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Abstract—To accommodate small-cell deployment in future 5G
wireless communications, a magnitude-selective affine function
based digital predistortion model for RF power amplifiers is
proposed. This model has a very simple model structure and is
easy to implement. Experimental results showed, by employing
this model, substantial hardware resource reduction can be
achieved without sacrificing performance in comparison with the
existing models.

Index Terms—5G, affine function, digital predistortion (DPD),
power amplifiers (PAs), small cell.

I. INTRODUCTION

Digital predistortion (DPD) has been widely applied to
linearization of RF power amplifiers (PAs) to achieve high
power efficiency and simultaneously maintain linear signal
amplification. In macro base stations, the PAs normally con-
sume several hundred watts of power while, in comparison,
the power consumption of DPD units is usually on the order
of milliwatts. Although important, the power consumption of
DPD has not been a big concern.

In 5G communications, on the one hand, with wider signal
bandwidths, the nonlinear behavior of the PAs may become
more complicated, calling for more complex DPD models to
fulfill the linearity requirement, which can result in increased
power consumption in digital circuits. On the other hand,
more and more small-cell base stations will be deployed in
5G [1], where the power transmitted by each PA becomes
much lower, usually a few watts or lower. To maintain high
energy efficiency of the whole system, the power budget
for DPD must shrink accordingly. Therefore, in future DPD
development, not only the performance is the concern, but the
hardware implementation complexity and the related power
consumption must also be carefully considered.

The model complexity issue can be tackled in two ways
without sacrificing performance. One is to simplify the existing
models or develop new but more compact models, while the
other is to find more power-efficient hardware implementation
strategies. Many efforts have been devoted in both develop-
ments. Recently a new behavioral model named decomposed
vector rotation (DVR) was proposed in [2]. Experimental
results showed that the DVR model can produce excellent
performance with a relatively small number of coefficients.
This model was derived from a modified form of the canonical
piecewise-linear function (CPWL) [3], which is completely
different from the conventional Volterra approach. Theoretical
analysis has shown that this model is much more flexible and
it can be easily implemented in digital hardware with reduced
complexity.

In this work, we take the similar concept of piecewise linear
function and propose a magnitude-selective affine (MSA)
function based DPD model with further simplified hardware
implementation.

II. PROPOSED MODEL

While developing DPD models, one must obey the “first-
zone” constraints defined in [4]: the odd-parity ỹ[x̃] = −ỹ[−x̃]
and the unitary phase ej1θn . The odd parity ensures the output
signal is mapped into the odd-order harmonic zones while
the unitary phase further restricts the signal in the first-zone.
By complying with the two constraints, the model will be
physically meaningful and thus does not generate non-physical
outputs causing accuracy degradation. Imposing the “first-
zone” constraints also provides us with an important guideline
in choosing model structures.

A. Review of the DVR Model

The DVR model [2] is given by

ũ(n)|DVR =

M∑
i=0

ãix̃(n− i)

+

K∑
k=1

M∑
i=0

c̃ki,1
∣∣|x̃(n− i)| − βk∣∣ejθn−i

+

K∑
k=1

M∑
i=0

c̃ki,21
∣∣|x̃(n− i)| − βk∣∣ejθn−i |x̃(n)|

+ · · · (1)

where x̃(n) and ũ(n) represents the baseband input and output,
respectively. βk is the threshold value that divides the input
range into K partitions. The outer | · | performs the absolute
value operation while the inner | · | calculates the magnitude of
the input signal. θn represents the phase of x̃(n). M denotes
the memory length. ãi and c̃ki,j are the model coefficients.

It is obvious that the DVR model satisfies the unitary phase
condition, as only one θn appears in the modeling terms.
To meet the odd-parity constraint, DVR combines two basis
functions: one is a set of piecewise linear terms ||x̃(n)|−βk|,
divided by the thresholds βk, which has even parity; the other
is the phase restoration and nonlinear order extension terms
ejθn , ejθn |x̃(n− i)|, x̃(n− i) ..., which obeys odd parity. The
final model becomes an odd-parity function after multiplying
the two parts.



