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Abstract: The Ring Spur Assignment Problem (RSAP) arises in the design of Next Generation Telecom-
munications Networks (NGNs) and has applications in location-allocation problems. The aim is to iden-
tify a minimum cost set of interconnected ring spurs. We seek to connect all nodes of the network either
on a set of bounded disjoint local rings or by a single spur edge connected to a node on a local ring.
Local rings are interconnected by a special ring called the tertiary ring. We show that the problem
is NP -Hard and present an Integer Programming formulation with additional valid inequalities. We
implement a branch-and-cut algorithm and present our conclusions with computational results.
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1 Introduction

Modern economies demand always on information networks, yet the underlying physical medium on
which the information economy depends is vulnerable. Duplicating every transmission path would of
course create a reliable network but this demand for reliability competes almost directly with shareholder
demand for return on investment. De-regulation of the Irish telecommunication market in 1998 opened
up the market to competition and the need for efficient usage of resources.

The Ring Spur Assignment Problem (RSAP) is motivated by just such a practical situation: a
network operator seeks to identify an economical fault tolerant Next Generation Network (NGN). Two
IP formulations for the RSAP were presented and compared in Carroll et al. (2011). In this paper we
show that the problem is NP -hard and strengthen the formulations with additional valid inequalities.

In our work, we focus on selecting a survivable topology in the physical layer of the Open systems
Interconnection (OSI) model. We seek to identify a 2-connected (ring) topology to ensure survivability.
If a suitable topology can be identified in the physical layer, the logical network can be implemented and
managed at the logical layer. We seek a series of bounded disjoint local rings that are interconnected
by a special ring called the tertiary ring. This eliminates the possibility of implementing mesh based
networks described in Grover (2003). We wish to use pre-installed capacity in the physical Synchronous
Digital Hierarchy (SDH) network to minimise costs. Our aim of identifying a highly resilient topology
at minimum cost is achieved by assigning locations to rings.

The RSAP is a complement of the SDH Ring Assignment Problem (SRAP) problem described in
Goldschmidt et al. (2003). We are identifying rings that can carry the estimated demand. However, no
SRAP solution is possible in some real world instances. As an alternative, where no SRAP solution exists,
we allow locations that have insufficient spare capacity or no possible physical route due to limitations of
geography, to be connected to Self Healing Rings (SHRs) by spurs off the local rings. Spur nodes must
be connected to a local ring by a single edge, i.e. we do not allow a chain of edges to connect spur nodes.
A feasible topology for RSAP is illustrated in Figure 1.

Soni et al. (1999) propose a taxonomy to classify the many survivable network design problems
described in the literature. They suggest the layer in the OSI model where network survival is provided
as the most appropriate classification characteristic. Protection can be provided at the physical layer for
networks by specifying a topology with either low or high connectivity requirements, as, for example, in
(Grötschel et al., 1995). Protection can then be provided at the logical layer assuming the underlying
physical network is survivable by specifying the minimum number of node or edge disjoint paths between
demand pairs, as, for example, in Huygens et al. (2007). Our work can be classified amongst approaches
providing physical survivability but differs from other works since we aim to exploit existing physical
infrastructure where possible.

In addition, we note that the solution topology we propose may have practical applications in the
area of Facility Location (Korte and Vygen, 2008) and Rapid Transit Network Design (Laporte et al.,
2007).
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Figure 1: An example of feasible RSAP topology

The layout of our paper is as follows: In Section 2 we give a formal statement of the RSAP, then
we review some Survivable Network Design Problems described in the literature to set the context for
the RSAP in Section 3. In Section 4 we describe an IP formulation with additional valid inequalities.
In Section 5 we describe our branch-and-cut implementation. Computational results are presented in
Section 6. We summarise our conclusions in Section 7 and include a detailed NP -hardness proof of the
RSAP in the Appendix.

2 The Ring Spur Assignment Problem (RSAP)

Communities of interest, defined in Cosares et al. (1995) as geographically close nodes that have high
traffic demands between them, are identified and their traffic demands are estimated. If such communities
can be clustered on node disjoint rings, no wavelength conversion is required, eliminating the cost of
wavelength conversion and/or opto-electronic conversion equipment for intra-ring demand; this is an
important cost consideration in any network upgrade plan. We call these rings local rings.

Local rings can then be connected by a special ring, which we call the tertiary ring, often called the
federal or backbone ring in the literature. Tertiary is a legacy naming convention used by this operator
to signify the highest level in the physical infrastructure. The tertiary ring facilitates inter-ring demand;
wavelength converters are required where local rings connect to the tertiary ring.

So far the problem described is similar to the SRAP problem; we are identifying rings that can carry
the estimated demand. However, as shown in Carroll and McGarraghy (2009b), in some real world
instances, no SRAP solution is possible. We note that in the SRAP, demand pairs are grouped together
so that there is as little inter-ring traffic as possible subject to capacity constraints on rings. The SRAP
problem addresses how to design a ring based network by selecting the link capacities to install. In
contrast, in the RSAP, we assess an existing network and the problem is to impose a ring topology over
existing links at the logical level.

As an alternative, where no SRAP solution exists, we allow locations that have insufficient spare
capacity or no possible physical route due to limitations of geography, to be connected to SHRs by spurs
off the local rings. Spur nodes must be connected to a local ring by a single edge, i.e. we do not allow a
chain of edges to connect spur nodes. We call this problem the Ring Spur Assignment Problem (RSAP).
A solution to the RSAP is a set of disjoint bounded ring stars interconnected by a tertiary ring. Note,
if a ring only solution exists, a ring-spur solution is not accepted.

We now state the RSAP formally as follows:
Instance:

• an undirected graph G = (V,E) defined on a set V of nodes, labelled from 1 to n where n = |V |,
n ≥ 6 to exclude degenerate cases and a set of undirected edges E; the underlying set A of oriented
arcs contains, for each edge {i, j} ∈ E, two arcs (i, j) and (j, i), one in each direction,
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• a pair of positional co-ordinates for each node i ∈ V that allow us to assign positional reference
values for the end nodes of each edge {i, j}. These reference values signify the position of end
nodes with respect to each other,

• a non-negative routing cost giving the cost of a link dependent on its length and capacity. Let
cij ≥ 0 be the cost coefficient of edge {i, j} ∈ E for ring edges. If arc (i, j) is assigned as a spur,
then it will be given a cost bcij , where b is a penalty weighting factor.

• An integer ring bound R ≥ 3.

Problem: Find a minimum cost RSAP network G′ ⊆ G of disjoint bounded local ring spur partitions
interconnected by a tertiary ring. The number of nodes on local rings is restricted by R, the Ring Bound.
We wish to select F ⊆ E constituting the RSAP solution topology network N = (V, F ). All nodes of G
are either assigned to be part of a local ring or are connected by a spur edge to a node on a local ring.
In addition, all local rings are interconnected by a tertiary ring. At least one node from each local ring
represents that local ring on the tertiary ring. The tertiary ring forms a single simple cycle connecting
the local ring representatives which may share edges but not spurs of the local rings.

