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Abstract—News and social media now play a synergistic role and neither domain can be grasped in isolation. On one hand, platforms
such as Twitter have taken a central role in the dissemination and consumption of news. On the other hand, news editors rely on social
media for following their audience’s attention and for crowd-sourcing news stories. Twitter hashtags function as a key connection
between Twitter crowds and the news media, by naturally naming and contextualizing stories, grouping the discussion of news and
marking topic trends. In this work we propose Hashtagger+, an efficient learning-to-rank framework for merging news and social
streams in real-time, by recommending Twitter hashtags to news articles. We provide an extensive study of different approaches for
streaming hashtag recommendation, and show that pointwise learning-to-rank is more effective than multi-class classification as well
as more complex learning-to-rank approaches. We improve the efficiency and coverage of a state-of-the-art hashtag recommendation
model by proposing new techniques for data collection and feature computation. In our comprehensive evaluation on real-data we
show that we drastically outperform the accuracy and efficiency of prior methods. Our prototype system delivers recommendations in
under 1 minute, with a Precision@1 of 94% and article coverage of 80%. This is an order of magnitude faster than prior approaches,
and brings improvements of 5% in precision and 20% in coverage. By effectively linking the news stream to the social stream via the
recommended hashtags, we open the door to solving many challenging problems related to story detection and tracking. To showcase
this potential, we present an application of our recommendations to automated news story tracking via social tags. Our
recommendation framework is implemented in a real-time Web system available from insight4news.ucd.ie.

Index Terms—Learning-to-rank, Dynamic Topics, Social Tags, News, Real-time Hashtag Recommendation, Digital Journalism.
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1 INTRODUCTION

Twitter is a fast growing social media platform that has
taken a central role in the consumption, production and
dissemination of news. In a recent study, nearly 9 in 10
Twitter users say they use Twitter for news, and the vast
majority of those (74%) do so daily [1]. Most of the news
stories spreading on Twitter have names, in the form of
hashtags that contextualize the stories. These keyword-based
tags, describing the content of a tweet, are a natural way to
label tweets for news stories. For example, #Brexit, #Remain,
#VoteLeave were heavily used for Twitter discussions on
the EU membership referendum held in UK in June 2016.
Hashtags tend to appear spontaneously around breaking
news or developing news stories, and are a way for news
readers to connect to a particular story and community, to
get focused updates in real-time. News organizations use
hashtags to target Twitter communities in order to promote
original content and engage readers. Journalists sometimes
introduce new hashtags, but the Twitter crowd is the one
that most often creates and drives the usage of a few of
many competing hashtags, thus echoing the current social
discourse (e.g., #Brexit, and the opinion camps of #Vote-
Leave and #Remain for the EU referendum story).

A news story can have multiple hashtags, and is likely
to have different hashtags at different stages of the story.
For example, in the Umbrella Revolution story (a series of
street protests in Hong Kong in 2014), Twitter played a huge
role: thousands of people were protesting and reporting on
ongoing events by tweeting with their phones. Three main
hashtags are used during the event: #HongKong, #Occu-
pyCentral and #UmbrellaRevolution. As shown in Figure
1, each hashtag dominates the discussion at different time
points: #HongKong, the location of the events, is popular
at the beginning of the story. #OccupyCentral becomes
popular when sit-in protests begin to attract wide atten-
tion, particularly on Twitter. Finally, #UmbrellaRevolution
dominates the topic as it refers to the protesters using um-
brellas to protect themselves from teargas. The relationship
between the news story and the hashtags is very dynamic,
with new hashtags being created and adopted by Twitter
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Fig. 1. Hashtags usage during the Umbrella Revolution event in 2014.

users at a rapid pace. It may be seen from this example that
for applications aiming to exploit hashtagging, it is critical to
capture the dynamic co-evolution of news and hashtags, as
the news story evolution influences the Twitter discussions,
which in turn may affect the news. We note that the content
of some articles may not be obviously related to a story,
but a hashtag recommender can use the social discourse to
create a bridge between news articles. Figure 2 showscases
this idea of bridging news articles using social tags.

In this work we propose a real-time hashtag recommen-
dation approach that is able to efficiently and effectively
capture the dynamic evolution of news and hashtags. Most
prior approaches for hashtag recommendation work on
static datasets and do not account for the emergence and dis-
appearance of hashtags. Many approaches use topic/class
modeling [2], [3], [4], by considering hashtags as topics, and
mapping news articles to topics using content similarity.
As the relevant hashtags change quickly and the news and
Twitter environments are highly dynamic, approaches that
use multi-class classification need continuous retraining to
adapt to new content. Additionally, to train models, these
methods rely on tweets that contain both hashtags and
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 News articles – Hashtag – Twitter conversation

#IndyRef
(Referendum on Scottish 
Independence) 

BBC: Scottish independence: Yes 
vote 'means big Scots EU boost'

BBC: Could Scotland compete on 
tax with Westminster?

IrishTimes: Brown promises 
more devolution for Scotland

RTE: Lloyds could move 
south if Scots vote for 
independence

Reuters: British PM heads to 
Scotland as independence 
campaign gathers steam

TheGuardian: 
Scottish independence: No 
camp sends for Gordon 
Brown as polls tighten

April 2016 4Fig. 2. Linking news articles via real-time recommended Twitter hash-
tags for the Scottish referendum story.

URLs. Such tweets are very few and tend to be noisy, which
may explain the low accuracy of prior methods (e.g., 50%
precision reported in recent work [4], [5]).

Our previous work [6] has introduced an accurate
learning-to-rank (L2R) approach for streaming hashtag rec-
ommendation to news, but its efficiency and coverage is still
not appropriate for practical use. The model in [6] has a
time consuming data collection stage for each new article,
and thus requires 12 hours to deliver 89% precision and
66% article coverage. In this paper we refine the problem
statement to explicitly account for these requirements and
propose new techniques to solve this problem.

Problem Statement. We aim to map a stream of news
articles to a stream of Twitter hashtags, in real-time, with
high-precision and high-coverage. Real-time refers to the
efficiency of a solution: given a new article, how quickly can
we recommend hashtags? For example, we prefer a solution
that can deliver recommendations in under 5mins, while a
solution that takes hours is not acceptable. High-precision
refers to the quality of recommendations. For example, for
a news headline such as, Deadly car bomb targets Afghan
bank, we prefer focused recommendations, e.g., #afghanistan
#helmand, that refer to specific entities involved in this story,
instead of generic hashtags such as #news. High-coverage
refers to how many articles get recommended hashtags
within 5mins. For example, 8 out of 10 articles with at least
one recommendation is an example of good coverage, while
1 out of 10 is not.

New Techniques. To address the above problem, we
propose the following new techniques:
• An efficient L2R algorithm that works in real-time

streaming environments. The choice of L2R model-
ing in Hashtagger+, in contrast to multi-class classi-
fication (MCC) modeling in prior work, enables us to
address the following challenges:

– Many Classes: In MCC modeling, training
data is partitioned based on hashtags (a hash-
tag is interpreted as a class), and a model
is trained for each single hashtag. As there
are thousands of hashtags emerging every
few minutes, we need to train thousands of
models. Furthermore, by splitting the available
training data, MCC needs to collect enough
labeled data for each class. In our L2R model,
we can use all the labeled data to train a single
relevance model.

– Dynamic Classes: Hashtags are very dynamic,
thus if modeled as classes, previously trained
models will not be useful for predicting on
new data, since old hashtags are discarded and
new hashtags emerge rapidly. This means an
MCC model needs to be retrained often, while
our L2R model does not need retraining.

– Concept Drift: The usage and meaning of a
hashtag may change over time, thus its content

profile will be affected by concept drift. This
means pre-trained MCC models will not work
well if the meaning of the hashtag changes in
new data. Our L2R model is robust to concept
drift because hashtag relevance is stable over
time.

• New approaches for efficient and effective data col-
lection and feature engineering for the L2R model.
We propose new query generation methods to sum-
marize the key information in a given news article.
Query generation from text documents is still an
open problem [7] and has generated a lot of interest
in the research community. In our setting, we require
queries that can describe well what the article is
about, can be generated quickly and can retrieve
many relevant tweets. We design new algorithms to
address the cold-start challenge for real-time hashtag
recommendation. The key challenge is to re-use the
data collected for older articles to efficiently boot-
strap recommendations for new articles.

Besides presenting new algorithms, we also run a compre-
hensive empirical study. We compare 16 L2R algorithms
to understand which ones are better suited for real-time
hashtag recommendation and find that pointwise L2R with
a RandomForest algorithm delivers good precision and effi-
ciency. We also extend the analysis of our method and the
comparison to the state-of-the-art. We show that our new
model behaves very well for recommending hashtags to
both popular and more niche articles, i.e., those articles that
do not get a lot of attention/tweets on Twitter, a setting
where prior models do not have enough training data to
perform well.

Our new model delivers recommendations in under
1 minute, with 94% precision and 80% coverage, a 20%
improvement in coverage and an order of magnitude
improvement in efficiency, as compared to prior work [6].

Contributions. Our main contributions are as follows:
1) Improved hashtag recommendation model:

We improve the state-of-the-art hashtag
recommendation model in [6] by proposing
new approaches for data collection and feature
computation. We study four approaches for query
extraction from news articles and evaluate the
end-to-end effect on the recommendation precision,
coverage and running time. We analyse three
cold-start strategies to enhance the efficiency and
coverage of recommendation for new articles, by
bootstrapping the feature computation using data
collected for older stories.

