
In-Test Adaptation of Workload in Enterprise
Application Performance Testing

Maciej Kaczmarski, Philip Perry, John Murphy, A. Omar Portillo-Dominguez
Lero@UCD, School of Computer Science, University College Dublin, Ireland

maciej.kaczmarski@ucdconnect.ie,
{philip.perry,j.murphy,andres.portillodominguez}@ucd.ie

ABSTRACT
Performance testing is used to assess if an enterprise applica-
tion can fulfil its expected Service Level Agreements. How-
ever, since some performance issues depend on the input
workloads, it is common to use time-consuming and com-
plex iterative test methods, which heavily rely on human
expertise. This paper presents an automated approach to
dynamically adapt the workload so that issues (e.g. bottle-
necks) can be identified more quickly as well as with less
effort and expertise. We present promising results from an
initial validation prototype indicating an 18-fold decrease in
the test time without compromising the accuracy of the test
results, while only introducing a marginal overhead in the
system.

Keywords
Performance; Engineering; Testing; Analysis

1. INTRODUCTION
Performance is a critical dimension of quality, as it plays a

central role in software usability. However, it is not uncom-
mon that performance issues materialise into serious prob-
lems (e.g., outages on production). For example, a survey
applied to information technology practitioners [10] reported
that 50% of them had faced major performance problems
in at least 20% of their deployed enterprise applications.
This situation is explained by the pervasive nature of perfor-
mance, which makes it hard to assess because it is influenced
by every aspect of the design, code, and execution environ-
ment of an application. Moreover, the latest trends in infor-
mation technology (e.g., Big Data and Internet of Things)
have also increased the complexity of applications, further
complicating all activities related to performance [15].

Under these conditions, it is not surprising that the per-
formance testing of enterprise applications is complex and
time-consuming [19]. A particularly important challenge is
that a significant number of performance issues which occur
in enterprise applications are dependent on the input work-
loads [23]. Although these issues can be identified using

current performance testing tools (e.g., Apache JMeter [1]),
this strategy is typically inefficient because such tools mainly
use static workloads. Therefore, they rely on the expert
knowledge of testers to identify a workload which is ade-
quate to find any existing performance issues. Some works
have proposed the use of pre-configured workloads [20, 22]
(where the workload might vary over time), trying to simu-
late real-user behaviour using Markov chains. Even though
such approaches can create an appropriate workload, for the
modelled user behaviour, they still require a considerable
amount of testing time. For these reasons, testers usually
utilise “standard” workloads, which might be insufficient to
identify issues that may not surface on small (or even rel-
atively large) workloads [14]. Moreover, it is often unclear
how large is large enough to expose such issues. For exam-
ple, a recent research study [12] found that 41 (out of 109)
studied performance issues were caused due to the wrong
assumption of workloads.

The above problem causes two main inefficiencies in the
performance testing process: Firstly, it increases the com-
plexity of conducting proper performance testing and analy-
sis, indirectly increasing the cost and time required for these
activities (which are commonly limited due to project con-
straints, like budget or time). Secondly, this problem also
increases the risk of overlooking performance issues in the
tested applications (which might have serious business im-
pacts, such as unavailability of services or monetary costs).

To tackle these issues, our research work has centred on
developing techniques to increase the productivity of per-
formance engineers (hereinafter referred as testers), by de-
creasing the effort and expertise needed to identify workload-
dependent issues and their root causes. The contributions of
this paper are: (1) A novel automated approach to dynami-
cally adapt the workload used by a testing tool in application
performance testing. The approach is based on a set of di-
agnostic metrics, evaluated in real-time, to determine if any
test workload adjustments are required for the tested appli-
cation. Consequently, the approach addresses the need of
manually configuring the exact workload required to iden-
tify these issues. (2) A practical validation of the approach
consisting of a prototype, and a set of experiments, to assess
the benefits that the approach brings to performance testing
as well as its costs.

