φ1Φ2(T )‖ ≤ ‖T − Φ1(T )‖+ ‖Φ1(T )− Φ1Φ2(T )‖

≤ ‖T − Φ1(T )‖+ ‖Φ1‖‖T − Φ2(T )‖

≤ λ1α(T,X1) + λ2‖Φ1‖α(T,X2).

By the monotonicity of α, we have α(T,Xi) ≤ α(T,X ), i = 1, 2. Thus,

‖T − Φ1Φ2(T )‖ ≤ (λ1 + λ2‖Φ1‖)α(T,X ).

It follows that Φ1Φ2 ∈ H.

Now let W def
= Ran(Φ1 ∨ Φ2) = X1 + X2 and T ∈ B(H). Using Lemma 3.9

and the fact that W ⊆ Ran(Σ⊥ + Φ2Σ) for Σ ∈ N1(Φ1), we have

‖(Φ1 ∨ Φ2)⊥(T )‖ = ‖Φ⊥1 (Φ⊥2 (T ))‖ ≤ λ1 α(Φ⊥2 (T ),Ran Φ1)

= λ1 sup
Σ∈N1(Φ1)

‖Φ⊥2 Σ(T )‖

≤ λ1λ2 sup
Σ∈N1(Φ1)

α(T,Ran(Σ⊥ + Φ2Σ))

≤ λ1λ2 α(T,W).

It follows that Φ1 ∨ Φ2 ∈ H and λ(Φ1 ∨ Φ2) ≤ λ1λ2.

Recall that a weak* closed masa-bimodule M is called ternary, if it is a

ternary ring of operators, that is, if ST ∗R ∈ M whenever S, T,R ∈ M (see

e.g. [4]).

Proposition 3.11: If Φ is a contractive Schur idempotent then Φ ∈ H and

λ(Φ) ≤ 2.
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Proof. By [12], the space M = Ran Φ is a ternary masa bimodule. Consider

the von Neumann algebra

A =

(
[MM∗]−w∗ M
M∗ [M∗M]−w

∗

)
⊆ B(H ⊕H)

and note that D⊕D is a masa in B(H⊕H), over which A is a bimodule. By [5,

Lemma 8.3] there exists a contractive idempotent D ⊕D-bimodule map

Ψ : B(H ⊕H)→ B(H ⊕H)

such that A = Ran Ψ and

(4) ‖T −Ψ(T )‖ ≤ 2α(T,A) for all T ∈ B(H ⊕H).

(Note that Ψ is not necessarily a Schur idempotent on B(H ⊕H) since it does

not need to be weak*-continuous.) Consider the isometry

θ : B(H)→ B(H ⊕H), T 7→

(
0 T

0 0

)
and observe that

Ψ(θ(T )) = θ(Φ(T )), for all T ∈ B(H).

Moreover, for T ∈ B(H),

α(θ(T ),A) = sup
‖η‖=‖ξ‖=1

inf
A∈A
‖(θ(T )−A)(ξ ⊕ η)‖

≤ sup
‖η‖=‖ξ‖=1

inf
M∈Ran Φ

‖(θ(T )− θ(M))(ξ ⊕ η)‖

= sup
‖ξ‖=1

inf
M∈Ran Φ

‖(T −M)ξ‖ = α(T,M).

By (4),

‖Φ⊥(T )‖ = ‖T − Φ(T )‖ = ‖θ(T )−Ψ(θ(T ))‖ ≤ 2α(θ(T ),A) ≤ 2α(T,Ran Φ).

We write C = C(H) for the Boolean lattice generated by I1 in I.

Corollary 3.12: C ⊆ H.

Proof. Let I⊥1 = {Φ⊥ : Φ ∈ I1}. It is easy to see that the sublattice of I

generated by I1∪I⊥1 is Boolean and hence it coincides with C. By Theorem 3.10,

Proposition 3.11 and Remark 3.5, C ⊆ H.
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Question 3.13: Does there exist a Schur idempotent whose range is not hyper-

reflexive? In other words, is the second of the inclusions

C ⊆ H ⊆ I

strict? If so, then this would imply that C 6= I, settling in the negative an

open problem of several years’ standing which asks whether the Boolean lattice

generated by the contractive Schur idempotents exhausts all Schur idempotents.