2) Extensive empirical study: We provide an extensive
study of different approaches for streaming hashtag
recommendation, and show that pointwise L2R is
more effective than MCC and other more complex
L2R approaches. We also show that relevance
modeling allows us to deliver recommendations
to popular as well as niche (less popular) stories,
providing high coverage and precision even with
small amounts of available data, a setting where
most prior models do not perform well.

3) Applications of social tags: We deliver an effective
approach for merging news and social streams in
real-time, therefore opening the door for addressing
problems that are difficult to solve in either the news
or social domain (e.g., story linking, detection and
tracking). We apply our hashtag recommendations
to a real problem faced by newsrooms: automating
story retrieval and tracking by using social tags.

The rest of this paper is organized as follows. In Section
2 we discuss related work. In Section 3 we present our
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improved recommendation model. In Section 4 we present
the evaluation setting and experimental results for our ap-
proach and a comparison to the state-of-the-art. In Section 5
we discuss a real-world application of our recommendations
to the task of automated story tracking. We conclude in
Section 6 and present directions for future work.

2 RELATED WORK
Existing work on hashtag recommendation tackles the prob-
lem from either a class/topic modeling point of view, or
from a learning-to-rank perspective. We discuss recent lit-
erature from both categories of approaches, as applied to
tweets or news articles.

Hashtag Recommendation for Tweets. Prior work fo-
cusing on hashtag recommendation for tweets relies on
MCC modeling on static datasets. The work of [9], [10]
builds Naı̈ve Bayes or SVM classifiers for hashtags, where
(i) a hashtag is seen as a class and (ii) the tweets tagged
with that hashtag are assumed to be labeled data for that
class. Hashtag recommendation for tweets can be adapted
to recommendation for news, by treating the news headline
as a rich tweet. As we show in our experiments, MCC
approaches are overwhelmed by the data scale, sparsity and
noise characteristics of tweets.

Many other approaches employ topic modeling with
PLSA [2], [3], DPMM [4] and LDA [11], [12], [13], [14], [15].
For example [12] fits an LDA model to a set of tweets in or-
der to recommend hashtags. They combine the LDA model
with a translation model, to address the vocabulary gap
between tweets and hashtags. LDA-type approaches face
drastic challenges regarding both scalability and accuracy of
recommendation, since either hashtags that are too general
are recommended, e.g., #news, #life, or ones that are not
actively used by Twitter users. This happens because the
focus is on recommending hashtags solely driven by the
content of tweets [12]. These models are also not efficient
as they need to be constantly retrained to adapt to newly
emerging hashtags.

Some recent methods formulate hashtag recommenda-
tion based on multi-class modeling with deep neural nets.
The work in [5] proposed an attention-based Convolutional
Neural Network model for hashtag recommendation to
tweets. This approach works on a static dataset and im-
proves the state-of-the-art results, but the recommendation
precision is still around 50%.

The work in [16] uses pairwise L2R for hashtag recom-
mendation for tweets. This work is tailored for tweets with
at least one URL and one hashtag in their body, a very small
subset of the overall tweet pool discussing news. Training
on this small and noisy tweet set can pose serious problems
for the recommendation, resulting in low Precision (re-
ported P@1 of 40% in [16]) and low coverage, i.e., few tweets
receiving any recommendation at all (reported coverage of
50%). The data collection is seeded by an external set of
135 trending hashtags collected from hashtags.org each day.
This means that many of the hashtags used as seed do not
relate to news at all, but just happen to be trending on
hashtags.org at the time of collection. Furthermore, there is
no focus on news nor on efficient recommendation which is
critical for our setting. In contrast to the approach in [16], we
use the actual news articles to drive the selection of tweets
and candidate hashtags. In our experiments we compare to
the method of [16] and show that our model achieves much
better coverage and Precision@1.

Hashtag Recommendation for News. There is little prior
work focusing specifically on hashtag recommendation for
news. The approach in [17] relies on a manual user query to
retrieve related articles, which are then clustered to create a
topic profile. A hashtag profile is also created from tweets
collected from a set of manually selected accounts. Hashtags
with a similar profile to a cluster, are recommended to that
cluster. Since the experiments are done on a static collection,
the user engagement with the hashtag is not considered.

In [6] we proposed a high-precision pointwise L2R
framework for hashtag recommendation for news. In this
paper, we improve the efficiency and coverage of that
method, while preserving high-precision. We explore differ-
ent methods for retrieving relevant tweets for news articles
and evaluate the end-to-end effect on recommendation.
There are several published methods for retrieving tweets
for news articles. The method in [18] gathers news arti-
cles and tweets independently of each other, then uses co-
occurence terms for the two datasets (i.e., articles, tweets) to
connect the news and tweets. This approach to collect tweets
is not appropriate, as it may result in little or no overlap
with the news dataset. The method in [19] explores different
ways of generating queries from news articles, but is limited
to working only with tweets with URLs. We also generate
queries from news articles, but do not restrict ourselves to
tweets with URLs. We further advance the work in [6] with
an extensive study of MCC and L2R approaches evaluated
on the task of streaming hashtag recommendation for news.

The work in [20] focuses on temporal aspects of hashtag
recommendation and proposes two content-based models
implemented in a distributed manner. Again, the focus is on
hashtag recommendation for tweets with URLs, this time
aiming to extend the recommendation to the linked news
documents. Similar to other topic modeling approaches,
since the focus is on modeling content, rather than hashtag
relevance, these methods need to be constantly retrained to
keep up with the rapid shift in the news focus. As we show
in our experiments, our L2R approach does not need to be
retrained, and delivers higher precision due to the focus
on modeling hashtag relevance. Related to our work are
also recent approaches to real-time tag recommendation for
streaming scientific documents and webpages [21], [22]. In
that work, the set of tags is assumed to be static, and fairly
small, which facilitates a lot of pre-processing steps. In our
scenario, both articles and tags are continuously streaming
into the system, and the set of hashtags is very large and
dynamic, which makes the problem more challenging.

Learning to Rank (L2R). In classic Information Retrieval
(IR) L2R approaches, a ranked list of documents is returned
for a user query. Depending on the input representation and
loss function, L2R algorithms can be categorised (see [8])
as pointwise [23], [24], pairwise [25], [26], [27] and listwise
[28], [29], [30]. Although listwise and pairwise approaches
are commonly used, we show here that they are not suitable
for our setting because of efficiency constraints and the dy-
namic nature of our data. From an efficiency point-of-view,
the computational complexity of listwise and pairwise ap-
proaches is usually high [30], [31], making them less suitable
for a real-time setting. Pointwise approaches were shown
to be efficient and effective for binary relevance labels [23],
[32], [33], a finding reinforced in our experiments. We com-
pare our method to existing MCC approaches (Naı̈ve Bayes
[9], SVM, Neural Networks) and L2R approaches (pointwise
and pairwise L2R [6], [16]).

3 RECOMMENDATION MODEL

In this section we discuss the design of the proposed rec-
ommendation model. There are two key technical aspects of
our approach: (1) the choice of modeling (e.g., learning-to-
rank versus multi-class classification), (2) the data collection
for feature computation (e.g., generating article queries and
addressing cold-start). The work in [6] focused on modeling
and showed that an L2R approach works better than a MCC
approach. In this work, we improve our model to address
a critical component for real-time recommendation, the data
collection stage, which enables efficient, high quality, fea-
ture computation for the learning-to-rank model. We first
review the basics of the L2R model, then present our new
approaches for efficient data collection. Figure 3 gives a
schematic view of the stages of the model.
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Fig. 3. Building blocks for the real-time recommender Hashtagger+.

In Algorithm 1 we provide the detailed steps of our
recommendation algorithm. As input, we have a stream of
articles A, a database D (storing past articles, tweets and
recommendations, if any), access to the Twitter stream T ,
and a pre-trained L2R model m (described in Section 3.1).
The output is a stream of recommended hashtags for each
article in A. The algorithm proceeds as follows. For each
article a, we start a new thread for processing that article
(we process several articles in parallel). We first generate a
query from the article (function GenerateQuery(a)). The
query is a set of keywords that summarizes the article,
and it affects the amount and quality of tweets collected
for computing features. For example, if the query is too
general or too narrow, we will collect very noisy/large or
very little data from Twitter streams. Variable t tracks time,
and evolves from an origin point, t = 0, when the article
arrives on the stream, up to a maximum of 24h. We increase
t in window increments of 5 minutes. A key term for feature
computation is the set Ta = Ta,search ∪ Ta,stream = ∪tTa,t.
This is a set of tweets associated with article a, named the
tweet-bag. In Section 3.1.1 we discuss the time complexity of
feature computation as a function of data collected. Function
ColdStartSearch(Qa, D) employs techniques for re-using
past articles and recommendations, to quickly collect data
for a new article. Depending on the technique used, this
function will return a set of relevant tweets for a given
article, or directly a recommended hashtag. In Section 3.2.2
we describe the cold-start approaches and discuss their
time complexity. In each time window, we update the data
collected for article a, using TwitterStream(Qa, T, t), select
a set of candidate hashtags, and prepare a feature vector for
each pair of article and candidate hashtag. Finally, the pre-
trained model m can take in a feature vector and produce a
recommended hashtag.

