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Abstract. In the spirit of Grothendieck’s famous inequality from the
theory of Banach spaces, we study a sequence of inequalities for the
noncommutative Schwartz space, a Fréchet algebra of smooth opera-
tors. These hold in non-optimal form by a simple nuclearity argument.
We obtain optimal versions and reformulate the inequalities in several
different ways.

1. Introduction

The noncommutative Schwartz space S is a weakly amenable m-convex

Fréchet algebra whose properties have been investigated in several recent

papers, see e.g. [2, 3, 13, 14]. It is not difficult to see that as a Fréchet

space, S is nuclear. From this, we can easily deduce the following analogue

of Grothendieck’s inequality, which we call Grothendieck’s inequality in S:

there exists a constant K > 0 so that for any continuous bilinear form

u : S ×S → C and any n ∈ N, there exists k ∈ N such that for every m ∈ N
and any x1, . . . , xm, y1, . . . , ym ∈ S, we have

(1)
∣∣∣ m∑
j=1

u(xj, yj)
∣∣∣ 6 K‖u‖∗n ‖(xj)‖RC

k ‖(yj)‖RC
k

The norms on the right hand side arise naturally from the definition of S,

as explained in Section 2 below. Our goal in this note is to show that in

fact k = 2n+ 1 always suffices, and that this is best possible.

This appears to be the first result concerning Grothendieck’s inequal-

ity in the category of Fréchet algebras; to the best of our knowledge, all

previous results along these lines concern Banach spaces (including C∗-

algebras, general Banach algebras and operator spaces). For Fréchet al-

gebras, Grothendieck’s inequality seems to have a specific flavour. Every
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Fréchet space (and a fortiori, every Fréchet algebra) which appears natu-

rally in analysis is nuclear, meaning that all tensor product topologies are

equal. Since Grothendieck’s inequality can be understood as the equiva-

lence of two tensor products, it seems that we can take inequality (1) for

granted. The interesting question that remains is then optimality.

This paper is divided into four sections. In the remainder of this sec-

tion, we recall a C∗-algebraic version of Grothendieck’s inequality due to

Haagerup, and then review the definition and the basic properties of S which

we require. In Section 2 we explain how nuclearity gives Grothendieck’s in-

equality in S, and we estimate the constants K and k. Section 3 then settles

the optimality question for k via a matricial construction. We conclude with

a short section containing several reformulations of the inequality.

1.1. Grothendieck’s inequality. Pisier’s survey article [12] is a compre-

hensive reference for Grothendieck’s inequality. This presents many equiv-

alent formulations and applications of this famous result, and recounts its

evolution from ‘commutative’ [5] to ‘noncommutative’. Of these reformu-

lations and extensions, Haagerup’s noncommutative version most closely

resembles (1), and we state it here for the convenience of the reader.

Theorem 1 ([6], [12, Theorem 7.1]). Let A and B be C∗-algebras. For any

bounded bilinear form u : A × B → C and any finite sequence (xj, yj) in

A×B, we have ∣∣∣∑u(xj, yj)
∣∣∣ 6 2‖u‖ ‖(xj)‖RC ‖(yj)‖RC

where ‖(xj)‖RC := max
{∥∥∑x∗jxj

∥∥ 1
2 ,
∥∥∑xjx

∗
j

∥∥ 1
2
}

.

1.2. The noncommutative Schwartz space. Let

s =
{
ξ = (ξj)j∈N ∈ CN : |ξ|n :=

( +∞∑
j=1

|ξj|2j2n
) 1

2
< +∞ for all n ∈ N

}
denote the so-called space of rapidly decreasing sequences. This space be-

comes Fréchet when endowed with the above-defined sequence (| · |n)n∈N

of norms. The basis (Un)n∈N of zero neighbourhoods of s is defined by

Un := {ξ ∈ s : |ξ|n 6 1}. The topological dual of s is the so-called space of

slowly increasing sequences

s′ =
{
η = (ηj)j∈N ∈ CN : |η|′n :=

( +∞∑
j=1

|ηj|2j−2n
) 1

2
< +∞ for some n ∈ N

}
where the duality pairing is given by 〈ξ, η〉 :=

∑
j∈N ξjηj for ξ ∈ s, η ∈ s′.
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The noncommutative Schwartz space S is the Fréchet space L(s′, s) of