SONET standards set the recommended maximum number of Add-Drop Multiplexers (ADMs) per
ring at sixteen but, in this practical application, local rings are restricted to having no more than eight
nodes. Since we wish to foster high resilience by having locations assigned to rings where possible,
we assign a sufficiently high weight, b, to links that are spurs. We use a similar approach to Carroll
and McGarraghy (2009a) to quantify a penalty weighting value in terms of other network parameters
sufficient to ensure the creation of ring solutions if they exist. For simplicity, we set the coefficient of
each arc (i, j) ∈ A, to be bcij in our objective function, i.e. the cost of using a spur edge is the network
cost of that edge, cij , multiplied by the penalty weighting value of b for the network.

We summarise our use of some graph theory concepts that will be used to support the IP formulation
described in Section 4.

The set of nodes on the ring of index k is denoted by N(k) and the set of edges that form the
ring of index k is denoted by E(k). For simplicity, we refer to ring k, meaning the ring of index
k. The set of nodes adjacent to node i is denoted by adj(i) and the cut of S ⊂ V is denoted by
δ(S) := {{i, j} ∈ E : i ∈ S, j /∈ S}, i.e. the set of edges having only one endpoint in S. We say a cut
is odd if |δ(S)| is odd, even otherwise. Details of the decision variables of our formulations are given
later. The support graph Gk associated with ring k is Gk := (N(k), E(k)) i.e. those edges for which the
local ring edge decision variables are non-zero. The support graph GT associated with the tertiary ring
is GT := (N(T ), E(T )) i.e. those edges for which the tertiary ring edge decision variables are non-zero.

3 Survivable Network Design Problems

In this section, we summarise some literature on problems that have similarities to the RSAP.
The two-connected network with bounded ring (meshes), 2CNBR (2CNBM), design problem is to

design a minimum cost network N such that N contains at least two node disjoint paths between every
pair of nodes (two-connectivity constraints) and that each edge of N belongs to at least one cycle whose
length is bounded by a given integer K (this gives us the ring constraints). The 2CNBM problem is
described in detail by Fortz et al. (2000) and the 2CNBR in Fortz and Labbé (2002). The problem arises
in topology design of backbone telecommunications networks, specifically networks with low connectivity
requirements.

Fortz et al. (2000) describe their work on 52 zonal centres of the Belgian backbone network and
note that modern fibre optic networks are characterised by high capacity, with high reliability per cable,
leading to hierarchal sparse networks. Unfortunately sparse networks are more sensitive to damage so
that designs need to ensure survivability. By imposing constraints on the maximum number of edges in
a ring, the impact of failure can be limited.

Fortz and Labbé (2004) note that a minimum cost two-connected network is often a Hamiltonian
cycle. This is undesirable in practice for a telecommunications network, as re-routed traffic would have
to traverse all edges of the network. Ring Constraints, (cycles of length ≤ K, an integer), that limit the
region of influence of rerouted traffic in the event of a node/edge failure are introduced. This corresponds
in practice to the limited number of hops allowed in a self-healing ring network.
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They note that SHRs can be classified as unidirectional with dedicated spare capacity set aside for
protection or bi-directional where working and spare capacity are combined on one fibre. Their work
focuses on the selection of a set of edges that create a topology with a specified number of node (edge)
disjoint paths between source and sink nodes where each edge belongs to a cycle of bounded length.
Their objective is to find such a set of edges at minimum cost; we note that they have no requirement
that the cycles be node (edge) disjoint. On the left of Figure 2 we show an example of a 2CNBR topology.

Figure 2: Topology examples: 2CNBR (left), SRAP (middle), RSAP (right)

The SONET Ring Assignment Problem (SRAP) is described in Goldschmidt et al. (2003). The SRAP
is a design problem that seeks to identify which bi-directional SHR rings should be built to interconnect
a set of customers and to identify a special ring called the federal ring that interconnects the customer
rings. The authors minimise network costs by minimising the number of rings while satisfying customer
demand, ring capacity and topology constraints. In the SRAP all Add Drop Multiplexers (ADMs) are
the same size. Having solved the ring assignment problem, they use heuristics to solve TSP problems
for each ring. We note that the resulting customer rings are disjoint. In the middle of Figure 2 we show
an example of an SRAP topology. We see customer rings interconnected with a federal ring structure.

Goldschmidt et al. (2003) note that in practice, SDH Planning problems are decomposed into a
sequence of manageable sub-problems. They describe the NP -Hard SDH Ring Loading problem (SRLP)
as a low level problem of partitioning and routing traffic on a bidirectional SHR so as to minimise the
ring capacity while satisfying all traffic demands. The SRLP can be tackled after the high level SRAP
has been solved. They show this problem to be NP -hard. They note that using a commercial solver on
the complete ILP is not practical and describe their approach in solving a series of related problems.

In practice, real world networks may contain some nodes that represent geographical locations that
cannot facilitate two-connection. A town at the end of a peninsula or an area blocked by a mountain
range may have a linear connection to the main backbone network. In other cases, a highly utilised
network may not have sufficient spare capacity to allow the completion of a ring.

Labbé et al. (2004) describe the Ring Star problem (RSP) and an exact solution method. The Ring
Star type of telecommunications network is used to connect terminals to concentrators by point-to-point
links and is useful where not all nodes are required to be two connected. This type of topology is often
used for Local Area Networks (LANs). A single node is a designated hub node that must be connected
to the ring, all other nodes can either be assigned to the ring using concentrators or assigned to a node
on the ring. The objective is to minimise the total cost of the ring and star assignments. The authors
give an exact algorithm and a polyhedral analysis of the RSP. They also present computational results
of a branch-and-cut implementation.

An extension to the RSP is the Capacitated m-Ring-Star Problem (CmRSP) described in Baldacci
et al. (2007) in relation to the design of an optical network in an urban area, in this instance in an Italian
city. The problem consists of finding m node disjoint ring stars that visit a central depot, the number
of customers allocated or visited in a ring cannot be greater than some capacity Q. The objective is
to minimize the total ring star assignment costs. The authors give two ILP formulations, a two index
edge and a two commodity flow formulation and they develop a branch-and-cut algorithm. They assess
the effectiveness of the two formulations in the branch-and-cut framework and compare the respective
LP relaxations of the models. The LP relaxations will provide solutions of equal cost. The authors
report that their algorithms can handle instances up to about 100 nodes. In Naji-Azimi et al. (2010),
the authors give a heuristic method for solving larger CmRSP problem instances. While in Hoshino and
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de Souza (2009), the authors give an exact branch-and-cut-and-price algorithm for the CmRSP which
they report outperforms the branch-and-cut implementation of Baldacci et al. (2007).