3.1 Problem Modeling via Learning-to-Rank
In this section we describe the L2R framework for our rec-
ommender model. In an IR setting we work with a collection
of documents C . Given a query q, we retrieve a subset of
documents Cq from the collection, rank the documents by a
global ranking model f(q, d), and return the top ranked doc-
uments. The f(q, d) model is typically built automatically
using supervised machine learning techniques trained with
labelled ranking data [34]. In our recommendation setting,
the query q is extracted from an individual article a ∈ A,
where A is a stream of news. The document collection is a
stream of hashtags H , extracted from a stream of tweets T .
Since efficiency is critical in our setting, we take a pointwise
L2R approach by transforming the ranking problem into a
classification problem [23], [34]. First, a subset of candidate
hashtags Ha is retrieved for article a using the function
CandidateHashtags(Ta) shown in Algorithm 1. This step
prunes the huge stream of hashtags to a subset that is po-
tentially relevant for article a. Then, for each article-hashtag
pair (a, h), h ∈ Ha, we create a feature vector x, with label

Algorithm 1: Hashtagger+ Recommender Model
Input: Stream of news articles A, database of past articles
D, public Twitter stream T , pre-trained L2R model m.
Output: Stream of recommended hashtags RA.
Method:
RA = ∅
for a ∈ A do

StartThread(a) //Start a new thread dedicated to processing
article a.

t = 0 //Time tracking variable.
Ta = ∅ //Set of tweets for a.
Ra = ∅ //Set of recommended hashtags for a.
Ra,t = ∅ //Set of recommended hashtags for a, at time t.
Qa = GenerateQuery(a)
Ta search, Ha search = ColdStartSearch(Qa, D)
Ta,t = Ta search //Set of tweets retrieved from D for a.
Ta = Ta ∪ Ta,t

if Ha search 6= ∅ then
Ra,t = Ha search
Ra = Ra ∪Ra,t

WaitUntil(t, 5) //Hashtag recommendation updated
every 5mins.

while t <= 60 ∗ 24 do
//Update recommendations for given article up to 24h.
Ra,t = ∅
Ta stream = TwitterStream(Qa, T, t) //Set of

tweets streamed from Twitter for article a.
Ta,t = Ta,t ∪ Ta stream
Ta = Ta ∪ Ta,t //Update tweet bag Ta of article a.
Ha,t = CandidateHashtags(Ta)
F = ∅ //Set of feature vectors for a and its candidate

hashtags Ha,t.
for h ∈ Ha,t do

xa,h,t = ComputeFeatures(a, h, t, Ta, D)
F = F ∪ xa,h,t

for xa,h,t ∈ F do
xa,h,t = NormalizeV ector(xa,h,t, F )

//Normalize feature vector wrt article a. This step makes
feature vectors comparable across articles.

ra,t = L2RModel(m,xa,h,t) //If relevance score
above threshold, recommend hashtag.

Ra,t = Ra,t ∪ ra,t

Ra = Ra ∪Ra,t

StoreArticle(a, Ta, Ra, D)
WaitUntil(t, 5)

RA = RA ∪Ra
StopThread(a) //Stop tracking article a.

Return RA

y ∈ {0, 1} (y = 1 if the hashtag is relevant for the article).
Given n training examples M = {xi, yi}, i = 1, 2, ..., n, we
construct a global classifier f(x) to predict y for any feature
vector x of an arbitrary article-hashtag pair. To address
the dynamic aspect of real-time hashtag recommendation1,
we extract time-aware features xt. We write f(xt) = yt to
denote that the feature vector is dependent on time, while
the classification function f is not. We employ two sliding
time windows to transform the dynamic environment to
a static one. The global time window γ pools together all
articles published in the past 24h from the current time. This
allows us to compute tf.idf type features for describing each
candidate hashtag. The local time window λ, depends on a
given article a, and restricts the computation of features to a
local tweet-bag Ta. To select the time window parameters
we are guided by the application domain and efficiency
constraints. We restrict the local window/tweet-bag Ta to
the most recent 4h of tweets collected for a. The global
window is set to 24h, due to the news lifecycle where most
news are typically ignored after 24h or get updated and
become new articles [35].

1. Hashtags and articles come as streams and the relevance of hash-
tags to articles is time-dependent since the hashtag representation
changes due to the arrival of new tweets.
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Because we learn a single relevance model across all
articles and hashtags, and the concept of hashtag relevance
is stable over time, Hashtagger+ can cope well with a
large number of dynamic hashtags and concept drift. In
the next section we discuss the time complexity of feature
computation for our L2R model.

3.1.1 Time-Aware Features
Given an article a and corresponding time-dependent can-
didate hashtags h ∈ Ha,t, we compute a feature vector
xa,h,t for each article-hashtag pair. We investigate features
relevant for our real-time recommendation setting [6], [37],
[38]. Because we aim to learn a single ranking function for
all queries (i.e., articles) using the same set of features, all
feature vectors have to be normalized at query-level for
dealing with the issue of different number of candidate
hashtags, and the variance between queries. This is achieved
with function NormalizeV ector(xa,h,t, F ) in Algorithm 1.
We select features that describe properties of the article
and the hashtag, and features that reflect social network
characteristics of users that engage with the hashtags. The
efficiency of feature computation is directly affected by the
size of data collected for a given news article. We now re-
view the features used in our model and the time complexity
of feature computation.

Local similarity LSa,h,λ: Compares the article text to a
local hashtag tweet bag via the cosine similarity as shown
in Equation 1. Let Ta,h,λ be the subset of tweets in Ta
that mention h within time window λ. ||.|| denotes the L2
norm. We form a bag of words representation of a and each
hashtag h which we denote as the vectors a and h. The
bag-of-words representation of h is obtained from a bag of
tweets Th associated with h and is hence denoted as h(Th).

LSa,h,λ =
a · h(Ta,h,λ)
‖a‖‖h(Ta,h,λ)‖

(1)

The local similarity is an important content feature that
indicates how relevant a hashtag is to an article. The time
complexity for computing this feature is O(|a| × |h|), where
|a| is the length of the article and |h| is the number of terms
in the bag-of-words representation of candidate hashtag h.

Local hashtag frequency LFa,h,λ: Captures local popu-
larity of usage for a given hashtag h present in the article
tweet-bag Ta,λ.

LFa,h,λ =
|Ta,h,λ| −min{|Ta,v,λ|}

max{|Ta,v,λ|} −min{|Ta,v,λ|}
(2)

where v ∈ Ha. The local frequency feature compares all
hashtags from the same set Ha, and indicates whether a
hashtag is dominating the topic. The time complexity of
computing this features is O(|Ta,h,λ|).

Global similarity GSa,h,γ : Distinguishes between gen-
eral and topic specific hashtags. The article bag-of-words
representation is compared with the global hashtag repre-
sentation extracted from Th within global window γ:

GSa,h,γ =
a · h(Th,γ)
‖a‖‖h(Th,γ)‖

(3)

The time complexity of this feature is O(|a|×|Th,γ |). The
set of tweets containing h in global window γ can grow very
rapidly. In practice, we take a random sample of Th,γ of size
5K to estimate the term-frequency score. The global profile
of a hashtag is then re-used for all article feature vectors.

Global hashtag frequency GFh,γ : Captures global pop-
ularity of usage for a given hashtag. Let |Th,γ | denote the
number of tweets in Th within global time window γ.
GFh,γ is computed as in Equation 2 and has similar time
complexity O(|Th,γ |).

Trending hashtag TRa,h,tn : Captures a significant in-
crease in local hashtag frequency and aims to identify article-
wise trending hashtags. It uses the local frequency of a hashtag
in two consecutive time windows. Given time window
Wn = tn− tn−1, the number of tweets containing h in tweet
stream Ta in time window Wn is |Ta,h,Wn

|, then:

TRa,h,tn =
|Ta,h,Wn | − |Ta,h,Wn−1 |

|Ta,h,Wn−1
|

(4)

Expected gain EGa,h,Wn : Captures the potential of h in
the next time window, and is expected to boost trending
hashtags while punishing fading ones. Based on trend-
ing feature TRa,h,tn , we compute the expected number of
tweets in Ta mentioning h for the next time window Wn+1,
denoted by E(|Ta,h,Wn+1 |):

EGa,h,Wn
= E(|Ta,h,Wn+1

|) = (1+TRa,h,tn)·|Ta,h,Wn
| (5)

Hashtag in headline HEa,h: Many hashtags are a varia-
tion of the name of the people/place/event being discussed.
We define HEa,h as a binary feature equal to 1 if the
hashtag is in the pseudo-article (headline, sub-headline, first
sentence) after removing space between terms. The time
complexity of computing the trending, expected gain and
headline features is O(1).

Unique user ratio URa,h,λ: The ratio of unique Twitter
users using h in Ta within time window λ, to the number
of tweets. Function User(T ) returns the set of users in tweet
stream T .

URa,h,λ =
|User(Ta,h,λ)|
|Ta,h,λ|

(6)

User credibility UCa,h,λ: The quality of a hashtag de-
pends on the users using it. A common Twitter user credi-
bility indicator is the number of followers. Users with more
followers are usually celebrities, domain experts and expe-
rienced users that work hard to attract followers. Therefore,
we define user credibility as the maximum, the average and
the median of the followers of users tagging h in article
tweet bag Ta in λ.

MaxFa,h,λ = max(Follower(u)), u ∈ User(Ta,h,λ) (7)

The time complexity for computing user-related features is
O(|Ta,h,λ|).

3.2 Efficient Data Collection
The data collection for computing features plays a key
role in the overall efficiency and effectiveness of the rec-
ommender model. In this section we discuss the design
choices and present a theoretical analysis of our proposed
algorithms for data collection.