all continuous linear operators from s′ into s, endowed with the topology of

uniform convergence on bounded sets. The formal identity map ι : s ↪→ s′

is a continuous embedding and defines a product on S by xy := x ◦ ι ◦ y for

x, y ∈ S. There is also a natural involution on S given by 〈x∗ξ, η〉 := 〈ξ, xη〉
for x ∈ S, ξ, η ∈ s′. With these operations, S becomes an m-convex Fréchet

∗-algebra. The inclusion map S ↪→ K(`2) is continuous, and in fact it is

a spectrum-preserving ∗-homomorphism [3]. Moreover [14, Proposition 3],

an element x ∈ S is positive (i.e., x = y∗y for some y ∈ S), if and only

if the spectrum of x is contained in [0,+∞), or equivalently 〈xξ, ξ〉 ≥ 0

for all ξ ∈ s′. On the other hand, by [3, Cor. 2.4] and [4, Theorems 8.2,

8.3], the topology of S cannot be given by a sequence of C∗-norms. This

causes some technical inconvenience (e.g. there is no bounded approximate

identity in S) meaning we cannot apply C∗-algebraic techniques directly.

2. The inequality

Let (‖ · ‖n)n∈N be a non-decreasing sequence of norms which gives the

topology of S. For u : S × S → C a continuous bilinear form, we write

‖u‖∗n := sup{|u(x, y)| : x, y ∈ Un}

where Un = {x ∈ S : ‖x‖n 6 1}; similarly, for a functional φ ∈ S ′, we write

‖φ‖∗n := sup{|φ(x)| : x ∈ Un}.

Following Pisier [11, p. 316], for k ∈ N and x1, x2, . . . , xm ∈ S, we write

‖(xj)‖RC
k = max

{∥∥∥ m∑
j=1

x∗jxj

∥∥∥ 1
2

k
,
∥∥∥ m∑
j=1

xjx
∗
j

∥∥∥ 1
2

k

}
.

Relative to our choice of norms ‖ · ‖n, we have now defined each term in our

hoped-for inequality (1). We will now reformulate it using tensor products.

For C∗-algebras, such a reformulation is standard. Indeed, by [6, Theo-

rem 1.1] (formulated along the lines of [8, Theorem 2.1]), Haagerup’s non-

commutative Grothendieck inequality entails the existence of a K > 0 such

that for any C∗-algebras A,B and z in the algebraic tensor product A⊗B,

we have ‖z‖π 6 K‖z‖ah where ‖·‖π is the projective tensor norm and ‖·‖ah
is the absolute Haagerup tensor norm [8, p. 164] on A⊗B, given by

‖z‖ah = inf
∥∥∥ m∑
j=1

|xj|2
∥∥∥ 1

2
∥∥∥ m∑
j=1

|yj|2
∥∥∥ 1

2
.

Here |x| =
(
1
2
(x∗x+xx∗)

) 1
2 for x an element of a C∗-algebra, and the infimum

is taken over all representations z =
∑m

j=1 xj ⊗ yj where (xj, yj) ∈ A×B.
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We proceed similarly for S. For x ∈ S, let |x|2 = 1
2
(x∗x+ xx∗) ∈ S and

consider the sequence of absolute Haagerup tensor norms (‖ · ‖ah,n)n∈N on

the algebraic tensor product S ⊗ S given by

‖z‖ah,n := inf
∥∥∥ m∑
j=1

|xj|2
∥∥∥ 1

2

n

∥∥∥ m∑
j=1

|yj|2
∥∥∥ 1

2

n

where the infimum runs over all ways to represent z =
∑m

j=1 xj⊗yj in S⊗S.

As usual, we write (‖ · ‖π,n)n∈N for the sequence of projective tensor norms

on S ⊗ S.