B. Proposed MSA Function Based Model
In DVR model, the even-parity terms are the sum of a

number of symmetrical half-line pairs, which can actually
be reformulated into one polyline that consists of several
segments jointing at threshold values. If we reformat the
equation, we can find that this nonlinear operation can be
made equivalent to a set of affine functions defined at different
magnitude zones, as shown in Fig. 1.
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Fig. 1. Magnitude-selective affine function.

Replacing the piecewise absolute value functions with the
magnitude-selective affine functions and retaining the nonlin-
ear order extension terms in (1), we can form a new model as
following,

ũ(n)|MSA =

M∑
i=0

ãix̃(n− i)

+

M∑
i=0

(Aki,1|x̃(n− i)|+Bki,1)e
jθ(n−i)

+

M∑
i=0

(Aki,21|x̃(n− i)|+Bki,21)e
jθ(n−i)|x̃(n)|

+ · · ·
βk−1 < |x̃(n)| ≤ βk. (2)

Instead of applying the same function and model coefficients
to all the samples, the new model selects a different set of
coefficients for each sample according to its magnitude level.
To further explain, take input samples x̃(1), x̃(2) · · · , whose
values are 0.02 − 0.09j and 0.03 + 0.1j, respectively, as
examples. 0.02 − 0.09j can be directed into zone 1 while
0.03 + 0.1j into zone 2. The nonlinear operation on the
samples can then be obtained by |0.02 − 0.09j| · A1 + B1

and |0.03 + 0.1j| · A2 + B2, respectively, where Ak and Bk
represent gain and offset of the affine function in the given
zone.

This process significantly simplifies computational op-
erations and thus dramatically saves hardware resource
in DPD implementation. Let’s take the 1st-order basis
(Ak |x̃(n)|+Bk)e

jθn as an example. As depicted in Fig.
2, the input complex signal is decomposed into magnitude
and phase using CORDIC algorithm. The obtained magnitude
|x̃(n)| is compared with threshold values to pick the desired
gain and offset for the affine function calculation. This piece-
wise implementation only requires one complex multiplication
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Fig. 2. Hardware implementation illustration.

and one complex addition for all the samples. Phase value
is restored by multiplying with ejθn . In this way, the MSA
model substantially cuts down the computational complexity
and hardware cost.

The proposed magnitude-selective DPD is able to linearize
highly nonlinear PAs with simple model structure because
different zones only need to compensate for the nonlinearities
within certain input power ranges. Based on the operation,
we do not need large number of affine functions to reach
the desired accuracy. Generally, the number of thresholds can
be around 5-20. In addition, the nonlinear terms and cross
terms can further enhance the fitting capacity of DPD model.
Moreover, time-interleaving structure can also be utilized to
relax the digital processing rate requirement in high speed
communication systems. This model is thus well suitable for
future 5G small cell systems where the power budget for DPD
is stringent.

C. Model Extraction

Given high efficiency and flexibility, MSA still retains the
linear-in-parameters property, meaning that the general linear
system identification methods, e.g. least squares (LS), can
be directly applied to extract the parameters. Nevertheless,
it is worth mentioning that Ak and Bk only take effect for
the specific input zone rather than the entire input range, so
formulating the matrix form of (2) can be slightly different.


ũ(1)
ũ(2)

...
ũ(n)

=

x̃(1) ejθ1 0 0 · · · x̃(1)
0 0 x̃(2) ejθ2 · · · x̃(2)
...

...
...

... · · ·
...