2. BACKGROUND AND RELATED WORK
When developing any application, it is important to evalu-

ate how well the application performs its functionality when
multiple concurrent users are accessing it. This is achieved



with performance testing, which aims to evaluate the be-
haviour of an application under a given workload [11]. A
workload is composed of various types of transactions (e.g.,
log-in, log-out, search) and a number of concurrent users
(commonly virtual). Traditionally, a test run involves using
a load generator (e.g., Apache JMeter [1]) for a certain pe-
riod of time (typically several hours or longer) to simulate
the desired set of concurrent users (i.e., test workload) inter-
acting with the application. During a test run, testers usu-
ally collect performance-related counters (e.g., performance
or resource metrics) in various sampling intervals. The ob-
jective is to analyse the behaviour of the monitored coun-
ters through time to identify performance issues. Finally,
testers normally use some type of diagnosis tools (e.g., IBM
WAIT [3]) to further investigate the collected data.

Multiple research works have aimed to improve perfor-
mance testing and its involved processes. For example, the
authors of [19] proposed an approach to simplify the iden-
tification of performance regressions. Moreover, the work
on [13] introduced an approach to assess the performance of
a distributed memory program in a clustered environment.
Meanwhile, other works have focused on generating realis-
tic testing data [9], or providing techniques to facilitate the
monitoring of performance counters [21]. Finally, other ef-
forts have also centred on reducing the expertise required.
For instance, by automating the usage of diagnosis tools [17,
18]. Unlike these works, which have been designed to im-
prove other aspects of performance testing, our approach
has been designed to address the specific need of a tester to
set an appropriate test workload, hence isolating her from
the complexities of identifying it.

3. PROPOSED APPROACH
Our solution is a new automated approach to dynamically

adapt the workload used by a performance testing tool, so
that it stresses the functionality which is suspicious of hav-
ing a performance issue (i.e., bug). The aim is to improve
the results obtained by a test run (which can be very time-
consuming). This is illustrated in Fig. 1, which depicts the
contextual view of our solution within the traditional per-
formance testing process (previously described in Section 2).
There it can be noticed how our approach enhances this pro-
cess by proactively monitoring the intermediate test results
in order to automatically adjust the workload during the
test run (as required), hence eliminating the need of costly
trial-and-error test cycles (which traditionally requires the
manual adjustment of the workload by the tester).

Figure 1: Contextual View

From a workflow perspective, our solution uses a core pro-
cess (depicted in Fig. 2). The process starts by initialising its
configured parameters as well as the chosen policies. There
are two different types of policies and our solution requires
at least one policy of each type: A diagnosis policy defines
the criteria used to determine if a transaction is suspicious
of suffering a performance issue, the data sources required to
perform the assessment (e.g., performance metrics), and any
specific input information required by the policy. An adjust-
ment policy defines the rules to adapt the workload when-
ever a change is required. The usage of policies allows our
approach to be easily extensible (as multiple policies, poten-
tially suitable for different scenarios, can be incorporated).
After an initialisation phase occurs, the following loop starts
(in parallel to the test run): First, the logic awaits the con-
figured sampling interval, so that the application-under-test
has some time to process a certain amount of transactions
(as per an initial test workload) before any diagnosis is done.
Then, a new set of samples is collected (following the data
sources defined by the diagnosis policy). After the collection
finishes, the process checks if any transaction is suspicious of
suffering a performance issue, following the evaluation cri-
teria defined in the chosen diagnosis policy. Then, if any
transaction is suspicious of suffering a performance issue,
the workload gets automatically adjusted (as per the config-
ured adjustment policy). This loop continues until the test
run finishes.

Figure 2: Core Process

From a configuration perspective, the tester needs to (1)
indicate a sampling interval to specify how frequent the di-
agnosis policy will be evaluated; (2) indicate which diagnosis
and adjustment policies will be used (among the available al-
ternatives); (3) provide the particular inputs required by the
chosen policies. For example, an adjustment policy might re-
quire an upper and lower limits that define the valid range
within which the policy might adjust the workload.