Just as in the C∗-algebra case, inequality (1) will follow once we show

that the sequences of projective and absolute Haagerup tensor norms are

equivalent on S ⊗ S. In fact, the equivalence of these norms follows imme-

diately from the nuclearity of S (see [9, Theorem 28.15] and [7, Ch. 21, §2,

Theorem 1] for details). On the other hand, the optimal values of k and K

(depending on n and our choice of norms (‖ · ‖n)n∈N) for which (1) hold are

not given by such general considerations. These optimal parameters will be

denoted by κ(n) := kbest and Kn := Kbest.

Henceforth, we focus only on the sequence of norms (‖ · ‖n)n∈N where

‖x‖n := sup{|xξ|n : ξ ∈ U◦n}, n ∈ N, x ∈ S

and U◦n = {ξ ∈ s′ : |ξ|′n 6 1}. In other words, ‖x‖n is the norm of x ∈ S,

considered as a Hilbert space operator from H ′n := `2((j
−n)j) to Hn :=

`2((j
n)j). This sequence does indeed induce the topology of S. In this

context, we will estimate Kn and compute the exact values of κ(n).

We start with the following result, which can be compared with [14,

Lemma 8]. To fix some useful notation, for n ∈ N we define an infinite diag-

onal matrix dn := diag(1n, 2n, 3n, 4n, . . . ) which we consider as an isometry

dn : `2 → H ′n and simultaneously as an isometry dn : Hn → `2.

Proposition 2. Let n ∈ N. We have

(i) ‖x‖n = sup{〈xξ, ξ〉 : ξ ∈ U◦n} for every positive x ∈ S;

(ii) ‖x‖2n 6 ‖x2‖2n for every self-adjoint x ∈ S; and

(iii) ‖x‖2n 6 ‖x∗x‖
1
2
2n‖xx∗‖

1
2
2n for every x ∈ S.

Moreover, inequalities (ii) and (iii) are sharp.

Proof. (i) Observe that ‖x‖n = ‖dnxdn‖B(`2). Furthermore, since x is posi-

tive, dnxdn is positive and we have

‖x‖n = ‖dnxdn‖B(`2) = sup{〈xdnξ, dnξ〉 : |ξ|`2 6 1}

= sup{〈xξ, ξ〉 : |ξ|′n 6 1}.
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(ii) For x self-adjoint, we have ‖x2‖2n = ‖d2nx2d2n‖B(`2) = ‖d2nx‖2B(`2),
and by [1, Proposition II.1.4.2],

‖x‖n = ‖dnxdn‖B(`2) = ν(dnxdn) = ν(d2nx) 6 ‖d2nx‖B(`2),

where ν(·) denotes the spectral radius. This gives the desired inequality.

(iii) Since S ↪→ B(`2), any x ∈ S is also a Hilbert space operator, and

the block-matrix operator
[
(xx∗)1/2 x

x∗ (x∗x)1/2

]
is positive in B(`2 ⊕ `2) (see

e.g. [10, p. 117]). Equivalently,

(2) |〈xξ, η〉|2 6 〈(xx∗)1/2η, η〉〈(x∗x)1/2ξ, ξ〉 ∀ ξ, η ∈ `2.

For m ∈ N, let us write pm := [ Im 0
0 0 ] where Im ∈Mm is the identity matrix.

Now fix n ∈ N and choose ξ, η ∈ H ′n. Then pmξ, pmη ∈ `2 for all m ∈ N and

(2) gives

|〈pmxpmξ, η〉|2 6 〈pm(xx∗)1/2pmη, η〉〈pm(x∗x)1/2pmξ, ξ〉.

Since (pm)m∈N is an approximate identity in S (see [14, Proposition 2]), we

obtain

|〈xξ, η〉|2 6 〈(xx∗)1/2η, η〉〈(x∗x)1/2ξ, ξ〉.

Taking the supremum over all ξ, η in the unit ball of H ′n we get

‖x‖2n 6 ‖(xx∗)1/2‖n‖(x∗x)1/2‖n.