3.2.1 Query Generation
The article query has a direct effect on the quality and
quantity of candidate hashtags that are passed to the learn-
ing stage. We investigate a commercial tool for generating
queries from articles, as well as an approach used in re-
lated literature [16], [19]. We further investigate two effi-
cient heuristics for extracting queries. The goal is to extract
queries (article-keyphrases) to maximize the retrieved num-
ber of tweets (a form of tweet Recall), as well as the content
similarity of the retrieved tweets to that of the article (a form
of tweet Precision). We do not constrain the target data to
tweets that contain URLs, as done in most prior work. It is
interesting to study the effect of different ways to generate
queries, on the amount and quality of data collected, but we
also want to find out how different trade-offs in Precision
and Recall influence the final recommendation efficiency
and quality.

We study four approaches for generating keyword
queries from news articles:
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1) POS + Tf.idf: Part-of-speech-tagging of the
pseudo article. This method selects the first 5
nouns/phrases by giving priority to noun-phrases,
proper nouns, frequent nouns, all other nouns. It
then pairs the single nouns to 2-grams and breaks
long noun phrases into 2-grams. These pairs are
then ranked by the average tf.idf score of individ-
ual terms, and the top 5 pairs are selected as the
query. This method is implemented by the model
presented in [6].

2) POS + NER + Tf.idf: The second method fol-
lows a similar process as above, but adds one
step of Named Entity Recognition (NER) after POS-
tagging. We use the Stanford NER Tagger [36] to de-
tect entities. When ranking all pairs by the average
tf.idf score, pairs containing entities get a 1.5 boost.
The aim is to focus more on key entities, rather than
generic words. We select the top 5 keyphrases as the
final query.

3) AlchemyAPI2: This is a commercial tool devel-
oped by IBM for extracting the most important
keyphrases from a given article. Alchemy’s key-
word extraction algorithm employs sophisticated
statistical algorithms and natural language pro-
cessing technology to analyze the article content
and identify the best keywords. Given the article’s
full content, AlchemyAPI returns a list of ranked
keyphrases. We take the top 5 keyphrases as the
query.

4) Article URL: Twitter Streaming API supports using
URLs as keyphrases. It retrieves tweets containing
both the full and shortened version of the target
URL. By using the article URL as a query, we re-
trieve only relevant tweets that contain the article
URL (as in [16], [19]). We expect these tweets to be
cleaner regarding content, but very few.

Table 1 presents the keyphrases selected by each ap-
proach for an example article. In Section 4.2 we present an
empirical study to evaluate the impact of each query type
on the amount/quality of data collected, as well as how this
influences the recommendation effectiveness.

TABLE 1
Example article and ranked article-keyphrases using 4 approaches.

Article Headline Easyjet doubles number of female pilots

Subheadline Easyjet says it has doubled the number of female
pilots this year and is on the hunt for more.

First Sentence The Amy Johnson initiative, named after the first
female pilot to fly solo from the UK to Australia,
caused a surge in applications.

POS + Tf.idf (1) australia easyjet, (2) easyjet number, (3) easyjet
uk, (4) australia number, (5) australia uk

POS + NER + Tf.idf (1) amy johnson, (2) australia easyjet, (3) easyjet
uk, (4) australia uk, (5) easyjet number

AlchemyAPI (1) amy johnson initiative, (2) female pilots, (3)
easyjet, (4) female pilot, (5) surge

URL (1) bbc.com/news/business-38326523

3.2.2 Cold-Start Search Algorithms
In this section we describe methods to deal with cold-start:
the challenge of quickly collecting data and providing rec-
ommendations for new articles. In our model, the extraction
of dynamic features relies on a collection of relevant tweets
for each article, collected via search over historical data or
via streaming. When using only streaming, for each new
article our system waits until sufficient tweets are gathered,
before computing features and recommending hashtags to
that article. Depending on the popularity of the news event

2. http://www.alchemyapi.com/products/alchemylanguage/
keyword-extraction
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Fig. 4. Overview of proposed cold-start search methods.

on Twitter, the waiting time varies from a few minutes to a
few hours. This is a problem, in particular in a journalistic
setting where the editor cannot wait more than a few min-
utes for getting recommendations. To address this challenge
we exploit the fact that many news are related to ongoing
stories, locations or events, and can benefit from the data
and recommendations collected for past articles.

There are two types of Twitter APIs for collecting tweets:
Search and Streaming. Given current time tn, the Twitter
Search API retrieves tweets posted before tn while the
Streaming API retrieves tweets as they are posted on Twit-
ter (after tn). For a real-time system, we naturally prefer
using existing tweets, rather than waiting for new tweets.
However, the restricted rate limit of Twitter Search API (1
request per min) makes it infeasible to use. We therefore
only use the Twitter Streaming API to retrieve tweets. For
search, we study methods that exploit the historical tweets
and articles collected by our system. We explore three ideas
for using past data (visually sketched in Figure 4):

1) Searching Recent Tweets: Using the query ex-
tracted for a given article, this method searches the
database for matching tweets and uses them for
feature computation.

2) Searching Past Stories: This method first clusters
old articles into stories, then assigns the new article
to its most similar cluster and uses the majority
hashtag for that cluster as a recommendation.

3) Searching Similar Articles: This approach searches
the database of past articles for articles similar to
the new article and uses their tweets for feature
computation.

Searching Recent Tweets: This first approach uses the
old tweets collected for previous news articles processed by
our system. Given a time-window w (e.g., past 12h from
current time point), this method searches in the old articles’
tweet-bags for tweets that match any of the keyphrases of
the new article. These old tweets are then added to the
tweet-bag of the new article. After collecting a sufficient



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. 7

number of relevant tweets (at least 100), we extract features
from the tweet-bag and apply our L2R model. This method
helps solve the cold-start problem by computing features
and recommending hashtags as soon as a new article is
received, without waiting for streamed tweets.

Algorithm 2 presents the steps of this method. We first
find the subset of tweets Tw from the database D that
falls within the time window w (SubsetTweets(D,w)).
The complexity of this step is O(|DT |), where DT is the
number of tweets in the database. An efficiently indexed
database can drastically reduce this step. Given a fixed
length keyphrase query (|Qa| = 5 keyphrases), the com-
plexity of the keyphrase filtering step isO(|Tw|). The overall
complexity for Algorithm 2 is O(|DT |+ |Tw|). Since Tw is in
the scale of millions, Algorithm 2 can take a very long time
in practice.

Searching Past Stories: The second method uses the past
recommendation results. Given a collection of old articles,
this method partitions them into clusters. One cluster is
considered as one story. The average cosine similarity of
an article to all other articles in the same cluster is a good
indicator of how strongly the article is connected to the
cluster. Each old article has few recommended hashtags and
clusters are labelled by the most frequent hashtag in that
cluster. A new article is then assigned to one of the clusters
by content similarity, and the cluster hashtag is the hashtag
recommended for the new article. We use k-means as the
clustering algorithm. The runtime of our second approach is
better than the first one, as it only considers a few thousand
articles at one time. However, as news articles spread across
many topics and stories, the number of clusters k can get
large. Also, because the recommendation of this method
relies on the quality of k-means clustering (an unsupervised
method), its precision can be low.

In Algorithm 3, the function SubsetArticles(D,w) has
a time complexity of O(|DA|), where DA is the set of
articles in the database. The bottleneck of Algorithm 3 is
the k-means clustering. We use the sklearn k-means im-
plementation3 which has an average time complexity of
O(Aw × k × d × i), where Aw is the number of articles to
be clustered, k is the number of clusters, i is the number of
iterations and d is the number of terms in the articles. When
the number of articles is large, the runtime of Algorithm 3
increases considerably.

Searching Similar Articles: The third method takes a
collection of old articles, and uses a kNN classifier to find
the k most similar articles to the new article. Then, using
those articles’ tweet-bags, it searches for tweets relevant
to the new article by query matching, and feeds them to
the feature computation module. By giving priority to the

3. http://scikit-learn.org/stable/modules/generated/sklearn.
cluster.KMeans.html

Algorithm 2: ColdStart1: Searching Recent Tweets
Input: Query Qa extracted from article a, database of
past articles D.
Output: Relevant tweets Ta search, relevant hashtags
Ha search.
Method:
Ta search = ∅
w = 60 ∗ 12 //Timewindow for past tweets: 12h
Tw = SubsetTweets(D,w) //Retrieve all tweets within

timewindow w.
for tweet ∈ Tw do

for phrase ∈ Qa do
if phrase ∈ tweet then

//If tweet contains the keyphrase phrase.
Ta search = Ta search ∪ {tweet}
break

Return Ta search, ∅

Algorithm 3: ColdStart2: Searching Past Stories
Input: Query Qa extracted from article a, database of
past articles D.
Output: Relevant tweets Ta search, relevant hashtags
Ha search.
Method:
Ha search = ∅
w = 60 ∗ 24 ∗ 30 //Timewindow for past stories: 1 month
Aw = SubsetArticles(D,w)
C = ClusterArticles(Aw, 0.1) //Cluster past articles into stories.

The number of clusters is 0.1× |Aw|.
c = MostSimilarCluster(C, a) //Find the cluster of a
Hc = ∅
for pa ∈ c do

//For each past article in cluster
Ha = LastRecommededTag(pa,D)
Hc = Hc ∪Hpa

Ha search = MostCommon(Hc) //Get the most common
hashtag of the cluster

Return ∅, Ha search

Algorithm 4: ColdStart3: Searching Similar Articles
Input: Query Qa extracted from article a, database of
past articles D.
Output: Relevant tweets Ta search, relevant hashtags
Ha search.
Method:
Ta search = ∅
w = 60 ∗ 24 ∗ 30 //Timewindow for past articles: 1 month
Aw = SubsetArticles(D,w)
N = NearestNeighbour(Aw, a, 20) //Find 20 nearest

neighbours of article a.
Ta search = ∅
for pa ∈ N do

//For each past article in the neighbour set
Tpa = GetTweetBag(pa,D)
for tweet ∈ Tpa do

for phrase ∈ Qa do
if phrase ∈ tweet then

//If tweet contains the keyphrase phrase
Ta search = Ta search ∪ {tweet}
break

Return Ta search, ∅

tweets of similar articles, this method dramatically prunes
the amount of tweets to be filtered and it also increases the
likelihood of finding relevant tweets. For this reason, the
search time-window size can be extended to months, unlike
the 12h restriction of the first method.