A solution to the RSAP is a set of interconnected ring stars. On the right of Figure 2 we show an
example of an RSAP topology. Local rings are shown as light lines, spurs as dashed lines and the tertiary
ring in heavy lines. For clarity, network edges that are not part of the solution topology are not shown.

RSAP ring solutions are not necessarily 2CNBR solutions since we only require local rings to have
at least one representative node on the tertiary ring. RSAP ring solutions do not necessarily have two
node disjoint paths between every pair of nodes.

In Carroll and McGarraghy (2009b) the authors argue that since SRAP is a special case of RSAP, it
follows that RSAP is also NP-Hard. However, the SRAP differs from the RSAP in a crucial aspect. The
SRAP problem addresses how to design a ring based network by selecting the link capacities to install.
It focuses on clustering nodes that can be placed together on a ring subject to capacity restrictions on
the volume of intra-ring traffic on each ring, and the total volume of inter-ring traffic carried by the
tertiary ring. While ring solutions to the RSAP satisfy the SRAP topology requirements, they do not
necessarily satisfy the SRAP capacity restrictions. In the RSAP, we assess an existing network and the
problem is to impose a ring topology over existing links at the logical level. In this sense, the RASP is a
complement of the SRAP. We include a more detailed NP-Hardness proof of the RSAP in the Appendix.

4 Ring Representatives Formulation

Having shown that the RSAP is NP -hard, we seek to implement an efficient polyhedral algorithm to
solve RSAP instances. In Carroll et al. (2011) we describe two IP formulations for the RSAP, the double
indexed formulation described here and a triple indexed formulation. We compare the two formulations
and note that both formulations have O(n3) variables but that the triple indexed formulation tends
asymptotically towards having four times as many variables as the double indexed formulation.

We note that the constraints in both formulations are mostly similar with O(n3) constraints in both
formulations. The total number of constraints is higher in the triple indexed formulation. In Carroll
et al. (2011), we show that there is no empirical difference in the LP bound of the two formulations and
show that the triple indexed formulation is at least as strong as double indexed formulation. We leave
the question of the equivalence of the LP relaxations open. For practical purposes, we work in this paper
with the more compact double indexed formulation.

We now give the details of our double indexed formulation for the RSAP. We first concentrate on the
local rings and come back to the tertiary ring later. The formulation uses variables to assign nodes and
edges to rings, and a third set of variables for spurs. The main problem with such a choice of variables
is that it induces a lot of symmetry in the formulation, as rings are interchangeable.

One way to break this inherent symmetry is to use the same kind of symmetry breaking that was used
e.g. in Campêlo et al. (2008) for graph colouring problems. Each ring is identified by a representative
node belonging to the ring. If we decide that the representative node is the node with smallest index in
the ring, the symmetry is completely broken. Note that since each ring is composed of at least 3 nodes,
only nodes k ∈ K := {1, . . . , n− 2} can be ring representatives.

Let xijk be a binary variable equal to 1 if and only if edge {i, j} appears on ring k, and equal to 0
otherwise; i.e. both i and j are assigned to the same ring k. Also, we implicitly assume that i < j when
writing an edge {i, j}. For each arc (i, j)∈ A, let yij be a binary variable equal to 1 if vertex i is assigned
to vertex j as a spur; we set yii = 1 for any vertex i that is on a ring. Let zik be a binary variable equal
to 1 if vertex i is assigned to ring k as a ring node.

The tertiary ring variables are αik, a binary variable equal to 1 if and only if node i connects ring k
to the tertiary ring, 0 otherwise. βij is a binary variable equal to 1 if and only if edge {i, j} appears on
the tertiary ring, and equal to 0 otherwise.

With these sets of variables, the initial relaxation of the RSAP, omitting subtour elimination con-
straints, can be formulated as follows:
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min
∑
{i,j}∈E

∑
k∈K

cijxijk +
∑

(i,j)∈A

bcijyij +
∑
{i,j}∈E

cijβij (1)

s.t.

i∑
k=1

zik = yii ∀ i ∈ V (2)∑
j∈adj(i)

yij + yii = 1 ∀ i ∈ V (3)

∑
j∈adj(i),j>i

xijk +
∑

j∈adj(i),j<i

xjik = 2zik ∀ i ∈ V, k ∈ K (4)

∑
l∈adj(i),l>i,l 6=j

xilk +
∑

l∈adj(i),l<i

xlik ≥ xijk ∀ {i, j} ∈ E, k ∈ K (5)

∑
l∈adj(j),l<j,l 6=i

xljk +
∑

l∈adj(j),l>j

xjlk ≥ xijk ∀ {i, j} ∈ E, k ∈ K (6)

∑
i∈V,i>k

zik ≤ (R− 1)zkk ∀ k ∈ K (7)

zik ≤ zkk ∀ i ∈ V, k ∈ K (8)∑
k∈K

xijk + yji ≤ yii ∀ i ∈ V, j ∈ adj(i) (9)∑
k∈K

xijk + yij + yji ≤ 1 ∀ {i, j} ∈ E (10)∑
i∈V,i≥k

αik ≥ zkk ∀ k ∈ K (11)

αik ≤ zik ∀ i ∈ V, k ∈ K (12)∑
j∈V,i<j

βij +
∑

j∈V,j<i

βji = 2
∑
k∈K

αik ∀ i ∈ V (13)

∑
l∈adj(i),l>i,l 6=j

βil +
∑

l∈adj(i),l<i

βli ≥ βij ∀ {i, j} ∈ E (14)

∑
l∈adj(j),l<j,l 6=i

βlj +
∑

l∈adj(j),l>j

βjl ≥ βij ∀ {i, j} ∈ E (15)

βij + yij + yji ≤ 1 ∀ {i, j} ∈ E (16)

xijk, yij , zik, αik, βij ∈ {0, 1} ∀ {i, j} ∈ E, k ∈ K (17)

We use constraints (2) to link the y and z variables. Constraints (3) ensure every node is assigned.
Constraints (4) say that every node i on ring k has exactly two incident local ring edges on ring k. We
note that variables yii are not needed but are included to simplify the understanding of the model.

The connectivity constraints (4) allow the edges incident with the local ring node to belong to different
rings in the LP relaxation. An example is shown in Figure 3. We need to ensure that each local ring edge
on ring k is coincident with two local ring edges on the same ring. We dis-aggregate this requirement and
look separately at the head and tail of each local ring edge. Constraints (5) and (6) are dis-aggregated
edge connectivity constraints and ensure that the head (tail) of a ring edge on ring k each have an
incident ring edge on ring k. This form of connectivity constraints ensure there are at least three edges
(three nodes) on each local ring.