Applying (ii) to the positive operators (xx∗)1/2 and (x∗x)1/2 we conclude

that ‖x‖2n 6 ‖x∗x‖
1
2
2n‖xx∗‖

1
2
2n.

For sharpness, observe that if x is a diagonal rank one matrix unit then

we have equality in both (ii) and (iii). �

Proposition 3. For any n,m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ S, we have

m∑
j=1

‖xj‖n‖yj‖n

6
π2

6

∥∥∥ m∑
j=1

x∗jxj

∥∥∥ 1
4

2n+1

∥∥∥ m∑
j=1

xjx
∗
j

∥∥∥ 1
4

2n+1

∥∥∥ m∑
j=1

y∗j yj

∥∥∥ 1
4

2n+1

∥∥∥ m∑
j=1

yjy
∗
j

∥∥∥ 1
4

2n+1
.

Proof. Let C := π2

6
and let p ∈ N. We claim that

m∑
k=1

‖x∗kxk‖p 6 C
∥∥∥ m∑
k=1

x∗kxk

∥∥∥
p+1

.

By the Cauchy–Schwarz inequality and Proposition 2(iii) this will then im-

ply the desired inequality. To establish the claim, let ξ1, . . . , ξm ∈ U◦p and
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let us write (ej)j∈N for the standard basis vectors in `2. We have

m∑
k=1

〈x∗kxkξk, ξk〉 =
m∑
k=1

+∞∑
i,j=1

〈x∗kxkej, ei〉(ij)pξki i−pξkj j−p.

Applying the Cauchy–Schwarz inequality to summation over i, j ∈ N gives
m∑
k=1

〈x∗kxkξk, ξk〉 6
m∑
k=1

( +∞∑
i,j=1

|〈x∗kxkej, ei〉|2(ij)2p
) 1

2
.

Since x∗x is positive for any x ∈ S, and for positive operators y ∈ S we

have |yij|2 6 yiiyjj (where yij := 〈yej, ei〉), this implies that

m∑
k=1

〈x∗kxkξk, ξk〉 6
+∞∑
j=1

〈( m∑
k=1

x∗kxk

)
jpej, j

pej

〉
6

+∞∑
j=1

j−2 sup
i∈N

〈( m∑
k=1

x∗kxk

)
ip+1ei, i

p+1ei

〉
6 C

∥∥∥ m∑
k=1

x∗kxk

∥∥∥
p+1

.

By Proposition 2(i), for any ε > 0 there are ξ1, . . . , ξm ∈ U◦p with

m∑
k=1

‖x∗kxk‖p <
m∑
k=1

〈x∗kxkξk, ξk〉+ ε < C
∥∥∥ m∑
k=1

x∗kxk

∥∥∥
p+1

+ ε.

Taking the infimum over ε > 0 yields the claim. �

As a straightforward consequence of Proposition 3, we obtain:

Theorem 4 (Grothendieck’s inequality in S). There is a constant K 6 π2

6

such that ‖z‖π,n 6 2K‖z‖ah,2n+1 for any n ∈ N and z ∈ S ⊗ S. Moreover,

every continuous bilinear form u : S × S → C satisfies inequality (1) with

k = 2n + 1, for any n,m ∈ N and any x1, . . . , xm, y1, . . . , ym ∈ S. In

particular, taking u(x, y) := φ(x)φ(y) where φ ∈ S ′, we obtain

(3)
m∑
j=1

|φ(xj)|2 6 K(‖φ‖∗n ‖(xj)‖RC
2n+1)

2

Remark. This shows that κ(n) 6 2n + 1. On the other hand, it is easy

to show that κ(n) > 2n − 1. Indeed, if not, then (3) would hold with

2n + 1 replaced by some ` 6 2n − 1. Take m ∈ N, define ξm :=
∑m

j=1 j
nej

and φm ∈ S ′ by φm(x) := 〈xξm, ξm〉. Then for xj := ejj, j = 1, . . . ,m we

get ‖(xj)‖RC
` = m` and ‖φm‖∗n = m. On the other hand,

∑m
j=1 |φm(xj)|2

is equivalent (up to a constant) to m4n+1. Therefore (3) takes the form

m4n+1 6 Cm2`+2 for some constant C (independent of m). Letting m tend

to infinity, we obtain ` > 2n− 1
2
, a contradiction. Hence κ(n) ∈ {2n, 2n+1}.
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3. Optimality

We will now show that κ(n) = 2n + 1. For this, we will use the tensor

product formulation, noting that

κ(n) = min
{
k ∈ N : sup

{ ‖z‖π,n
‖z‖ah,k

: z ∈ S ⊗ S, z 6= 0
}
<∞

}
.