The component architecture is shown in Fig. 2. The generic
component contains all the policy-independent functionality
(e.g., the control logic). The other components are the ac-
tion and decision makers, which encapsulate the adjustment
and diagnosis logics, respectively. This architecture was cho-
sen to minimise the changes required to extend the approach.
Following the same line of thought, the components are only
accessed through interfaces. Each package contains the main
interface to expose the supported actions, as well as an ab-
stract class with all common functionality. Then, the hier-



archy can be extended to support specific types of policies.
For instance, a possible diagnosis policy could be based on
a set of performance metrics (such as response time and
throughput). Whenever the performance of any transaction
exceeds a defined threshold (above an expected baseline),
that transaction would be considered suspicious of suffering
a performance issue. Alternatively, another diagnosis policy
could use supplementary sources such as the outputs of a
diagnosis tool (e.g., IBM WAIT). Meanwhile, a possible ad-
justment policy might increase the workload of those trans-
actions suspected of suffering a performance issue (probably
by a defined workload amount), while also taking care of
not exceeding the maximum allowed workload. Similarly, it
might decrease the workloads of well-behaved transactions
to keep the balance between the maximum allowed work-
load, while stressing the suspicious transactions as much as
possible.

4. EXPERIMENTAL EVALUATION
Setup. The experiments aimed to assess the benefits and

costs of using our approach. They were performed in an iso-
lated test environment so that the entire load was controlled.
It was composed of two virtual machines (VMs). Each had
2 virtual CPUs at 2.20GHz, 4GB of RAM, and 50GB of
hard disk; running Linux Ubuntu 12.04L, and OpenJDK
JVM 7 with a 1.6GB heap. One VM used an Apache JMe-
ter 2.9 (a leading open-source tool for performance testing),
and the other VM ran an Apache Tomcat 6.0.35 (a popu-
lar open-source Java Web Application Server) [2]. As the
application to test, we used JPetStore [5], an open-source
e-commerce application, which is commonly used in the lit-
erature [17, 18]. Also, we used IBM WAIT as diagnosis tool
due to its strong analytic capabilities to detect performance
issues (e.g., lock contention or database bottleneck) in Java
systems [8]. Two types of runs were performed: Follow-
ing common industry practices [7], the first run type used
the traditional approach of static workloads (in the range
of [100..2000] concurrent virtual users in increments of 100)
and was considered the baseline. The second type used dy-
namic workloads (our approach). Each test run lasted 2
hours. The main monitored metrics were throughput (tps),
response time (ms), CPU (%) and memory (MB) utilisa-
tions. They were collected with JMeter and nmon [6]. Fi-
nally, the performance bugs were retrieved from WAIT’s
outputs, which was fed with Javacores [4] (snapshots of
the JVM state). Finally, we built our prototype on top of
the JMeter tool with Java, which is an object-oriented pro-
gramming language widely used for being open source and
highly portable [16]. Internally, the prototype supports a
first heuristic version of our approach, in which any adjust-
ments to the test workload affects all transaction types.

Results. In terms of bugs, our approach was able to
identify almost as many bugs as the best static workload.
To offer a more comprehensive perspective of the results, we
also classified the bugs based on their occurrence frequency
(a bug was considered minor if it occurred below 5% out of
the test run duration, otherwise it was major). This is shown
in Fig. 3, which compares the best (b-static), the worst (w-
static), and the average (a-static) of the static workloads
against our approach (dynamic). It can be noticed how our
approach outperformed w-static and a-static, while it was
competitive against b-static (e.g., it found 2% less minor
bugs). It is important to highlight that the workload for

b-static was different per bug classification (i.e., 400 for all,
1200 for major, and 200 for minor), further exemplifying
the challenges faced by testers.