In Algorithm 4, the function SubsetArticles(D,w)
has a time complexity of O(|DA|), where DA is the
set of articles in the database. The complexity of
NearestNeighbour(Aw, a, 20) is O(Aw × |V |),where |V | is
the size of vocabulary for articlesAw. The query filtering has
time complexityO(|Tpa|), similar to Algorithm 2. Algorithm
4 is much more efficient than Algorithm 2 or 3, as kNN is
much faster than k-means when given the same number of
articles as input, and the size of Tpa is much smaller than
Tw of Algorithm 2.

4 EVALUATION
In this section we present extensive experiments analyz-
ing the building blocks of Hashtagger+. We also compare
to state-of-the-art methods and discuss the strengths and
weaknesses of the methods compared.

4.1 Gathering Labeled Data
One cheap way to collect labeled data for training is to
collect tweets that contain both article URLs and hashtags,
and consider those hashtags as relevant labels. This is done
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TABLE 2
Details of labeled article-hashtag pairs.

Total Positive Negative Collection Period
1,238 348(28.1%) 890(71.9%) 04/12/2014-08/01/2015

Articles Hashtags
217 725

in many related approaches, including [16], [20]. We found
that such data is too little and too noisy. Most tweets with
hashtags, although relevant to the article, do not contain the
article URL. A quarter of the tweets with article URLs are
tagged with general hashtags, #news #breaking, while many
others are tagged with a mixture of relevant and irrelevant
hashtags. For this reasons we decided to collect high quality
labels by involving manual annotators and a Web applica-
tion. The users can see the hashtags recommended by simple
baselines for each article (e.g., most frequent hashtag, most
similar hashtag content-wise) and provide feedback for each
hashtag: if a hashtag is relevant or irrelevant for the article,
at the time of labeling. We gathered around 1,200 labeled
examples4; details are provided in Table 2. We use this data
as ground truth for evaluating different approaches.

4.2 Query Generation
Experiment Setup. We collect 150 news articles and ex-
tract keyphrases using the four approaches presented in
Section 3.2.1. We track these article-keyphrases for 12h, via
the Twitter Streaming API, and for each article we gather
four tweet-bags corresponding to the four methods. As the
purpose of this step is to gather high quality candidate
hashtags, we only consider tweets with at least one hashtag
in the following evaluation. To estimate the precision of
each approach, we compute the cosine similarity between
the article and its tweet-bag tf.idf profile, then average over
the 150 articles. This gives us an indication of the focus of
the tweet-bag. To estimate the recall, we average the sizes
of the tweet-bags (number of tweets per article) over all
articles. Also, we average the number of unique hashtags
appearing in the tweet-bags, and the average frequency of
the hashtags.

Experiment Result. Table 4 shows the results of the
four methods evaluated on the collected tweet-bags. The
URL approach has the highest cosine similarity (0.265), but
very few tweets (4.2), and only 1.5 candidate hashtags per
article. The best approach is the commercial tool Alche-
myAPI, which retrieves the most tweets (5K) and candidate
hashtags (976), and the retrieved tweets are also very similar
to the article content (0.246). The second best approach
is POS+NER+Tf.idf. When compared to POS+Tf.idf, the
tweets retrieved are fewer (3K vs 3.7K) but of higher quality
(cosine similarity: 0.242 vs 0.221).

End-to-End Evaluation. To examine the impact of
keyphrase extraction on the final hashtag recommendation
quality, we conduct an end-to-end experiment where we
use the tweets collected by the four approaches with our
L2R framework (no search, only streaming) to recommend
hashtags to the 150 target articles. We evaluate the recom-
mendation result using Precision@1 (P@1), article coverage
(percentage of articles that get at least one hashtag recom-
mended), and total running time. Table 3 shows the end-to-
end evaluation results.

URL has the worst P@1 and article coverage, due to
the insufficient amount of tweets. POS+NER+Tf.idf has the
highest P@1, revealing that NER helps retrieve a more
focused tweet-bag. Although AlchemyAPI has the highest
tweet content similarity to the article, the P@1 of Alche-
myAPI is not as high as expected. This is mainly because
AlchemyAPI often extracts unigram keywords from the

4. Labeled data and results available from https://gitlab.com/
claireshi/hashtagger-plus-data

article, leading to noisier tweets. For instance, the key-
word ”game” is extracted from an article about a football
game. When collecting tweets with ”game”, tweets about
video games are also retrieved, and result in wrongly rec-
ommended hashtags: #game, #gamedev. This problem is
avoided in POS+Tf.idf and POS+NER+Tf.idf which only
use selected 2-grams. AlchemyAPI has 71.3% article cov-
erage as compared to 63.3% of POS+NER+Tf.idf. On the
other hand, AlchemyAPI retrieves more tweets and hash-
tags and therefore runs slower, as the speed of hashtag
recommendation depends on the number of tweets in the
tweet-bag. POS+NER+Tf.idf takes less than half the amount
of time needed by AlchemyAPI (200s vs 588s). Overall,
POS+NER+Tf.idf has the highest P@1, and shortest running
time. We show later that its low article coverage can be
addressed by the cold-start search step.

Key Take-away: Although AlchemyAPI, a commercial
keyphrase extraction tool, results in more tweets and candi-
date hashtags retrieved, it does not result in the best end-to-
end recommendation quality, due to the noise introduced
by single keywords or long keyphrases. Additionally, the
commercial API is restricted to a limited number of free calls
each day. Our POS+NER+Tf.idf approach for generating
queries results in better end-to-end recommendation quality
and efficiency as compared to [6].

4.3 Learning-to-Rank Algorithm Selection
In this section we investigate many different L2R algorithms
to study which are the most appropriate for our problem.

Experiment Setup. There are three main types of L2R ap-
proaches [8]: pointwise, pairwise and listwise. The RankLib5

library implements 8 L2R algorithms (2 pointwise, 2 pair-
wise and 4 listwise methods), and is commonly used in L2R
research. We also use the scikit-learn (sklearn)6 library for
7 additional pointwise classifiers and Cornell’s RankSVM7

(pairwise) implementation. RankLib expects the training
data in the format of RankSVM, where labeled data is
organized by query lists, and within each list, labels are
ranked from 0 to r, where 0 indicates the item is irrelevant
to the query and a bigger r means the item is more relevant.
We use 1.2K labeled pairs as ground-truth data, and trans-
form them into the RankLib required format. We only have
relevant and irrelevant labels, so we group the label pairs by
articles, then rank the hashtags as relevant (1) and irrelevant
(0). The transformed labeled data consists of 217 ranked
lists (one list per article), with an average of 5.7 hashtags
per list. We compare the performance of L2R algorithms by
using 10-fold-cross-validation. For evaluation we use P@1
and NDCG@3, as in our data each article typically has less
than 3 relevant hashtags.

Experiment Result. Table 5 shows the results for 16
L2R ranking methods. When compared to pairwise and
listwise ranking algorithms, pointwise methods have higher
P@1 and NDCG@3 (around 0.8), and shorter running time
(around 2s). Among the 9 pointwise methods, Random-
Forest(sklearn) has the highest P@1 (0.8526) and NDCG@3
(0.8488) and acceptable training time (2.75s). Multilayer
Preceptron, AdaBoost and Linear Regression have the sec-
ond best P@1, NDCG@3 and running time. We tested two
implementations of Random Forest (ranklib vs sklearn) and
found that the sklearn implementation has better ranking
performance, which is similar to prior findings8.

For the pairwise methods, RankBoost does the best in
ranking, but has the longest running time compared to
RankNet, and RankSVM (15.67s, 7.45s, 2.05s). Among the
four listwise methods, AdaRank is the fastest (2.53s) while
LambdaMART is the slowest (54.48s). CoordinateAscent is

5. https://sourceforge.net/p/lemur/wiki/RankLib/
6. http://scikit-learn.org/stable/index.html
7. www.cs.cornell.edu/people/tj/svm light/svm rank.html
8. sourceforge.net/p/lemur/discussion/ranklib/thread/1d30431d/
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TABLE 3
P@1, article coverage, and running time of end-to-end hashtag recommendation using tweets collected using four query generation methods.

L2R (POS + Tf.idf) L2R (POS + NER + Tf.idf) L2R (AlchemyAPI) L2R (URL)
P@1 0.930 0.947 0.901 0.410
Coverage 67.3% 63.3% 71.3% 22.1%
Time 301s 200s 588s 48s

TABLE 4
Average cosine similarity, number of tweets, number of candidate
hashtags and hashtag frequency using tweets collected using four

query generation methods.

POS +
Tf.idf

POS + NER +
Tf.idf

AlchemyAPI URL

Cosine 0.221 0.242 0.246 0.265
Tweets 3696.2 2982.9 5083.8 4.2
Hashtags 529 442 976 1.5
Tag Freq 5.26 5.73 5.81 1.49

TABLE 5
Comparing the P@1, NDCG@3 and running time of 16 ranking

methods using Ranklib, sklearn and Cornell’s RankSVM.