Rings are restricted to having no more than R nodes by the Ring Bound Constraints (7), if ring k
is active, node k must be active and no more than R − 1 other nodes. Constraints (8) ensure node i is
assigned to ring k if and only if node k is assigned to ring k. Constraints (9) say that j is assigned to
i as a spur or adjacent to i on a ring if and only if i is a ring node. Constraints (10), which are only
needed in the relaxed LP, limit the usage of any edge (or its corresponding arcs) to 1.

The next set of constraints define the tertiary ring. Constraints (11) ensure every active local ring
k is represented on the tertiary ring by at least one of its nodes. Constraints (12) link the α to the z
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Figure 3: F2 invalid IP solution

variables and ensure that node i only represents ring k if it is active on ring k. Constraints (13) ensure
that nodes on the tertiary ring are two connected while constraints (14) and (15) are similar to the
local ring edge dis-aggregated connectivity constraints (5) and (6). Again, these connectivity constraints
ensure there are at least three edges on the tertiary ring. Constraints (16) ensure that no spur edge is
used as a tertiary ring edge (this ensures the robustness of the tertiary ring) while constraints (17) are
the binary integer constraints.

The zik and αik decision variables act as ancillary variables to enforce the RSAP topology require-
ments and link the local to the tertiary ring.

We note that the formulation thus far allows subtours on both the local and tertiary rings. In
Section 4.1 we describe Subtour Elimination Constraints (SECs) that are added as required in the
branch-and-cut algorithm described in Section 5.

4.1 Subtour Elimination Constraints

As noted, we need to add SECs to ensure a valid formulation. The traditional SECs force at least one
edge of a subtour to be dropped. In the case of the RSAP, we can strengthen the traditional SEC. Recall
that decision variable zkk is equal to 1 if vertex k is assigned to ring k where k is the ring representative.
In Carroll et al. (2011) the authors describe modified SECs (M-SECs). Suppose a subtour is detected on
ring k, defined by a subset of nodes S, with node k /∈ S. No nodes can be assigned to ring k if the ring
representative node k is not active, i.e. if zkk = 0. Then the following modified version of the traditional
SEC (M-SEC) is valid: ∑

{i,j}∈E(S)

xijk ≤ (|S| − 1)zkk ∀ S ⊂ V, k /∈ S M-SECs (18)

Eq. (18) says that the set of edges of the subset S cannot all be on ring k. Indeed, such a constraint
can be added for all k ≤ minindex(S), the minimum index of the subset S. For example, if the edges of
the subset S := {5, 6, 7} form a local ring, they must be on ring 5 and cannot be on ring 4 or lower. Also
note, since constraints (5) and (6) force the number of nodes on an active local ring to be at least three,
we consider subtours on S ⊂ V where |S| ≥ 3. This form of subtour elimination was used in Carroll
et al. (2011).

4.1.1 Generalised Subtour Elimination constraints

Another way to eliminate subtours is to use the Generalised Subtour Elimination constraints (G-SECs)
which are applicable to vehicle routing problems. G-SECs are described in Laporte (1986) and are used
to ensure that no vehicle route is cut off from the depot. In the case of the local rings of the RSAP, we
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wish to ensure that no node on local ring k is cut off from the ring representative k using a modified
G-SEC: ∑

i,j∈E(S)

xijk ≤
∑

i∈S\{l}

zik ∀ k < minindex(S), S ⊂ V k /∈ S, l ∈ S G-SECs (19)

In Eq. (19) S is a subtour of size at least three, |S| ≥ 3, the inequality says that at most |S| − 1
nodes can be on ring k when k /∈ S, otherwise the nodes of S on ring k are cut off from node k. As in
the modified SECs, this is true for all k < minindex(S). The G-SECs are are a stronger form of subtour
elimination for multiple ring problems than the M-SECs proposed in Carroll et al. (2011) as evidenced
in our computational results below.

4.1.2 Tertiary ring SECs

SECs are also required for subtours on the tertiary ring. If a subtour consisting of subsets Sa and Sb

is detected, since it is not known which local ring edges will be nonzero in the optimal solution, it is
possible that the optimal tertiary ring could consist of all edges of one tertiary ring subtour, either Sa

or Sb. However, not all edges of both subtours could be non-zero in the optimal solution. An aggregated
version of the usual SECs is SEC-T:∑

{i,j}∈E(Sa)∪E(Sb)

βij ≤ |Sa ∪ Sb| − 2 ∀ Tertiary Subtours Sa and Sb SEC-T (20)

4.2 Additional Valid Inequalities

We also identify some additional inequalities to improve the LP bound and performance of the branch-
and-cut algorithm.

4.2.1 2-matching constraints

Our formulation also gives rise to fractional results with invalid 2-matchings, i.e. cuts across an odd
number of edges. As with TSP-like problems, the cut across rings must be even. H ⊂ V is called a
handle and T ⊂ E is an odd set of disjoint edges with exactly one end in H, known as teeth. By taking
linear combinations using weights of 0.5 on the connectivity constraints, Eq. (4) for all nodes in the
handle and weights of 0.5 on the teeth edge trivial upper bounds, xijk ≤ 1, and then rounding we get
2-matching constraints given by:∑

{i,j}∈E(H)

xijk +
∑
{i,j}∈T

xijk ≤
∑
i∈H

zik +

⌊
T

2

⌋
2-matching on ring k (21)

Nemhauser and Wolsey (1988) note that 2-matching constraints are dominated by the subtour inequalities
when the number of teeth is one, hence |T | ≥ 3 in traditional TSP-like problems. However, we note that
in our formulation with the use of the dis-aggregated connectivity constraints, an odd cut with a single
tooth may arise in a fractional solution hence |T | ≥ 1 and odd in our modified 2-matching constraints.

We mention 2-matchings on the tertiary ring. As before, a violated 2-matching on the tertiary ring
can exist on only one tooth, we use a modified 2-matching inequality on the tertiary ring of the following
form: ∑

{i,j}∈E(H)

βij +
∑
{i,j}∈T

βij ≤
∑
i∈H

∑
k∈K

αik +

⌊
T

2

⌋
2-matching on Tertiary ring (22)

An example of a violated 2-matching on the tertiary ring is given in Figure 4. Fractional tertiary
ring edges are shown in heavy lines, H = {4, 5, 6}, there is one tooth {3, 4}, the weights of E(H) = 0.3
while the tooth edge weight is 0.6. The handle nodes all partially represent ring 3 on the tertiary ring,
α43 = 0.5, α53 = 0.3, α63 = 0.3, while node 4 also partially represents ring 1, α41 = 0.1.
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4.2.2 Infeasible Ring constraints

The edges of a fractional solution may form an infeasible ring, i.e. the ring bound constraints are satisfied
but there are too many nodes on the local ring. An example is shown in Figure 4. If the number of edges
in a simple cycle on the fractional ring edges is greater than the ring bound, we have found a cycle that
is too big. We call these infeasible rings ghosts. Ghost rings can be eliminated by observing that at least
two edges of a cycle that exceeds the ring bound must be dropped, the remaining edges can be used to
form valid rings.