 0

 20

 40

 60

 80

 100

All Major Minor

Pe
rf

. B
ug

s 
Fo

un
d 

(#
)

Bug Classification

b-static
dynamic

a-static
w-static

Figure 3: Bugs detection

To complement the discussion of bug identification effi-
ciency, we also present the time-savings that our solution
achieved. As the workload was adjusted dynamically (hence,
avoiding the need of costly trial-and-error test runs), the
tester only required one 2-hour test run (instead of 18 test
runs - one per static workload). This led to a reduction in
the duration of the performance testing activities of 94% (as
shown in Fig. 4).

0

5

10

15

20

25

30

35

40

static runs dynamic run

T
im

e 
(h

r)

Test Run Type
Figure 4: Execution time

In terms of costs, we centred our analysis on the JMeter
machine because it is where our solution resides. Results
are shown in Fig. 5. Two main observations were identified:
Firstly, our solution is, in general terms, more CPU efficient
than static workloads (e.g., it required, in average, 13% less
average CPU than a-static). This is the result of making a
better usage of JMeter’s resources (by avoiding costly and
ineffective workloads, such as 1800, which was the w-static
in terms of resources). Secondly, our solution is marginally
more memory-intensive than the static workloads (e.g., an
average of 5% more compared to a-static). This increase
is due to the internal structures used to keep track of the
behaviour of the workloads (mostly Java Collections), as well
as the additional classes loaded by the Java Virtual Machine
(JVM) to support our logic. It is important to highlight that
the b-static in terms of resources was 100, which was one
of the w-static in terms of bug finding accuracy. Finally,
the overhead introduced by our approach was considered
acceptable because the machine was not near exhausting its
resources.

Furthermore, a limitation of our current prototype is the
usage of the same workload for all types of tested transac-
tions. This design decision was taken to expedite the valida-
tion of our research work, even though it was not an optimal



 0

 20

 40

 60

 80

 100

CPU Memory

A
ve

ra
ge

 U
til

is
at

io
n 

(%
)

Resource Type (JMeter)

b-static
dynamic

a-static
w-static

Figure 5: Resource utilisation

adjustment strategy. This is because it is possible that not
all transactions suffer performance issues (scenario observed
in our experiments). Therefore, it might be possible to stress
more some types of transactions (i.e. those with suspected
problems), while leaving the others to use smaller workloads.
This strategy might lead to additional gains (and probably
cost reductions).

5. CONCLUSIONS AND FUTURE WORK
The identification of workload-dependent problems, in the

performance testing of enterprise applications, is complex
and time-consuming. Furthermore, current testing tools use
static workloads, relying on human expert knowledge to set
appropriate test workloads. This limits the effectiveness of
such tools. To address this problem, this paper proposed a
novel automated approach to dynamically adapt the work-
load used by a performance testing tool. The aim is to in-
crease testers’ productivity by decreasing the number of test
runs needed to identify workload-dependent performance is-
sues. A prototype was developed around the JMeter tool
and then the benefits and overhead of the approach were as-
sessed. The obtained results showed significant time-savings
gained by applying the approach: The time required to iden-
tify bugs was reduced by 94% (compared to the use of a set
of static workloads). These gains were the result of elimi-
nating the need of manually configuring the exact workload
required to identify the performance issues. Also, the ap-
proach was able to identify almost as many relevant bugs
as the best test run (from the tests using static workloads),
while only introducing a moderate level of overhead in mem-
ory (i.e., 5% increment) utilisation in the JMeter machine.

Future work will focus on strengthening the experimental
validation of our approach. For instance, by applying diver-
sification to the tested application behaviours, the diagnosis
tools used to identify the bugs, the size and composition of
the test environments, as well as the test duration. Fur-
thermore, we plan to investigate how best to extend the
capabilities of the approach. For instance, we plan to ex-
plore the idea of using different workloads, per transaction
type. This is because, as our current results have suggested,
this alternative decision strategy might improve the benefits
of the approach (by making a better usage of the available
resources), while also reducing its computational costs.