L2R Algorithm P@1 NDCG@3 Time(s)

Pointwise

RandomForest(sklearn) 0.852 0.848 2.75
MultilayerPerceptron(sklearn) 0.835 0.803 6.14
SVM(poly)(sklearn) 0.823 0.827 0.78
GradientBoosting(sklearn) 0.810 0.817 1.71
LinearRegression(sklearn) 0.803 0.824 0.16
AdaBoost(sklearn) 0.801 0.840 1.51
RandomForest(ranklib) 0.792 0.778 2.01
MART(ranklib) 0.783 0.768 49.87
GaussianNaiveBayes(sklearn) 0.764 0.757 0.05

Pairwise
RankBoost(ranklib) 0.774 0.773 15.67
RankSVM(cornell) 0.728 0.734 2.05
RankNet(ranklib) 0.654 0.718 7.45

Listwise
CoordinateAscent(ranklib) 0.778 0.765 28.11
LambdaMART(ranklib) 0.769 0.766 54.48
ListNet(ranklib) 0.751 0.756 14.56
AdaRank(ranklib) 0.737 0.749 2.53

the best listwise L2R method, with P@1 of 0.77. Across
the three types of algorithms, the pointwise RandomForest
(sklearn) has the highest P@1 and NDCG@3, with good run-
ning time. In the followup experiments, we use pointwise
RandomForest for the relevance classifier.

Key Take-away. The common understanding in the IR
community is that listwise approaches typically outperform
pairwise and pointwise approaches. We have found that this
is not the case in our setting. We work with binary relevance
labels and high class imbalance (the number of relevant
hashtags for each article is low, in the range of 1-3 hashtags).
In this setting, we find that pointwise approaches have clear
advantages regarding both ranking quality (higher preci-
sion) and efficiency (no need to pair hundreds of hashtags).
Our finding is similar to work in [33] on question answering
tasks with binary relevance judgements (answers are either
relevant or irrelevant), where there are very few relevant
answers (one correct answer for a given question, out of
hundreds of candidate answers). The authors in [33] found
that for this type of ranking problem, pointwise methods
outperform pairwise and listwise ones. We have similar
findings from our extensive experiments with 16 L2R ap-
proaches.

4.4 Cold-Start Algorithms Evaluation
To evaluate and compare our cold-start approaches we
gathered 150 test articles published between 8am-12pm Nov
09, 2016. We first study the influence of parameter settings
for each method, and then compare them using their best
set of parameters.

4.4.1 Searching Recent Tweets
The first approach reuses the tweets collected for older
articles and has only one parameter: the size of the time
window for collecting tweets.

Parameter Tuning: Time-window Size. The length of
the search time-window decides the amount of historical

TABLE 6
Time-window Size: P@1, Article Coverage, and total running time of

hashtag recommendation using recent tweets.

1h 4h 12h 24h 36h
Tweets 49.8 258.1 1179.1 2247.4 3221.1
P@1 0.820 0.801 0.824 0.883 0.850
Coverage 26.0% 41.3% 48.0% 57.3% 60.0%
Time 71s 132s 261s 456s 639s

tweets that will be used for filtering and affects the time
this method needs for making a recommendation. For each
test article, we retrieve tweets using different time-window
sizes: 1h, 4h, 12h, 24h, 36h. There are about 500K historical
tweets with hashtags collected between 8pm Nov 07 to
12pm Nov 09, 2016 (around 36h before the articles pub-
lishing time). Then, we apply our hashtag recommendation
approach over the collected tweets and measure the rec-
ommendation quality when using different time-window
sizes, by P@1, article coverage, total running time (search
time plus recommendation time), and the average number
of tweets retrieved for the 150 test articles.

Results. As shown in Table 6, longer searching time-
windows allow retrieving more relevant tweets and thus
lead to better recommendation coverage. Unfortunately, the
running time also increases with the window size (51s for
1h vs 339s for 36h). The time-window size has small impact
on P@1, which is around 0.85. This shows the robustness
of our hashtag recommendation approach to the number of
tweets. Considering the article coverage and running time
trade-offs, we choose 12h as the search time-window in the
follow-up experiments.

4.4.2 Searching Past Stories
The second method uses k-means clustering and past rec-
ommendations. The performance of this method depends
on two factors: the number of clusters and the size of the
time-window for historical articles used for clustering. We
test the number of clusters and conduct an end-to-end study
to measure the final hashtag recommendation quality.

Parameter Tuning: Number of Clusters. Given the total
number of articles N , we vary the number of clusters c in
the range sqrt(N) and 0.1N to 0.9N . The value sqrt(N) is a
common way to set the number of clusters, while the other
values use a proportion of the article collection size N . As in
the previous experiment, we use the 150 test articles. We fix
the time-window size to 1 month, resulting in about 13.3K
historical articles published at most 1 month before Nov 09,
2016. We cluster the articles into c clusters. For each test
article, we allocate it to the closest cluster and recommend
the most frequent hashtag of that cluster.

Results. As shown in Table 7, the number of clusters has
a complex impact on the hashtag recommendation quality.
In general, having more clusters leads to better article cov-
erage, but lower P@1. If the number of clusters is small (e.g.,
c = sqrt(N)), both P@1 and article coverage are low, be-
cause articles of different news stories are grouped together,
and test articles are less likely to find relevant clusters.
Considering the overall performance, we set c = 0.1N in
the follow-up experiments.

Parameter Tuning: Time-window Size. Here we test
what is a suitable time scope for the articles used for clus-
tering, given that we fix the number of clusters to c = 0.1N .
Longer time scope covers more long-term news stories, but
also retrieves more articles. We test the following time span:
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7 days, 14 days, 1 month, 2 months, 3 months, and use the
same experiment setup as before, just that we include more
articles for clustering.

Results. Table 8 shows that using articles from the past
1 month delivers the best P@1 and good coverage and
running time. We fix c = 0.1N and the time-window to
1 month in the follow-up experiments.

4.4.3 Searching Similar Articles
This method uses a kNN classifier to find related news
articles and uses their tweet-bags for feature computation
for the L2R module.

Parameter Tuning: Number of Neighbors. We first eval-
uate the number of nearest neighbors k retrieved for test
articles. We vary k = 5, 10, 15, 20, and fix the time-window
size of historical articles to 1 month. As in the previous ex-
periment, we use 150 test articles. We find the k most similar
articles to each test article, and from these articles’ tweet-
bags select tweets based on the article query. We then feed
these tweets to the L2R module to get recommendations.

Results. Table 9 shows that increasing k leads to finding
more relevant tweets, and to an increase in the article
coverage and running time. The change of k has no obvious
impact on P@1 showing the robustness of our hashtag
recommendation approach. We chose k = 20 in the follow-
up experiments.

Parameter Tuning: Time-window Size. Similar to the
second method, the time scope of historical articles refers
to how far back we search for nearest neighbors. Longer
time scope covers more long-term news stories, but concept
drift can have a negative impact on the recommendation
quality. We evaluate the following time span: 7 days, 14
days, 1 month, 2 months, 3 months, and use k = 20 for
kNN.

Results. Table 10 shows that the increase of time scope
leads to finding less relevant tweets, showing recent articles
are more relevant for the test articles. However, when the
time scope is set to 1 month, the article coverage reaches its
maximum (67.3%), indicating it is a good trade off between
short-term vs long-term news stories.

4.4.4 Comparing the Tuned Cold-start Methods
We compare the performance of the three cold-start methods
using their best tuned parameters, and as a baseline, we
include a no cold-start approach.

Experiment Setup. We use the same 150 test articles
and compare the impact of using different cold-start search
strategies, and their combination with streaming. For each
article published at ta, besides searching, we also collect
tweets until ta+24h, using the article query and the Twitter
Streaming API.

1) No Coldstart. Baseline approach that has no cold-
start solution, only streaming. This is similar to the
recommendation approach presented in [6].

TABLE 7
Number of Clusters: P@1, Article Coverage, and total running time of
hashtag recommendation using past articles. Time-window size set to

1 month.

sqrt(N) 0.1N 0.3N 0.5N 0.7N 0.9N
Clusters 115 1330 3991 6652 9313 11974
P@1 0. 531 0.775 0.636 0.601 0.559 0.664
Coverage 48.6% 65.3% 95.3% 95.3% 95.3% 85.3%
Time 41s 101s 121s 187s 237s 265s

TABLE 8
Time-window Size: P@1, Article Coverage, and total running time of
hashtag recommendation using past articles. The number of clusters

set to c = 0.1N .

7 days 14 days 1 month 2 months 3 months
Clusters 299 570 1330 2937 3917
P@1 0. 621 0.702 0.775 0.760 0.760
Coverage 51.3% 56.0% 65.3% 67.3% 66.7%
Time 3s 15s 101s 320s 653s

TABLE 9
Number of Neighbors: P@1, Article Coverage, and total running time

of hashtag recommendation using past articles and tweets.
Time-window size set to 1 month.

5 10 15 20
Tweets 465.5 695.9 860.1 997.6
P@1 0.940 0.933 0.949 0.940
Coverage 57.3% 61.3% 66.0% 67.3%
Time 115s 139s 176s 199s

TABLE 10
Time-window Size: P@1, Article Coverage, and total running time of
hashtag recommendation using past articles and tweets. The number

of neighbors is set to k = 20.