We next show that a class of Schur idempotents, studied by Varopolous [16]

and by Davidson and Donsig [7] (see also [15]), is contained in H. Let H = `2

and D be the masa of diagonal (with respect to the canonical basis) operators.

A Schur bounded pattern [7] is a subset κ ⊆ N × N such that every bounded

function ϕ : N × N → C supported on κ is a Schur multiplier. If κ is a Schur

bounded pattern then the map Φκ of Schur multiplication by the matrix (ai,j),

where ai,j = 1 (resp. ai,j = 0) if (i, j) ∈ κ (resp. (i, j) 6∈ κ) is a Schur

idempotent.

Proposition 3.14: If κ ⊆ N× N is a Schur bounded pattern, then Φκ ∈ H.

Proof. By [7], there exist sets R,C ⊆ N× N and a constant N ∈ N such that:

(1) {j ∈ N : (i, j) ∈ R} has at most N elements for each i ∈ N;

(2) {i ∈ N : (i, j) ∈ C} has at most N elements for each j ∈ N; and

(3) κ = R ∪ C.

We have Φκ = ΦR ∨ΦC . By Theorem 3.10 it suffices to show that ΦR ∈ H and

ΦC ∈ H. It is easily seen, however, that Ran ΦR is the sum of at most N ternary

masa-bimodules, so it is hyperreflexive by Corollary 3.12. Hence ΦR ∈ H, and

similarly, ΦC ∈ H.

4. Hyperreflexivity and spans

In this section, we show that, under certain conditions, hyperreflexivity is pre-

served under summation. The main results of the section are Theorem 4.5 and

the subsequent Corollary 4.6. The first step is the following lemma.

Lemma 4.1: If U is a hyperreflexive masa-bimodule and Φ ∈ H, then the alge-

braic sum U + Ran Φ is hyperreflexive and

k(U + Ran Φ) ≤ k(U)λ(Φ).
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Proof. By [8, Corollary 3.4], the algebraic sumW = U+Ran Φ is weak* closed.

Given projections P,Q ∈ D, let ΣQ,P be the (contractive) Schur idempotent

given by ΣQ,P (T ) = QTP , and

ΨQ,P = Σ⊥Q,P + ΦΣQ,P = (Φ⊥ΣQ,P )⊥.

Note that

Ψ⊥Q,P (T ) = QΦ⊥(T )P, T ∈ B(H).

By Lemma 3.9, ΨQ,P ∈ H and λ(ΨQ,P ) ≤ λ(Φ). Using Remark 2.1, and writing

P,Q for projections in D, we have

d(T,U + Ran Φ) = inf{‖T −X − Y ‖ : X ∈ U , Y ∈ Ran Φ}

≤ inf{‖T −X − Φ(T )‖ : X ∈ U}

= d(Φ⊥(T ),U)

≤ k(U)α(Φ⊥(T ),U)

= k(U) sup{‖QΦ⊥(T )P‖ : QUP = {0}}

= k(U) sup{‖Ψ⊥Q,P (T )‖ : QUP = {0}}

≤ k(U) sup{λ(ΨQ,P )α(T,Ran ΨQ,P ) : QUP = {0}}

≤ k(U)λ(Φ)α(T,U + Ran Φ),

since, if QUP = {0}, then Ψ⊥Q,P (U + Ran Φ) = {0}, and hence U + Ran Φ ⊆
Ran ΨQ,P .

Corollary 4.2: If Φ ∈ I1 and U is a hyperreflexive masa-bimodule, then the

algebraic sum W = U + Ran Φ⊥ is hyperreflexive and k(W) ≤ k(U).

Proof. Immediate from Remark 3.5 and Lemma 4.1.