Figure 4: Fractional solution

In the example shown in Figure 4, all yii = 1, xijk ∈ {0.5, 1} for the local ring edges shown in colour.
The local ring assignment variables zik ∈ {0.5, 1}. Some nodes are partially assigned to two rings, e.g.,
node 2 is equally assigned to rings 1 and 2 with z2,1 = z2,2 = 0.5. Other nodes are completely assigned
to a ring, e.g., node 1 is assigned to ring 1 with z1,1 = 1. Tracing a cycle around the 11 outer edges
of the graph, we see than the sum of the local ring edges over all rings adds to 9.5. We define a ghost
ring Gr as a simple cycle on the fractional ring edges of the LP solution with more than the ring bound
number of edges.

Standard SECs break a subtour by forcing at least one edge of the subtour to be dropped. In the
case of bounded rings, dropping one edge would leave a path, in our example of 10 edges. These 10 edges
forming a path cannot form a bounded ring. We observe that d|Gr|/Re is a lower bound on the number
of rings that would be required to cover the nodes of a ghost ring. Thus, we obtain a stronger constraint
by forcing at least d|Gr|/Re edges of Gr to be dropped, as follows:∑

{i,j}∈E(Gr),k∈K

xijk ≤ |Gr| − d|Gr|/Re ∀ Ghost ring Gr (23)

4.2.3 Lower ring bounds

Finally, although our formulation ensures there are at least two local rings in a solution, for small
problems, it may be useful to add a constraint that forces the sum of the ring assignment variables to
be at least two: ∑

i∈V,k∈K

zik ≥ 2 local ring lower bound (24)

Similarly, although constraints Eq. (14) and Eq. (15) ensure there are at least three edges on the
tertiary ring, the sum of the value on the tertiary ring fractional edge variables may be less than three.
If necessary, we can add a constraint to ensure the sum is greater than three.∑

{i,j}∈E

βij ≥ 3 Tertiary ring lower bound (25)
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5 A Branch-and-Cut Algorithm

This section describes the branch-and-cut parameters of our algorithm and the min cut algorithm used
in our separation procedures.

5.1 Cut Separation

Finding the minimum cut for a graph has been described as the bottleneck in the polyhedral approach
by Applegate et al. (2003). Since the graphs we consider are undirected and we only need to identify
violated subtours on any local ring (or on the tertiary ring) rather than generate all min-cuts in the
solution, we use a modified version of the min cut algorithm of Stoer and Wagner (1997). The authors
describe a deterministic non-flow based min cut algorithm based on the principle of maximal adjacency.
It takes as input a graph adjacency matrix and returns the min cut value. It runs through a number of
iterations, finding a cut at each iteration, the smallest of which is the min cut of the graph.

We modified the Stoer Wagner algorithm to run on the support graph for a local ring (or tertiary
ring) and track the cuts at each iteration using data structures to store the number of edges in a cut, the
cut value and the resulting partitions. We interrupt the algorithm if a zero value min cut is detected.
Otherwise, the Stoer Wagner algorithm runs to completion and in both cases we have access to the stored
cuts. Note that the Stoer Wagner algorithm finds a number of cuts, we note that unless an odd cut
detected is the min cut of the graph, it is not necessarily the minimal odd cut but any odd cut found on
the fractional ring edges is a violation of some sort and is worthy of investigation. We check if any odd
cut gives a violated 2-matching. A subtour is separated when the min cut of the support graph is zero
and either a local ring M-SEC or G-SEC is added. In the case of the tertiary ring; an SEC-T is added.

Since there are potentially an exponential numbers of both feasible and infeasible rings on a fractional
ring solution, we use a simple heuristic to detect and add GECs. For each fractional ring k in the LP
solution, if the number of nodes on the ring exceeds the ring bound, we create the support graph Gk

and select any 2-connected node as the start node and attempt to trace a path that returns to the start
node to form a simple cycle along the edges of Gk. At any intermediate node of degree greater than two,
we select the next node as the one that makes the biggest angle on our current path using the nodes’
positional co-ordinates and continue tracing the path. If the path returns to the start node using more
than the ring bound number of edges, we have detected an infeasible ring (ghost) and add the GEC. If
we failed to form a cycle, no GEC has been detected on this fractional ring and we proceed to check the
next ring with a fractional solution.

5.2 The algorithm

The branch-and-cut algorithm models the initial problem using constraints Eq. (2) to Eq. (17) and the
lower bound inequalities Eq. (24) and Eq. (25) for small problems.

We solve this initial problem and separate and add cuts at the root node to improve the LP bound. If
the solution is still fractional we call a branch-and-cut search. We turn off the solver presolve, automatic
cuts and default heuristics. We synchronise the parallel threads and set our own cut directives. We choose
between the Modified or Generalised Subtour Elimination Constraints, M-SECs or G-SECs. These cuts
are separated at all nodes of the branch-and-cut tree. We add in the other additional valid inequalities
specifying at what stages in the cutting plane algorithm they are separated and added. In Section 6 we
report computational results using different combinations of the additional inequalities.

The methodology we have used is to add cuts to the branch-and-cut node as global cuts after the
call to the separation procedure and clear the cut pool. This means that the cut applies to the node
and all its descendants. It also means that the cut pool is kept small. In choosing this methodology it is
possible that the same cut will be identified at some other branch of the branch-and-cut tree. We have
to weigh up the cost of duplicating the separation procedure against the cost of maintaining a larger cut
pool and checking whether cuts in the pool should be applied to the current node.

We save all integer solutions found during the branch-and-cut search for possible later scenario anal-
ysis.
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6 Computational Results

Algorithms were implemented with code written in ANSI C, using the Xpress-MP suite 7.2 with Xpress-
BCL version 4.4.0 Builder Component library (BCL) routines and Xpress-Optimizer 22.01, and run on a
32 bit Toshiba Satellite Pro with Intel Dual Core Pentium 1.86GHz processors and 2 GB of RAM under
Windows Vista allowing a maximum of three hours computation time.

The release of the Xpress 7.2 suite (May 2011) includes a facility to exploit parallel processing in the
branch-and-bound tree. This is achieved by synchronising the BCL and optimiser problems at the start
and end of each callback, access to the BCL problem is locked to the particular thread in between these
two function calls.