7 days 14 days 1 month 2 month 3 month
Tweets 1,344 1,071 997 832 835
P@1 0.897 0.930 0.941 0.900 0.948
Coverage 58.6% 58.6% 67.3% 64.0% 64.6%
Time 195s 196s 199s 191s 195s

2) Searching Tweets. Given an article published at
ta, we retrieve tweets posted in time window
[ta − 12h, ta], and filter them by the article query.
After the first recommendation round, streaming is
used to enhance the tweet-bags of articles, followed
by L2R to update the recommendations.

3) Clustering Articles. We cluster 1 month worth of
historical articles (13.3K) with the number of clus-
ters set to c = 0.1N = 1, 330. This approach uses
the past recommendations to recommend hashtags
to new articles. For a new article to be assigned to
a cluster, we set a minimum similarity threshold
(thus clustering will not automatically lead to 100%
coverage). After the first recommendation round (at
1min), in the subsequent rounds (e.g., after 5mins
of streaming) we keep the clustering recommenda-
tions if the L2R module has not provided a new
recommendation, but update the recommendation if
any was provided by the L2R module. This ensures
a smooth transition from the cluster-based recom-
mendations, to the L2R-based ones.

4) Searching Articles (KNN). The number of neigh-
bors for kNN is set to k = 20, the time-window is set
to 1 month, and the most recent 1K tweets from the
articles’ tweet-bags are filtered by the query of the
new article. After the first recommendation round,
the streaming will update the tweet-bags and the
L2R module will update the recommendations.

The recommendation output of each of the four ap-
proaches is manually labeled as relevant/irrelevant.

Results An ideal cold-start solution should maintain
high-precision, increase the article coverage rate and re-
duce the time needed to provide recommendations to new
articles. Therefore, we evaluate the final recommendation
via P@1 and article coverage at different time cut-offs,
to measure how quickly each method can return high-
quality recommendations. The P@1 and coverage results
are shown in Figure 5 and Figure 6. Within 2s after the
article publishing time, all three cold-start methods return
recommended hashtags for at least 50% of test articles (i.e.,
have at least 50% coverage). In comparison, No Coldstart
only provides recommendations to less than 1% of articles.
The methods that use L2R for recommendation have high
precision (above 0.8) from the first round of recommen-
dation; in comparison the precision of clustering is low,
around 0.7. The No Coldstart baseline, within 1min, only
produces very few recommendations (only 2 articles out
of 150 get any recommendations), but with high-precision
(100%). Of the three cold-start methods, Clustering Articles
provides good coverage (starting at 70%), but low precision.
Searching Tweets has relatively low coverage (starting at
50%) and good precision (P@1 of 0.8).

The KNN Articles method achieves good coverage from
the start (67% coverage after 1min), with P@1 around 0.9.
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All search methods benefit from follow-up streaming which
improves the article tweet-bags, leading to better features
for the L2R module. After 24h streaming, the No Cold-
start method reaches 67% coverage and P@1 of 0.87. The
best cold-start method, KNN Articles, combined with 24h
streaming, achieves a much better coverage of 80% and
P@1 above 0.9, therefore dramatically improving the article
coverage of [6].

Key Take-away. Combining search and streaming for
collecting features for the L2R module leads to efficient,
high-precision, high-coverage, hashtag recommendation.
Among the cold-start approaches, the KNN Articles method
achieves the best trade-off regarding speed, precision and
coverage. One interesting lesson learned from comparing
different cold-start approaches is that, for new articles to get
good recommendations, they don’t need to be part of an
existing story. It is enough if the new article covers similar
locations, events or entities, for the KNN Articles to retrieve
relevant tweets, and for the L2R module to provide relevant
recommendations.

4.5 Comparison to the State-of-the-Art
In this section we compare our model, Hashtagger+, to
state-of-the-art hashtag recommendation techniques. We
group the compared methods into MCC and L2R types.
We compare the following methods (all of them use tweets
collected using our POS+NER+Tf.idf query generation
method):

MCC Methods: These are methods that use the hash-
tagged tweets as training data. Each hashtag is a class,
and tweets with those hashtag are used as training data
for that class. These methods need to wait to accumulate
training data and, to cope with concept drift, need to be
retrained often. To adapt them to a real-time setting, we
retrain them using a sliding window. Two parameters affect

these methods: the time-window for training data (e.g.,
4h of recent tweets as training) and time before retraining
the classifier (e.g., retrain every 5mins, using the 4h past
tweets as training). For each model, these two parameters
are determined by the time needed to train the model. For
example, if we increase the training data from 2h to 4h of
tweets, this leads to an increase in training time, therefore it
constrains how often the model can be re-trained.

1) NaiveBayes: [9] We select NaiveBayes due to its
speed and evaluate it with different training size
(e.g., 2h, 4h, 6h of recent tweets as training data)
and retraining time (e.g., every 5mins, 10mins, etc.).
We select the parameters that result in the best P@1
for this classifier: past 4h tweets for training and
retraining every 5mins.

2) Liblinear SVM: The LibLinear classifier [39] sup-
ports millions of instances and features. and is pop-
ular due to its efficiency and high accuracy. Liblinear
takes longer to run than NaiveBayes, but is more
accurate. The parameters resulting in the best P@1
for Liblinear are: 2h training tweets and retraining
every 30mins.

3) MultilayerPerceptron: To also evaluate a non-linear
classifier, we use the neural network model im-
plemented in sklearn. This approach is the slow-
est among the MCC methods compared. It needs
1h training time for 1h of tweets. Increasing the
training data (e.g., to 4h of tweets) requires a much
longer time to train (more than 4h) making frequent
retraining infeasible. After trying different parame-
ters, we set 1h for training data and retraining every
1h.

L2R Methods: These are methods that are trained only
once (on a few manually labeled examples, as in [6] or
on hashtagged tweets, as in [16]), and can be re-used for
recommendation without the need to re-train.

1) PairwiseL2R: The method presented in [16] uses
pairwise L2R and is trained on hashtagged tweets.
We could not obtain the original code from the au-
thors, but we implemented their method following
[16]. We train a pairwise RankSVM on 4h of tweets
that contain hashtags and URLs, as required by this
method (there are 3K unique URLs, 23K training
examples). As in [16], for each given test article,
we use the tf.idf score to find the most similar 50
tweets and 50 articles from the 4h of tweets posted
before the test article, and apply the trained model
on the resulting candidate hashtags. The training
size is constrained by the time needed to find similar
tweets and articles (4h of tweets require 5min for
getting recommendations). We compute 4 binary
features for each candidate hashtag: (1) hashtag in
the article headline, (2) URL is a popular domain
(e.g., bbc/rte), (3) hashtag matches the domain of
the article URL, (4) hashtag is popular (i.e., most
frequent 100 hashtags).

2) Hashtagger: This is a pointwise L2R method pre-
sented in [6] which is trained on manually labeled
article-hashtag pairs, and does not use cold-start
algorithms for data collection. This method needs
to wait to gather enough tweets for providing rec-
ommendations, and the waiting time varies between
15mins and 12h.

3) Hashtagger+: The method proposed in this paper
uses pointwise L2R trained on manually labeled
article-hashtag pairs and cold-start algorithms to
deliver recommendations fast and with high cover-
age. This method delivers recommendations within
seconds.

As evaluation metrics we use the article coverage and P@1
(by recommending the maximum score prediction of each
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Fig. 7. P@1 and article coverage of all methods compared.

method). Both of these metrics are a function of the recom-
mendation score. By setting a threshold on this score, we
can study the sensitivity of each method. Setting a higher
threshold for selecting a recommendation, results in better
P@1, but less coverage, since recommendations that do not
pass the threshold are not selected. The scores of all methods
are mapped to the [0,1] interval using the logit function.

Experiment Setup. We randomly pick a starting time
point t0 (Nov 18th, 8am, 2016, UTC), then run the exper-
iment for 6h, involving 150 articles and 400K tweets that
have at least one hashtag. Each pseudo article (headline,
sub-headline and first sentence) is considered as a rich
tweet, and each method recommends one hashtag to each
article.

Experiment Result. A group of annotators evaluated the
resulting 900 test article-hashtag pairs as relevant/irrelevant
and we averaged their results. For each method, we change
the threshold to each unique predicted value in increasing
order, and record the article coverage rate and the P@1
at that threshold, as shown in Figure 7. We observe the
following behavior of the compared methods.

MCC Methods: The NaiveBayes, Liblinear, Multilay-
erPerc have a lower P@1 than the L2R methods, across
all coverage thresholds. We believe the reasons for this
behavior are as follows:

• Having one class per hashtag means that we have
to train thousands of classifiers and thus we need to
learn a much more complex decision boundary.

• MCC modeling leads to issues regarding training
data size and quality. Regarding training size, MCC
methods need to wait to collect enough training data
to build robust classifiers. Furthermore, hashtagged
tweets are a very noisy source of training data, since
Twitter users do not always reliably tag tweets, e.g.,
they mix irrelevant, general and specific hashtags.

• Hashtags are very dynamic, many of them disappear
and new ones emerge in a matter of minutes. MCC
methods need to retrain often to deal with such
dynamic classes, and are therefore less robust to
concept drift.

L2R Methods: The pairwise L2R method proposed in
[16] has a lower P@1 as compared to the other L2R methods,
Hashtagger and Hashtagger+. We believe there are three
main reasons for this. First, as for the MCC methods, the
training data size and quality is problematic for this ap-
proach. PairwiseL2R of [16] requires tweets with hashtags
and URLs for training. As above, hashtagged tweets are
not a good source of labeled data, since the labels can
be very noisy. Additionally, tweets containing URLs are
very few, as compared to all the tweets discussing a story.