Lemma 4.3: Let Un, n ∈ N, be hyperreflexive spaces, such that Un+1 ⊆ Un for

each n ∈ N and supn k(Un) <∞. Then the space U def
=
⋂
n Un is hyperreflexive

and k(U) ≤ lim supn k(Un).

Proof. Let T ∈ B(H). Since

d(T,Un) ≤ k(Un)α(T,Un),

there exists Sn ∈ Un such that

‖T − Sn‖ < k(Un)α(T,Un) +
1

n
, n ∈ N.
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Since α(T,Un) ≤ α(T,U), n ∈ N, and supn k(Un) < ∞, the sequence (Sn)n∈N

is bounded, and hence after passing to a subsequence we may assume that (Sn)

converges in the weak* topology to some operator S. Writing k = lim supn k(Un),

we have

‖T − S‖ ≤ lim sup
n
‖T − Sn‖ ≤ k lim sup

n
α(T,Un).

We thus conclude that

d(T,U) ≤ ‖T − S‖ ≤ lim sup
n

k(Un)α(T,U).

We next introduce a hyperreflexivity analogue of approximately I-injective

masa-bimodules defined in [8]. Let us say that a uniformly bounded sequence

(Φn)n∈N ⊆ I decreases to a subspace V ⊆ B(H) if Φ1 ≥ Φ2 ≥ . . . and V =⋂
n Ran Φn. Recall [8] that in this case, the masa bimodule V is said to be

approximately I-injective.

Definition 4.4: A masa-bimodule V ⊆ B(H) will be called approximately H-

injective if there is a uniformly bounded sequence (Φn)n∈N which decreases

to V such that

Φn ∈ H for each n ∈ N and sup
n∈N

λ(Φn) <∞.

The greatest lower bound of the possible values of the latter supremum will be

denoted by λH(V).

Theorem 4.5: If V is an approximately H-injective masa-bimodule and U is a

hyperreflexive masa-bimodule, then the algebraic sum U + V is hyperreflexive

and

k(U + V) ≤ k(U)λH(V).

Proof. Let (Φn)n∈N be a uniformly bounded sequence in H decreasing to V with

λ
def
= supn λ(Φn) <∞. By Lemma 4.1,

k(U + Ran Φn) ≤ k(U)λ(Φn),

so supn k(U + Ran Φn) < ∞. By [8, Corollary 3.4], the space U + V is weak*

closed, and by the proof of [8, Theorem 2.5],

U + V = U +
⋂
n

Ran Φn =
⋂
n

(U + Ran Φn).
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By Lemma 4.3, U + V is hyperreflexive and

k(U + V) = k
(⋂

n

(U + Ran Φn)
)
≤ lim sup

n
k(U + Ran Φn) ≤ λk(U).

Taking an infimum over all possible values of λ, we obtain k(U+V) ≤ k(U)λH(V).

Corollary 4.6: If U is a hyperreflexive masa-bimodule and M is a ternary

masa-bimodule, then U +M is hyperreflexive and k(U +M) ≤ 2k(U).

Proof. It is well-known that every ternary masa-bimodule is the intersection of

a descending sequence of ranges of contractive Schur idempotents (see, e.g., [8]).

By Proposition 3.11, M is approximately H-injective and λH(M) ≤ 2. The

statement now follows from Theorem 4.5.

5. Hyperreflexivity and intersections

In this section, we show that the intersection of a hyperreflexive masa-bimodule

and an approximately H-injective one is hyperreflexive. We first establish this

statement in a special case.

Lemma 5.1: If U is a hyperreflexive masa-bimodule and Φ ∈ H, then the inter-

section U ∩ Ran Φ is hyperreflexive and

k(U ∩ Ran Φ) ≤ λ(Φ) + ‖Φ‖k(U).

Proof. Let W = U ∩ Ran Φ. Since U is invariant under Φ, we have

(5) W = {Φ(X) : X ∈ U}.

For arbitrary T ∈ B(H) we have

‖T − Φ(X)‖ ≤ ‖T − Φ(T )‖+ ‖Φ‖‖T −X‖

≤ λ(Φ)α(T,Ran Φ) + ‖Φ‖‖T −X‖.