· · · · · · · · · · · · · · · x̃(n)





A10,1

B10,1

A20,1

B20,1

...
ã0


(3)

or

UN×1 = XN×Q · CQ×1 (4)

where the subscript N is the total number of input samples
and Q represents the number of coefficients. The coefficients
are reorganized into one vector C. Constructing matrix X is to
allocate the nonlinear terms of input samples to the positions
in accordance with the coefficients in the corresponding zone



and set irrelevant entries to zeros. For example, |x̃(1)| lies
in zone 1, whose nonlinear terms |x̃(1)|ejθ1 = x̃(1) and ejθ1
should multiply with A10,1 and B10,1 respectively. As a result,
the rest of matrix elements matching other coefficients are
assigned zeros. Finally, LS is operated upon (4) to extract the
DPD model coefficients.

III. MEASUREMENT RESULTS

To validate the model performance, a test platform was
setup, as shown in Fig. 3, which includes PC, baseband
board, signal generator, spectrum analyzer and a PA. The PA
under test is an in-house designed broadband Doherty power
amplifier operating at 2.14 GHz. The excitation input is a 60
MHz 12 carriers UMTS signal with 6.5 dB peak-to-average
power ratio (PAPR). Approximately, 16,000 I/Q samples were
captured at a sampling rate of 368.64 MSPS. Recorded I/Q
input and output samples were time aligned and normalized
before training the model. The model extraction and predis-
torted signal generation were performed in MATLAB. The
type-1, 2 and 3 of 2nd-order basis in [2] were selected for
both DVR and MSA models. K was set to 7 and M=3, giving
74 and 144 coefficients, respectively.
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Fig. 3. DPD test bench.

With DPD, the nonlinearities and memory effects were
almost completely compensated, as illustrated in Fig. 4. Two
models achieved similar performance, that out-of-band distor-
tion has been approximately suppressed to noise floor, which
proved the high accuracy of the MSA model.

Prior to the hardware implementation, for comparison, we
applied generalized memory polynomial (GMP), DVR, MSA
to model PA nonlinear behavior, in order to pre-estimate the
computational complexity when achieving more or less the
same fitting ability. In terms of GMP model specification, the
nonlinear order is 7, the memory length equals 3 and both
the lagging and leading steps are set as 3. Normalized mean
square errors (NMSE) are displayed in TABLE I, indicating
that all three models present similar performance. From the
comparison, we can see that GMP uses many more multipliers
than DVR and MSA. It is worth mentioning that MSA only
requires 1/3 of the multipliers compared to DVR despite the
larger number of coefficients.

As GMP was the most costly implementation, here we
only compared the hardware complexity between DVR and
MSA on FPGA board. Note all the design procedures and bit
precisions were the same for DVR and MSA models except

-50 -30 -10 10 30 50
-70

-60

-50

-40

-30

-20

-10

0

Frequency Offset (MHz)

N
o

rm
a

li
ze

d
 P

o
w

e
r 

S
p

e
ct

ra
l 

D
e

n
si

ty
 (

d
B

)

DVR

DPD

MSA

DPD

Without 

DPD

Fig. 4. Signal Spectrum with and without DPD.

the way of constructing the piecewise function. TABLE II
illustrated that MSA ended up with a great saving of 60.64%
of Flip-flops, 25.67% of Slice LUTs and particularly 85.71%
of DSP48 units, comparing to the DVR implementation.

TABLE I
COMPUTATIONAL COMPLEXITY OF GMP, DVR AND MSA

GMP DVR MSA

NMSE (dB) -39.44 -39.59 -39.68

No. of Coeff. 112 74 144

No. of ⊗ 214 185 65

TABLE II
HARDWARE UTILIZATION OF DVR AND MSA

Flip-flop Slice LUT DSP48

DVR 44584 23024 140

MSA 17550 17113 20

IV. CONCLUSION

A novel DPD model has been proposed for RF PA lineariza-
tion, with potential application to future wideband and high
speed 5G wireless communications. The model performance
and low-cost implementation have been verified by experimen-
tal tests and FPGA hardware implementation.
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