Recall the diagonal operator dn defined on page 4 above. Since every x ∈ S
is an operator on `2 via the canonical inclusions `2

dn
↪→ H ′n

x−→ Hn
dn
↪→ `2, it is

clear that if x ∈ S, then dnx and xdn are both operators on `2. This leads

to the following observation.

Proposition 5. If z =
∑k

j=1 xj ⊗ yj ∈ S ⊗ S, then

‖z‖π,n =
∥∥∥ k∑
j=1

dnxjdn ⊗ dnyjdn
∥∥∥
π
.

Proof. Write

∆nz =
k∑
j=1

dnxjdn ⊗ dnyjdn ∈ B(`2)⊗ B(`2).

If ∆nz =
∑m

l=1 al ⊗ bl ∈ B(`2)⊗ B(`2) and
∑m

l=1 ‖al‖‖bl‖ < ‖∆nz‖π + ε for

some ε > 0, then z =
∑m

l=1 d
−1
n ald

−1
n ⊗ d−1n bld

−1
n and

‖z‖π,n 6
m∑
l=1

‖d−1n ald
−1
n ‖n‖d−1n bld

−1
n ‖n =

m∑
l=1

‖al‖‖bl‖ < ‖∆nz‖π + ε.

This gives ‖z‖π,n 6 ‖∆nz‖π. The reverse inequality is proved similarly. �

We also need the following well-known fact.

Proposition 6. If H is a Hilbert space and x1, . . . , xm ∈ B(H), then∥∥∥ m∑
j=1

xj ⊗ x∗j
∥∥∥
h

=
∥∥∥ m∑
j=1

xjx
∗
j

∥∥∥.
Proof. By [15, Theorem 4.3], the Haagerup norm on the left hand side is

equal to the completely bounded norm of the map on B(H) given by a 7→∑m
j=1 xjax

∗
j , which is completely positive, so attains its completely bounded

norm at the identity operator. �

Theorem 7. For every n ∈ N, we have κ(n) = 2n+ 1.

Proof. By Theorem 4, it only remains to show that κ(n) > 2n. Choose

kn ∈ N sufficiently large that k + 1 6 2k(k
1
4n − 1) for all k > kn. This

inequality ensures that for every k > kn, if we define

i1 = 2k, ik+1 = bk
1
4n 2kc, ij = ik+1 + j − (k + 1), 2 6 j 6 k,
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then i1 < i2 < · · · < ik+1. Denote by (eij)i,j∈N the standard matrix units,

and for j = 2, . . . , k + 1, consider the self-adjoint operators

xj := ei1,ij + eij ,i1 ∈Mik+1
⊂ S.

Let zk :=
∑k+1

j=2 xj ⊗ xj. Since dnxjdn = in1 i
n
j (ei1,ij + eij ,i1) and (dnxjdn)2 =

i2n1 i
2n
j (ei1,i1 + eij ,ij), by Propositions 5 and 6 we obtain

‖zk‖π,n =
∥∥∥ k+1∑
j=2

dnxjdn ⊗ dnxjdn
∥∥∥
π

>
∥∥∥ k+1∑
j=2

dnxjdn ⊗ dnxjdn
∥∥∥
h

=
∥∥∥ k+1∑
j=2

(dnxjdn)2
∥∥∥ = i2n1

k+1∑
j=2

i2nj .

On the other hand,

|xj|2 = x2j = ei1,i1 + eij ,ij and
k+1∑
j=2

d2nx
2
jd2n = i4n1 kei1,i1 +

k+1∑
j=2

i4nj eij ,ij .