Thus,

inf
X∈U
‖T − Φ(X)‖ ≤ λ(Φ)α(T,Ran Φ) + ‖Φ‖ inf

X∈U
‖T −X‖

and, by (5),

d(T,W) ≤ λ(Φ)α(T,Ran Φ) + ‖Φ‖d(T,U)

≤ λ(Φ)α(T,Ran Φ) + ‖Φ‖k(U)α(T,U).
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By the monotonicty of α, we have

d(T,W) ≤ (λ(Φ) + ‖Φ‖k(U))α(T,W).

Theorem 5.2: If V is an approximately H-injective masa-bimodule and U is a

hyperreflexive masa-bimodule, then the intersectionW = U∩V is hyperreflexive

and

k(W) ≤ λH(V) + k(U) + λH(V)k(U).

Proof. Let (Φn)n∈N be a uniformly bounded sequence in H decreasing to V with

λ = sup
n∈N

λ(Φn) <∞.

Since ‖Φ⊥n ‖ ≤ λ(Φn) for all n, we have

(6) sup
n∈N
‖Φn‖ ≤ 1 + λ.

By the proof of [8, Theorem 2.5],

W = ∩∞n=1(U ∩ Ran Φn).

By (6) and Lemma 5.1,

k(U ∩ Ran Φn) ≤ λ+ (1 + λ)k(U), n ∈ N.

Lemma 4.3 now implies that W is hyperreflexive and

k(W) ≤ λ+ (1 + λ)k(U).

The stated estimate follows after taking the infimum over all possible values

of λ.

Using Theorem 5.2 and arguing as in the proof of Corollary 4.6, we obtain

the following corollary.

Corollary 5.3: If U is a hyperreflexive masa-bimodule and M is a ternary

masa-bimodule then U ∩M is hyperreflexive and

k(U ∩M) ≤ 2 + 3k(U).

Corollary 5.4: If U is a weak* closed nest algebra bimodule and M is a

ternary masa-bimodule then

k(U ∩M) ≤ 5.
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Proof. The statement is immediate from Corollary 5.3 and the fact that k(U) =

1 [6].

6. Hyperreflexivity and tensor products

In this section, we establish a preservation result for hyperreflexivity under the

formation of tensor products. In addition to the Hilbert space H, we fix a

separable Hilbert space K and a masa in B(K). If U ⊆ B(H) and V ⊆ B(K)

are subspaces, we denote by U ⊗ V their algebraic tensor product, viewed as a

subspace of B(H ⊗K), so that U⊗̄V is the weak* closure of U ⊗ V.

Recall that C(H) denotes the Boolean lattice generated by the contractive

Schur idempotents acting on B(H). By (2), it is easy to see that if Φ is a

contractive Schur idempotent on B(H), then Φ⊗ id is a contractive Schur idem-

potent on B(H ⊗ K). Since tensoring with the identity map on K commutes

with the lattice operations, it follows that if Φ ∈ C(H) then Φ⊗ id ∈ C(H⊗K).

By Corollary 3.12, (Ran Φ)⊗̄B(K) = Ran(Φ⊗ id) is hyperreflexive, so Ran Φ is

completely hyperreflexive. We let kc(Φ) = kc(Ran Φ), and λc(Φ) = λ(Φ⊗ id).

Theorem 6.1: Let Φi ∈ C(H), Xi = Ran Φi, and Ui ⊆ B(K) be a weak*

closed subspace, i = 1, . . . , n. Suppose that, for every non-empty subset E =

{i1, . . . , im} of the set {1, . . . , n}, the space

UE
def
= Ui1 + · · ·+ Uim

w∗

is completely hyperreflexive. Then the space

W = X1 ⊗ U1 + · · ·+ Xn ⊗ Un
w∗

is completely hyperreflexive.