The test data used was SNDlib (Orlowski et al., 2010), since it provides many real world problem
instances with both a network model and positional co-ordinates for each node. In earlier testing three
problems, nobel-eu, janos-us-ca and zib54, were integer infeasible for RSAP solutions, and so were omit-
ted from further testing. These networks have a small number of nodes of very high degree making
them unsuitable for the RSAP topology. We give computational results for the remaining problems
using different combinations of the additional cuts to compare their effectiveness. If the branch-and-cut
algorithm has not completed within our three hour time limit, we report the best integer solution (if
any).

We also include results comparing the impact of varying the ring bound, using values of four and
twelve compared to the preferred value used in practice of eight.

Table 1 shows a summary of the SNDLib problem instances using a ring bound of eight. From left
to right we show:

1. the problem name,

2. the problem size in terms of the number of nodes, n, and edges, m,

3. the penalty weighting b calculated for the problem instance,

4. the LP relaxation objective function value,

5. the computational time in seconds to obtain the optimal LP relaxation solution.

problem size penalty LP objective LP time
name n,m weight b function value (s)
dfn-bwin 10,45 3 105,686 0.024
pdh 11,34 4 1313202 0.032
di-yuan 11,42 16 *412,300 0.030
dfn-gwin 11,47 6 15,392 0.030
polska 12,18 3 3,187 0.026
atlanta 15,22 17 38,476,500 0.047
newyork 16,49 7 1,415,120 0.069
ta1 24,51 7 8,712,416 0.108
france 25,45 10 14,600 0.134
janos-us 26,42 4 13,381 0.394
norway 27,51 6 464,198 0.536
sun 27,51 15 466 0.498
cost266 37,57 13 7,629,382 0.766
giul39 39,86 6 736 4.630
pioro40 40,89 9 6,235 1.186
germany 50,88 7 348,920 4.353
ta2 65,108 20 32,971,118 10.852

Table 1: Problem and LP summary, R = 8, * indicates an integer solution

The problem instances vary in size from the 10 node, 45 edge dfn-bwin instance to the 65 node,
108 edge ta2 instance. We see that the LP relaxation of the 11 node di-yuan problem is integer. It
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has no subtours, so is the optimal RSAP solution. The LP relaxations for all other problem instances
are fractional and contain subtours as well as violated 2-matchings and the infeasible rings described in
Section 4.2.2.

In Table 2 we show a summary of results of the branch-and-cut algorithm using various cut combina-
tions for the problem instances which are solved to optimality. These problems have 37 or fewer nodes.
We see that optimal solutions for small problems are found in a short time. We omit di-yuan from this
table since its linear relaxation is optimal. From left to right we show:

1. the problem name,

2. the cut combination,

3. the optimal IP objective function value,

4. the computational time in seconds to obtain the optimal IP solution,

5. the number of M-SECs on local rings,

6. the number of G-SECs on local rings,

7. the number of 2-matching cuts on local rings,

8. the number of GECs,

9. the number of SECs on the tertiary ring,

10. the number of 2-matching cuts on the tertiary ring,

11. the best bound on termination,

12. the number of nodes in the branch-and-cut tree.

The cut combinations reported are as follows

1. M-SECs: Modified SECs on local rings (L), Eq. (18) plus SECs on the tertiary ring (T), Eq. (20),

2. G-SECs: Generalised SECs on local rings (L), Eq. (19) plus SECs on the tertiary ring (T), Eq. (20),

3. G-SECs+2M: cut combination 2 plus 2-matching constraints on the local and tertiary rings, Eq. (21) and
Eq. (22)

4. G-SECs+2M+GEC: cut combination 3 plus GECs, Eq. (23)

5. G-SECs+2M+GEC-P: cut combination 4 with prioritisation on zkk variables.
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In Table 2 we see that for most of the problem instances that are solved to optimality, there is some
benefit derived from the stronger G-SECs. However, on the slightly larger problems, such as the 37 node
cost266 instance, we see a significant reduction in both the number of nodes in the branch-and-cut and
the computational time. Only 5,160 nodes are processed in 197.22 seconds in order to find the optimal
solution using the G-SECs, compared to 25,272 in 463.95 seconds using the M-SECs.

The addition of the 2-matching constraints decreases the computational time in some instances.
Recall that we do not explicitly separate 2-matching constraints but check for any odd cut detected
while separating the SECs. It is possible that an explicit 2-matching separation procedure would identify
additional 2-matching violations that could improve the overall performance.

In most cases, the addition of the GECs, where a GEC is separated, causes a decrease in the com-
putational time. For example, the run time for cost266 is reduced to 90.00 seconds by the addition of
3 GECs. Where no GEC is separated the additional time spent trying to separate a GEC simply adds
to the overall run time. This occurs in the case of janos-us where the run time is increased from 16.74
to 17.29 seconds with no GECs separated. Recall that we use a heuristic to separate GECs at the root
and every fifth node of the branch-and-cut search.

Recall also that the zik and αik ancillary decision variable are used to enforce the RSAP topology
requirements. We tested prioritising on these variables as they effectively control the local and tertiary
ring. We found the best results were achieved by prioritising on the zkk variables and these results are
also shown in Table 2.

In most cases, by prioritising on the zkk variables and using all the additional cuts, we decrease the
run time. We see for example, that sun is solved to optimality in only 22.93 seconds using this approach.

In Table 3 we show a summary of results of the branch-and-cut algorithm for the bigger problem
instances which are not solved to optimality. We add an additional column to show the gap between the
best integer solution and the best bound.

For the bigger problem instances, we see that the G-SECs outperform the M-SECS, the gap in all
such cases is reduced. In these cases, more G-SECs are separated (compared to M-SECs) and the overall
number of nodes in the branch-and-cut search tree are reduced. In some of these instances, we encounter
a limitation on the hardware memory availability. In the case of pioro40, the search is interrupted before
the three hour time limit because the available memory is fully utilised. All such results are flagged with
an * in Table 3.

The benefit of using of the 2-matching constraints on these bigger problems is less clear cut. Only in
the case of germany do we see a reduction in the gap to 2.3%. Nor do the addition of the GECs close
the gap. However, the combination of all the additional cuts and prioritising on the zkk variables yields
the best set of results for these problems.
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6.1 Ring bound impact

In our final sets of results, we assess the impact of varying the ring bound. We use the G-SECs on the
local rings(Eq. (19)) with T-SECs (Eq. (20)), 2-matchings on both the local and tertiary rings (Eq. (21)
and Eq. (22)), the Ghost Elimination constraints, GECs (Eq. (23)) and prioritise on the zkk variables.
Figure 5 shows an example of the RSAP topology under varying ring bound values for the janos-us
problem instance. When the ring bound is low, R = 4, we see that optimal RSAP solution has a
topology with six local rings, five spurs and a tertiary ring of 12 edges. When R = 8 the RSAP topology
consists of four local rings, two spurs and a smaller tertiary ring of size eight. When we relax the ring
bound to 12, we get an RSAP topology of five local rings with one spur and a tertiary ring on five edges.