6. ACKNOWLEDGMENTS
This work was supported, in part, by Science Foundation

Ireland grant 13/RC/2094 and co-funded under the Euro-
pean Regional Development Fund through the Southern &
Eastern Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

7. REFERENCES
[1] Apache JMeter. http://jmeter.apache.org/.
[2] Apache Tomcat. http://tomcat.apache.org/.

[3] IBM WAIT Tool. https://wait.ibm.com/.

[4] Javacores. http://www-01.ibm.com/support/docview.wss?
uid=swg27017906&aid=1.

[5] JPetStore. http://sourceforge.net/projects/ibatisjpetstore/.
[6] Nmon monitor. http://nmon.sourceforge.net/.

[7] Performance Workload Design. Technical report, IBM.

[8] E. Altman, M. Arnold, S. Fink, and N. Mitchell.
Performance analysis of idle programs. ACM SIGPLAN
Notices, 45(10), Oct. 2010.

[9] V. Ayala-Rivera, A. O. Portillo-Dominguez, L. Murphy,
and C. Thorpe. COCOA: A synthetic data generator for
testing anonymization techniques. PSD, 2016.

[10] Compuware. Applied Perf. Management Survey. 2007.

[11] Z. M. Jiang. Automated analysis of load testing results.
ISSTA, page 143, 2010.

[12] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance bugs.
ACM SIGPLAN Notices, 47(6):77–88, 2012.

[13] S. Medya, L. Cherkasova, G. Magalhaes, K. Ozonat,
C. Padmanabha, J. Sarma, and I. Sheikh. Towards
performance and scalability analysis of distributed memory
programs on large-scale clusters. ICPE, 2016.

[14] I. Molyneaux. The Art of Application Performance
Testing: Help for Programmers and Quality Assurance. ”
O’Reilly Media, Inc.”, 2009.

[15] A. O. Portillo-Dominguez, J. Murphy, and P. O’Sullivan.
Leverage of extended information to enhance the
performance of JEE systems. ITT, 2012.

[16] A. O. Portillo-Dominguez, P. Perry, D. Magoni, M. Wang,
and J. Murphy. TRINI: an adaptive load balancing strategy
based on garbage collection for clustered java systems.
Software: Practice and Experience, 2016.

[17] A. O. Portillo-Dominguez, M. Wang, J. Murphy, and
D. Magoni. Automated wait for cloud-based application
testing. ICSTW, 2014.

[18] A. O. Portillo-Dominguez, M. Wang, J. Murphy,
D. Magoni, N. Mitchell, P. F. Sweeney, and E. Altman.
Towards an automated approach to use expert systems in
the performance testing of distributed systems. JAMAICA,
2014.

[19] W. Shang, A. E. Hassan, M. Nasser, and P. Flora.
Automated detection of performance regressions using
regression models on clustered performance counters.
ICPE, 2015.

[20] A. Van Hoorn, J. Waller, and W. Hasselbring. Generating
probabilistic and intensity-varying workload for web-based
software systems. SPEC, pages 124–143, 2008.

[21] A. Van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. ICPE, 2012.

[22] E. Weyuker and A. Avritzer. A metric for predicting the
performance of an application under a growing workload.
IBM Systems Journal, 41(1):45–54, 2002.

[23] E. Xiao, Xusheng. Context-Sensitive Delta Inference for
Identifying Workload-Dependent Performance Bottlenecks.
ISSTA, 2013.

http://jmeter.apache.org/
http://tomcat.apache.org/
https://wait.ibm.com/
http://www-01.ibm.com/support/docview.wss?uid=swg27017906&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg27017906&aid=1
http://sourceforge.net/projects/ibatisjpetstore/
http://nmon.sourceforge.net/

	Introduction
	Background and Related Work
	Proposed Approach
	Experimental Evaluation
	Conclusions and Future Work
	Acknowledgments
	References