Proof. It will be convenient to set U∅ = {0}. We first show that W is hyper-

reflexive. Let S be the set of all subsets of {1, . . . , n}. For E ∈ S, let

ΦE =
∧
i∈E

Φi, and ΨE =
∨
i∈E

Φi,

where Φ∅ = id and Ψ∅ = 0. Then

(7) id =
∑
E∈S

ΦEΨ⊥Ec .
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Note that, for each E ∈ S, we have

(8) W ⊆ Ran ΨEc ⊗ B(K) + B(H)⊗ UE
w∗

.

Indeed, for each i, either i ∈ E, in which case Xi ⊗Ui ⊆ B(H)⊗UE , or i ∈ Ec,
in which case Xi ⊗ Ui ⊆ Ran ΨEc ⊗ B(K).

For E ∈ S, set

θE = (ΦEΨ⊥Ec)∗ = (ΦE)∗(Ψ
⊥
Ec)∗

and let ω ∈ W⊥. Since W is invariant under the map ΦEΨ⊥Ec , we have that

(9) θE(ω) ∈ W⊥.

By (7), ω =
∑
E∈S θE(ω).

We claim that

(10) θE(ω) ∈
(
(Ran ΨEc)⊗ B(K) + B(H)⊗ UE

)
⊥.

To show (10), suppose first that X ∈ Ran ΨEc and B ∈ B(K). Then

〈X ⊗B, θE(ω)〉 = 〈X ⊗B, (Ψ⊥Ec)∗(θE(ω))〉 = 〈Ψ⊥Ec(X ⊗B), θE(ω)〉 = 0,

and hence

(11) θE(ω) ∈
(
(Ran ΨEc)⊗̄B(K)

)
⊥.

Now let A ∈ B(H) and Y ∈ UE . Then

ΦE(A⊗ Y ) ∈ (∩i∈EXi)⊗ UE ⊆ W

and, using (9), we see that

〈A⊗ Y, θE(ω)〉 = 〈A⊗ Y, (ΦE)∗(θE(ω))〉 = 〈ΦE(A⊗ Y ), θE(ω)〉 = 0.

Thus,

(12) θE(ω) ∈ (B(H)⊗̄UE)⊥.

Now (11) and (12) imply (10).

Let

kE
def
= kc(UE)

∏
i∈Ec

λc(Φi)

and fix ε > 0. By Lemma 4.1, (Ran ΨEc)⊗̄B(K) + B(H)⊗̄UE is hyperreflexive

and

k((Ran ΨEc)⊗̄B(K) + B(H)⊗̄UE) ≤ kc(UE)λc(ΨEc) ≤ kE
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since, by Lemma 4.1 and Remark 3.4,

λc(ΨEc) ≤
∏
i∈Ec

λc(Φi).

It thus follows from (10) and Theorem 3.6 that there exist rank one operators

ω`E ∈
(
(Ran ΨEc)⊗̄B(K) + B(H)⊗̄UE

)
⊥, ` ∈ N,

such that
∞∑
`=1

‖ω`E‖1 < (kE + ε)‖θE(ω)‖ ≤ (kE + ε)‖ΦEΨ⊥Ec‖‖ω‖1

and

θE(ω) =

∞∑
`=1

ω`E

in the trace norm. It follows that∑
E∈S

∞∑
`=1

‖ω`E‖1 ≤

(∑
E∈S

(kE + ε)‖ΦEΨ⊥Ec‖

)
‖ω‖1

and

ω =
∑
E∈S

∞∑
`=1

ω`E

in the trace norm.

Note that, by (8), ω`E ∈ W⊥ for each E ∈ S and each ` ∈ N. By Theorem 3.6,

W is hyperreflexive and

(13) k(W) ≤
∑
E∈S

kc(UE)
∏
i∈Ec

λc(Φi)‖ΦEΨ⊥Ec‖.

To see that W is completely hyperreflexive, note that, if H is a separable

Hilbert space, then

B(H)⊗̄W = (B(H)⊗̄X1)⊗ U1 + · · ·+ (B(H)⊗̄Xn)⊗ Un
w∗

.

Since B(H)⊗̄Xi = Ran(id⊗Φi) and λc(id⊗Φi) = λc(Φi), i = 1, . . . , n, the claim

now follows from the previous paragraphs.