Figure 5: Topology examples for varying ring bound values

Table 4 shows a summary of the ring bound impact results. From left to right we show the problem
name, the value of the ring bound R, the IP objective function value and computational time. Then we
show the best bound on termination or interruption of the algorithm followed by the number of nodes
in the branch-and-cut tree and the gap between the integer solution and best bound. The final columns
show a summary of the RSAP topology: the size of the tertiary ring, the number of local rings and the
number of spurs.

We see that restricting the ring bound in general makes the problem more difficult to solve. Run
times are longer and in some instances no feasible solutions are possible. By lowering the ring bound,
we may be unable to find rings that satisfy the ring bound resulting in solutions with more spurs which
in turn increases the objective function cost.

In contrast, relaxing the ring bound to 12 highlights the combinatorial nature of the RSAP problem.
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Solutions have less spurs and correspondingly, lower cost.

problem R IP obj IP time (s) bestbound Nodes gap |T | num rings num spurs

dfn-bwin 4 105,882 0.88 105,882 38 0.00 3 3 0
dfn-bwin 8 105,810 0.35 105,810 15 0.00 3 2 0
dfn-bwin 12 105,810 0.37 105,810 15 0.00 3 2 0

pdh 4 1,429,570 1.28 1,429,570 94 0.00 3 3 0
pdh 8 1,355,139 0.62 1,355,139 24 0.00 3 2 0
pdh 12 1,355,139 0.48 1,355,139 17 0.00 3 2 0

di-yuan 4 467,900 0.92 467,900 69 0.00 3 3 0
di-yuan 8 412,300 0.03 NA 0 0.00 3 2 0
di-yuan 12 412,300 0.03 NA 0 0.00 3 2 0

dfn-gwin 4 17,616 0.76 17,616 87 0.00 3 3 0
dfn-gwin 8 15,724 0.43 15,724 10 0.00 3 2 0
dfn-gwin 12 15,724 0.45 15,724 10 0.00 3 2 0

polska 4 4,154 0.42 4,154 14 0.00 5 3 1
polska 8 3,487 0.39 3,487 15 0.00 4 2 0
polska 12 3,487 0.35 3,487 10 0.00 4 2 0

atlanta 4 INT INF 0.63 NA NA NA NA NA NA
atlanta 8 55,452,500 0.52 55,452,500 28 0.00 5 3 0
atlanta 12 55,452,500 0.81 55,452,500 59 0.00 5 3 0

newyork 4 1,798,800 15.57 1,798,800 2,578 0.00 5 4 0
newyork 8 1,512,400 2.75 1,512,400 170 0.00 3 2 0
newyork 12 1,466,800 2.62 1,466,800 116 0.00 3 2 0

ta1 4 17,395,348 28.78 17,395,348 2,813 0.00 8 6 3
ta1 8 11,410,169 25.23 11,410,169 1,329 0.00 8 4 0
ta1 12 9,744,343 2.90 9,744,343 78 0.00 6 3 0

france 4 25,800 42.44 25,800 3,132 0.00 11 6 4
france 8 20,800 21.77 20,800 1,776 0.00 12 6 2
france 12 20,800 22.40 20,800 1,260 0.00 12 6 2

janos-us 4 24,728 18.28 24,728 602 0.00 12 6 5
janos-us 8 16,672 13.87 16,672 400 0.00 8 4 2
janos-us 12 15,492 15.43 15,492 536 0.00 5 3 1

norway 4 888,130 71.35 888,093 2,086 0.00 13 6 4
norway 8 596,070 19.39 596,070 527 0.00 4 4 2
norway 12 524,160 34.79 524,160 1,513 0.00 3 3 2

sun 4 1,225 48.21 1,225 1,553 0.01 13 6 4
sun 8 695 22.93 695 373 0.00 4 4 1
sun 12 528 30.11 528 1,562 0.01 7 3 0

cost266 4 INT INF 0.53 NA NA NA NA NA NA
cost266 8 12,262,590 139.29 12,262,590 4,253 0.00 19 7 1
cost266 12 10,723,770 151.45 10,723,443 4,367 0.00 15 6 1

giul39 4 1,367 4,058.57 1,367 38,031 0.00 17 10 3
giul39 8 946 10,832.23 845 21,815 10.65 9 6 2
giul39 12 813 10,811.90 798 21,031 1.90 6 4 0

pioro40 4 10,673 8,542.56 9,556 51,898 10.47 21 11 2
pioro40 8 9,648 6,120.00 7,387 20,884 23.44 21 8 1
pioro40 12 9,058 6,383.09 6,819 16,176 24.72 11 5 0

germany 4 INT INF 808.98 NA NA NA NA NA NA
germany 8 549,150 8,117.78 546,370 84,703 0.51 16 7 4
germany 12 451,670 9,363.76 420,470 50,361 6.91 9 6 1

ta2 4 INT INF 13.41 NA NA NA NA NA NA
ta2 8 73,782,804 10,803.47 72,139,091 43,182 2.23 22 10 13
ta2 12 39,567,043 6,916.23 39,563,767 34,623 0.01 25 8 6

Table 4: Ring bound impact
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7 Conclusion

We have described the RSAP and set it in context relative to survivable network design problems
described in the literature. The main contributions of our paper are a proof of the NP -hardness of
the RSAP, a valid IP formulation with and a set of additional valid inequalities that can be used in a
cutting plane approach to solve problem instances of reasonable size.

We have described a cutting plane framework and given results that justify our choice of methodology.
The G-SECs outperform the M-SECs as expected and empirical results suggest that the combination of
2-matching and GEC inequalities play a role in solving larger problem instances.

Future avenues of research suggested by our research are to identify other additional valid inequalities
to further strengthen the formulation.
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Appendix - Complexity of the RSAP

Before trying to identify an efficient algorithm to solve any problem, we need to first decide whether an
efficient algorithm can exist for this problem, that is, we need to determine its computational complexity.
In this section we show using local replacement that every instance of EXACT COVER by 3-SETS can be
transformed into an instance of RSAP. The EXACT COVER by 3-SETS (X3C) problem is shown to be
NP -complete in Garey and Johnson (1979). It is referenced as problem SP2 in their list of NP -complete
problems and can be stated as follows:

Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets of X.
Question: Does C contain an exact cover for X, that is a subcollection C ′ ⊆ C such that every

element of X is in exactly one member of C ′?
We consider the special case of RSAP where b the spur weighting penalty is sufficiently high to ensure

the selection of a ring solution if one exists and the ring bound R is set to three. Moreover, since each
ring must contain at least three vertices, in this special case each ring is a triangle. We formally state
the decision version of this special case of RSAP, RSAP-3D as follows:

Instance: Graph G = (V,E) with |V | = 3q′ and |V | ≥ 6 for some integer q′ and ring bound R = 3.
Question: Can the vertices of G be partitioned into q′ disjoint sets V1, V2, . . . Vq′ each containing

exactly three vertices such that for each Vi = {ui, vi, wi}, all three edges {ui, vi}, {vi, wi} and {ui, wi}
belong to E to form the local rings and can the local rings be interconnected by a tertiary ring?