Therefore

‖zk‖ah,2n 6
∥∥∥ k+1∑
j=2

|xj|2
∥∥∥
2n

=
∥∥∥ k+1∑
j=2

d2nx
2
jd2n

∥∥∥ = max{i4n1 k, i4nk+1}

6 i4n1 k + i4nk+1.

Hence

‖zk‖π,n
‖zk‖ah,2n

>
i2n1
∑k+1

j=2 i
2n
j

i4n1 k + i4nk+1

>
i−2n1 i2n2

1 + k−1i−4n1 i4nk+1

→∞ as k →∞,

by our choice of i1, . . . , ik+1. So κ(n) > 2n as required. �

4. Reformulations of the inequality

Here we give several different ways of stating our inequality; in each

case, an analogous result may be found in [12]. The methods here are

fairly standard, so full proofs are often omitted. Throughout, we write

K = supn∈NKn 6 π2/6.

4.1. Grothendieck’s inequality with states. Given ξ ∈ U◦n, let φξ ∈ S ′

be given by φξ(x) = 〈xξ, ξ〉, x ∈ S. We call an element of the closed convex

hull of {φξ : ξ ∈ U◦n} an n-state on S. Note that by Proposition 2(i), for

any positive element x ∈ S we have ‖x‖n = sup{φ(x) : φ ∈ Vn}, where

Vn ⊆ S ′ is the set of all n-states on S. The next result may be deduced

from Theorem 4 by closely following the Hahn–Banach Separation argument

of [12, §23].
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Theorem 8. For any continuous bilinear form u : S × S → C and n ∈ N,

there are (2n+ 1)-states φ1, φ2, ψ1, ψ2 on S with

|u(x, y)| 6 K‖u‖∗n
(
φ1(x

∗x) + φ2(xx
∗)
) 1

2
(
ψ1(y

∗y) + ψ2(yy
∗)
) 1

2

for all x, y ∈ S.

4.2. ‘Little’ Grothendieck inequality. As a consequence we obtain the

following ‘little’ Grothendieck inequality in S. Recall that if T : X → Y is a

linear map between Fréchet spaces, then ‖T‖n,k := sup{‖Tx‖k : ‖x‖n 6 1}.

Theorem 9. For any Fréchet-Hilbert space H, if u1, u2 : S → H are con-

tinuous linear maps, k,m, n ∈ N and x1, . . . , xm, y1, . . . , ym ∈ S, then∣∣∣ m∑
j=1

〈u1(xj), u2(yj)〉k
∣∣∣ 6 K‖u1‖n,k ‖u2‖n,k ‖(xj)‖RC

2n+1 ‖(yj)‖RC
2n+1.

Equivalently, for any k, n ∈ N there are (2n + 1)-states φ1, φ2, ψ1, ψ2 such

that for all x, y ∈ S we have

|〈u1(x), u2(y)〉k| 6 K‖u1‖n,k‖u2‖n,k

×
(
φ1(x

∗x) + φ2(xx
∗)
) 1

2
(
ψ1(y

∗y) + ψ2(yy
∗)
) 1

2 .

Proof. Apply Theorems 4 and 8 to uk(x, y) := 〈u1(x), u2(y)〉k for k ∈ N. �

Using the same argument as in the proof of Theorem 8 we can obtain an

equivalent version of the ‘little’ Grothendieck inequality.

Theorem 10. For any Fréchet-Hilbert space H, if u : S → H is a contin-

uous linear map and k, n ∈ N, then there exist (2n + 1)-states φ1, φ2 on S
such that for all x ∈ S we have ‖ux‖k 6

√
K‖u‖n,k

(
φ1(x

∗x) + φ2(xx
∗)
) 1

2 .
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E-mail address: kpk@amu.edu.pl


	1. Introduction
	1.1. Grothendieck's inequality
	1.2. The noncommutative Schwartz space

	2. The inequality
	3. Optimality
	4. Reformulations of the inequality
	4.1. Grothendieck's inequality with states
	4.2. `Little' Grothendieck inequality

	References