Remark 6.2: It should be noted that the (complete) hyperreflexivity of the

spaces UE cannot be omitted from the assumptions of Theorem 6.1. Indeed, it

is implied by its conclusion by taking Φi = id for i ∈ E and Φi = 0 for i 6∈ E.
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Corollary 6.3: Let Φ ∈ C(H), X = Ran Φ and U ⊆ B(K) be a completely

hyperreflexive subspace. Then the space W = X⊗̄U is hyperreflexive and

k(W) ≤ λc(Φ)‖Φ⊥‖+ kc(U)‖Φ‖.

Proof. The claim is immediate from estimate (13), after taking into account

that λc({0}) = kc({0}) = 1.

Corollary 6.4: Let {Φ1, . . . ,Φn} ⊆ C(H), and {Ψ1, . . . ,Ψn} ⊆ C(K). If

Xi = Ran Φi and Yi = Ran Ψi, i = 1, . . . , n, then the space

X1⊗̄Y1 + · · ·+ Xn⊗̄Yn

is hyperreflexive.

Proof. The statement is immediate from Theorem 6.1, Theorem 3.10 and the

fact that W is weak* closed (see [8, Corollary 3.4]).

Remark 6.5: The preceding three results hold more generally (with identi-

cal proofs) if we replace C(H) in the hypotheses with the lattice Hc of Schur

idempotents with completely hyperreflexive range:

Hc = {Φ ∈ H : λc(Φ) <∞}.

On the other hand, C(H) seems a more natural class to work with.

Theorem 6.6: Let Mi ⊆ B(H) be a ternary masa-bimodule and Ui ⊆ B(K)

be a weak* closed subspaces, i = 1, . . . , n. Suppose that for every non-empty

subset E = {i1, . . . , im} of the set {1, . . . , n}, the subspace

UE
def
= Ui1 + · · ·+ Uim

w∗

is completely hyperreflexive. Then the space

W =M1 ⊗ U1 + · · ·+Mn ⊗ Un
w∗

is completely hyperreflexive.

Proof. As in the proof of Corollary 4.6, we may write

Mi =

∞⋂
j=1

Ran Φij , i = 1, . . . , n,



Vol. 00, XXXX SCHUR IDEMPOTENTS AND HYPERREFLEXIVITY 19

where each Φij is a contractive Schur idempotent such that Φij+1 ≤ Φij for all i

and j. Fix natural numbers j2, . . . , jn. Letting

Vj = Ran Φ1
j ⊗ U1 +

n∑
i=2

Ran Φiji ⊗ Ui

w∗

, j ∈ N,

we see that Vj+1 ⊆ Vj for each j and, by Theorem 6.1, supj k(Vj) <∞. By [9,

Corollary 4.21],

W1
def
= ∩j∈NVj =M1 ⊗ U1 +

n∑
i=2

Ran Φiji ⊗ Ui

w∗

.

By Lemma 4.3, the space W1 is hyperreflexive. Continuing inductively, we see

that the space

Wm
def
=

m∑
i=1

Mi ⊗ Ui +

n∑
i=m+1

Ran Φiji ⊗ Ui

w∗

is hyperreflexive for each m = 1, . . . , n; in particular, the space W = Wn is

hyperreflexive.

Let H be a separable Hilbert space. The space W⊗̄B(H) is unitarily equiva-

lent to

(M1⊗̄B(H))⊗ (U1⊗̄B(H)) + · · ·+ (Mn⊗̄B(H))⊗ (Un⊗̄B(H))
w∗

.

Since the spaces Mi⊗̄B(H) are ternary masa bimodules, while the spaces

Ui⊗̄B(H) are completely hyperreflexive, by the first part of the proof, the space

W⊗̄B(H) is hyperreflexive.

Corollary 6.7: If M is a von Neumann algebra of type I and A is a nest

algebra then M⊗̄A is hyperreflexive and k(M⊗̄A) ≤ 5.

Proof. Immediate from Theorem 6.6 or, alternatively, from Corollary 5.4.
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