Theorem 8.1. RSAP-3D is NP -Complete.

Proof. Using a technique similar to that in Garey and Johnson (1979) to show that Partition into
Triangles is NP -complete, we transform X3C to RSAP-3D. Let the set X with |X| = 3q and the
collection C of 3-element subsets of X be an instance of X3C. We use a local replacement on X3C to
create G with |V | = 3q′ in such a way that ensures an RSAP-3D solution exists for G if and only if
C contains an exact cover. That is, a YES answer to X3C gives a YES answer to RSAP-3D, similarly,
a NO answer to X3C means there is a NO answer to RSAP-3D. We order the collection of 3-element
subsets of C as follows: c1, c2, . . . cn

For each 3-element subset in ci ∈ C we first replicate the local replacement of Garey and Johnson
(1979) by adding the collection of 18 edges Ei. Figure 6 shows an example of the construction for ci.
The graph G = (V,E) is defined by:
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V = X ∪
n⋃

i=1

{ai[j] : 1 ≤ j ≤ 9}

E =

n⋃
i=1

Ei + E′

where E′ are additional edges added to connect the local replacement constructs for each ci as shown
in Figure 7. We add the two edges to join ai[2] to ai[4] and ai[5] to ai[7] for each ci. We also add an
edge joining each ci to the next 3-element subset cj by joining ai[9] to aj [3]. We link the last 3-element
subset, cn, back to the first one, c1, by adding the edge that joins an[9] to a1[3].

Figure 6: Local replacement for ci = {xi, yi, zi} ∈ C

Figure 7: Local replacement; additional E′ edges

We verify the number of vertices in the construction of G,

|V | = |X|+ 9n = 3q + 9n = 3(q + 3n) = 3q′

so q′ = q + 3n

The number of edges of G is given by 18n + 2n + n = 21n. So G can be constructed in polynomial
time, that is the transformation from an X3C instance to an RSAP-3D instance can be implemented in
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polynomial time. Some vertices of X may appear in more than one 3-element subset but the vertices
ai[1] to ai[9] are unique to each ci.

Next we need to see how to transform a YES answer to X3C to a YES answer to RSAP-3D. Let
c1, c2, ...cq be the 3-element subsets of C in an X3C solution for X. Then we can read a partition into
local rings from V = V1 ∪ V2 ∪ ... ∪ Vq′ as follows:

{ai[1], ai[2], xi}, {ai[4], ai[5], yi}
{ai[7], ai[8], zi}, {ai[3], ai[6], ai[9]}

That is, these are the four local rings (triangles, since the ring bound R = 3) corresponding to ci
when ci is in the exact cover. For each ck not in the cover, we can take the alternative set of local rings
(triangles):

{ak[1], ak[2], ak[3]}, {ak[4], ak[5], ak[6]} and {ak[7], ak[8], ak[9]}

That is, these three local rings (triangles) correspond to ck when ck is not in the cover of X3C and
our construction ensures that each element of X is included in exactly one local ring in the partition.
Examples of the local rings that cover G are shown in heavy black edges in Figure 8.

Lastly, we need to connect the tertiary ring of the RSAP-3D solution to ensure a YES to RSAP-3D
when we have a YES to X3C. We start the tertiary ring at the local replacement for c1. If c1 is in the cover
of X3C, we select the sequence of vertices and the edges that join them a1[3], a1[2], a1[4], a1[5], a1[7], a1[9].
We use this type of sequence for any ci in the cover. We next join a1[9] to a2[3], joining each ai[9] to
aj [3] where ci and cj are next to each other in the ordered list of c1, . . . cn.

For any ck not in the cover, to connect the tertiary ring we select the sequence of vertices and the
edges that join them as follows: ak[3], ak[6], ak[9]. Using these sequences of vertices of G we can form
the tertiary ring that interconnects the local rings.

So the full sequence of vertices (and corresponding edges) of the tertiary is given by:

a1[3], a1[2], a1[4], a1[5], a1[7], a1[9] c1 is an example in the cover

a2[3], . . . , a2[9]

....

ak[3], ak[6], ak[9] ck is an example not in the cover

. . .

an[3], . . . , an[9], a1[3]

where cn is the final 3-element subset of C.
Part of the tertiary ring is shown in figure 8 for a sample instance with tertiary ring edges shown in

green. In this instance ci and cj are in the X3C cover while ck is not. Since ck is not in the cover its
elements must be covered by some other of the 3-element subsets in the X3C cover. The dashed edges
indicate that the elements of ck are covered elsewhere.

Conversely, if there is a YES answer to RSAP-3D, there is a YES answer to X3C. We can derive the
X3C solution from the RSAP-3D solution by choosing ci ∈ C such that {ai[3], ai[6], ai[9]} = Vj for some
j, 1 ≤ j ≤ q′.

Each triangle {ai[3], ai[6], ai[9]} in the RSAP-3D solution corresponds to a 3-element subset of C,
ci = {xi, yi, zi} in the exact cover solution. Where the triangle {ak[3], ak[6], ak[9]} corresponding to
ck = {xk, yk, zk} is not in the RSAP-3D solution, ck is not in the exact cover. Since the RSAP-3D
solution is a partition of all nodes of G into triangles, the individual elements of ck must be included in
some triangle of the RSAP-3D solution. So the individual elements are covered by some other 3-element
subsets of C that are in the cover.

So there is a YES answer to RSAP-3D iff there is a YES answer to X3C. Hence RSAP-3D is NP -
complete and its corresponding optimisation problem, RSAP-3, is NP -hard. Since RSAP contains
RSAP-3 as a special case, it follows that RSAP is NP -hard.
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Figure 8: RSAP-3D solution extract
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Micheál Ó hÉigeartaigh, eds., Proceedings of the International Eugene Lawler PhD Summer School
2009 held at WIT, Ireland, June 6–10, 2009 . Scientific Computing, WIT, 180–197.

Carroll, P., S. McGarraghy. 2009b. Investigation of the ring spur assignment problem. Pisa, Italy, MB1–3.
URL http://www.di.unipi.it/optimize/Events/proceedings/M/B/1/MB1-3.pdf.

Cosares, S., D.N. Deutsch, I. Saniee, O.J. Wasem. 1995. Sonet toolkit: A decision support system for
designing robust and cost-effective fiber-optic networks. Interfaces 25 20–40.
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