Second, the feature engineering of this approach is not
appropriate, as it uses cheap to compute, but weak features
to describe hashtag relevance. Finally, we have shown in
our experiments that pairwise L2R with RankSVM, which
is used in [16], is not as accurate as RandomForest with
pointwise L2R, since the goal is to learn a good threshold
on hashtag relevance, rather than learning pairwise prefer-
ences for irrelevant hashtags. The second L2R baseline, our
prior work Hashtagger [6], delivers high P@1, since it is
trained with high quality labeled data, uses complex feature
engineering and pointwise L2R. It nevertheless suffers from
cold-start issues, as it has to wait to collect enough data for
computing features for new articles. Better techniques for
data collection in Hashtagger+, lead to higher P@1 across
all coverage points. In [6] we report a P@1 of 0.89 (for
th = 0.5) and coverage of 66%. In comparison, Hashtagger+
delivers P@1 of 0.94 (for th = 0.5) and coverage of 66%. If
we set the threshold for Hashtagger+ to get the same P@1
of 0.89 as in [6], we achieve a coverage of 77%, a 10% im-
provement in coverage. Regarding efficiency, Hashtagger+
delivers recommendations in under 1min, while Hashtagger
needs to wait an average of 80mins to deliver the first
recommendations.

4.5.1 Niche versus Popular Articles
We refine the analysis of all compared methods to observe
their capacity to provide good recommendations for articles
that are popular versus articles that are more niche. We
define a popular article to be one for which we can retrieve
at least 300 matching tweets, resulting in 50 niche and 100
popular articles. We want to test the hypothesis that MCC
methods trained with hashtagged tweets are not able to deal
well with niche articles, as they do not have enough content
to train from. We expect L2R methods to be robust even with
less data available for computing features. Figure 8 shows
this comparison for popular and niche articles. We note that
for popular articles, MCC methods behave well, although
their quality is well below that of L2R methods. For niche
articles the advantage of L2R methods is clear. Although
niche articles only have at most 300 tweets discussing the
article, our method can also deliver good recommendations
for these cases. For a coverage of 70% of niche articles,
previous methods have P@1 of 0.5, while Hashtagger+ has
P@1 of 0.8.

Key Take-away: Hashtagger+ can deliver good recom-
mendations for popular as well as niche news stories. Our
model advances the state-of-the-art by efficiently deliver-
ing high-precision, high-coverage recommendations (under
1min, P@1=0.89, coverage=77%).

5 APPLICATIONS
In this section we study an application of our hashtag
recommender to story tracking.

5.1 Story Tracking
News editors curate and continuously update collections
of news articles to give readers an overview and updates
on particular issues, e.g., referendums, elections, budgets.
Preparing these story-pages relies on manually tagging doc-
uments with pre-agreed keyphrases. For example, ”brexit”
was used for the BBC story-page on the ”UK leaves the
EU”9. Our recommender method enables us to automati-
cally link articles and Twitter hashtags and to index articles
using keywords and hashtags. This means that we can for-
mulate queries that mix keywords and hashtags, such as
EU crisis, #brexit. Using Hashtagger+ and the Twitter crowd,
we annotate stories with high quality social tags, in real-
time, potentially capturing novel emerging concepts (e.g.,
#brexit, #remain, #leave). We coin this social indexing, and
investigate its impact on a story tracking application.

9. http://www.bbc.com/news/politics/uk leaves the eu
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TABLE 11
The number of articles collected from 16th June 2016 to 1st July 2016.

BBC EU Referendum Story Page
130

BBC Reuters Irish Times Independent RTE The Journal
2,141 1,409 2,362 3,100 601 760

5.1.1 Retrieving Key Articles for the EU Referendum Story
As a target story, we select the EU membership referendum
held in UK in June 2016, also known as Brexit. BBC created a
dedicated story-page10, listing key articles for the story and
updating it hourly. Even with the help of key-phrase in-
dexing, the story-page still relies on experienced journalists
to select the important articles, from a daily pool of a few
thousand story-related articles. We aim to automate story-
page construction by using hashtags as a tool for retrieving
story-related articles.

Experiment Setup. We use the BBC’s EU referendum
story-page as ground-truth. All articles that appear anytime
on this page are considered as key articles for the story. We
run a crawler and collect 130 ground-truth articles from 16th
June 2016 to 1st July 2016 (one week ahead and one week
after the referendum day). During the same time period,
we collect a large set of articles from the RSS feeds of
6 news organizations, around 650 articles per day, 10.3K
articles in total. To make sure all ground-truth articles are
in our article set, the ground-truth articles that are not in
the BBC RSS feeds, are also crawled and added to the set.
Stats of the article collection are shown in Table 11. Once
retrieved from RSS feeds or crawler, articles are tracked for

10. http://www.bbc.com/news/politics/eu referendum

TABLE 12
Usage of five EU referendum hashtags for the tracked period.The total

number of articles from six news sources and from BBC with this
hashtag recommended by Hashtagger+ over 12h.

Tweets Articles BBC Articles
#Brexit 790,872 1,035 234
#EURef 176,523 249 96
#EU 93,414 903 231
#VoteLeave 92,687 38 15
#Remain 83,667 67 21

TABLE 13
Comparison of keyword query baselines and hashtag indexing, via the

retrieved number of BBC articles and the ground-truth articles.

BBCArticles KeyArticles Precision Recall F1

Keyword
Query

EURef+Full 266 91 0.34 0.70 0.46
Brexit+Full 330 68 0.20 0.52 0.29
EURef+Brexit+Full 479 118 0.24 0.90 0.38
EURef+Title 198 81 0.41 0.62 0.50
Brexit+Title 223 28 0.13 0.21 0.16
EURef+Brexit+Title 382 100 0.26 0.77 0.39

Hashtag
Query

#Brexit 234 68 0.29 0.52 0.37
#EURef 96 52 0.54 0.4 0.46
#EU 231 72 0.31 0.55 0.40
#VoteLeave 15 13 0.86 0.10 0.18
#Remain 21 11 0.52 0.08 0.14
All Five Hashtags 351 121 0.34 0.93 0.50

12h, during which the Hashtagger+ recommendations are
updated every 15 min.

We use both Hashtagger+ and the system described in
[40], which expands a plain keyword query to a query with
keywords and hashtags, to retrieve all relevant hashtags
for a story. For the query ”EU referendum”, this approach
returns related hashtags #Brexit, #EURef, #EU, #VoteLeave,
and #Remain. These five hashtags are the most used in the
discussions relevant to the EU referendum on Twitter. Each
of them has generated a huge amount of traffic, as shown in
Table 12. Both #Brexit and #EURef are specifically used for
this story, but because #Brexit is more self-explanatory, it is
popular in both mainstream and social media. #VoteLeave
and #Remain are the two hashtags used by the opposite
camps on social media, and are less used in mainstream
media. For the baselines, we use plain keyword queries ”EU
Referendum” (EURef) and ”Brexit” for retrieving articles
using either the full article body (Full) or only the headline
and subheadline (Title). The article title is a short text that
describes the news article, however, the lack of certain
keywords may hurt the retrieval recall. The article body
contains rich information and should improve the recall, but
may result in lower precision compared to a retrieval on title
alone.

Experiment Result. To measure the performance of us-
ing hashtags for indexing and retrieving key articles for
the story, we use standard IR metrics: Precision, Recall and
F1. Since in this experiment we are focusing on retrieving
most of the story key articles, the approaches with high
Recall are preferred. Table 13 presents the full results of
the baselines and the hashtag indexing approaches, by
comparing their retrieved articles to the ground-truth. The
top 3 approaches with highest Recall are AllFiveHashtags,
EURef+Brexit+Full, and EURef+Brexit+Title. Among them,
our proposed hashtag indexing has the highest recall (121
out of 130), followed by the query on full article content
(118 out of 130), and the query on article headlines (100
out of 130). Although the hashtag indexing and full article
keyword query approaches have similar Recall, the hashtags
allow focusing on a much smaller pool of articles (351 vs
479), without compromising the Recall. Among the five
hashtag indexes, #Brexit and #EU are the two hashtags
that retrieve most of the key story articles (68 vs 72), and
the intersection between their retrieved key articles is also
large, 47 articles, meaning they are commonly used together
and are interchangeable during that period of time. On the
other hand, #VoteLeave and #Remain are more distinct from
each other and from the other 3 hashtags. We find that
the two groups of hashtags indexed two types of articles:
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information-type and opinion-type articles. Thus hashtags
can capture different aspects of the news story and are a
good way to organize the news articles.

6 CONCLUSION
In this paper we have presented Hashtagger+, an approach
for efficient, high-coverage real-time hashtag recommendation
for streaming news. Our work has advanced the state-of-
the-art by proposing an L2R model together with a set of
efficient algorithms for data collection and feature com-
putation. We have presented a detailed breakdown and
analysis of our model, and provided an extensive empirical
study of each building block. We showed that pointwise
L2R approaches vastly outperform content-based and pair-
wise/listwise L2R approaches for real-time hashtag recom-
mendation. Finally, we showed that L2R approaches behave
better for recommending hashtags to niche news articles,
a setting where most other approaches do not perform
well due to lack of data for robust feature computation.
We have showcased the value of our recommendations in
an application to automated story tracking. By efficiently
recommending hashtags to news article with high-precision
(P@1 above 90%) and high-coverage (80% of articles get
recommended hashtags), we believe we can address very
interesting problems in text mining, ranging from news
story detection and tracking, to entity linking. We intend
to explore these research problems in our future work.
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