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ABSTRACT
Performance testing in distributed environments is challeng-
ing. Specifically, the identification of performance issues
and their root causes are time-consuming and complex tasks
which heavily rely on expertise. To simplify these tasks,
many researchers have been developing tools with built-in
expertise. However limitations exist in these tools, such as
managing huge volumes of distributed data, that prevent
their efficient usage for performance testing of highly dis-
tributed environments. To address these limitations, this
paper presents an adaptive framework to automate the us-
age of expert systems in performance testing. Our validation
assessed the accuracy of the framework and the time savings
that it brings to testers. The results proved the benefits of
the framework by achieving a significant decrease in the time
invested in performance analysis and testing.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance; D.2.5 [Testing and Debugging]: Test-
ing tools

General Terms
Algorithms, Measurement, Performance

Keywords
Performance Testing, Automation, Performance Analysis,
Expert Systems, Distributed Systems

1. INTRODUCTION
Performance is a critical dimension of quality, especially

at enterprise-level, as it plays a central role in software us-
ability. However it is not uncommon that performance issues
materialise into serious problems (e.g., outages on produc-
tion environments). For example, a 2007 survey applied to
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practitioners [5] reported that 50% of them had faced per-
formance problems in at least 20% of their applications. Re-
search studies have also documented the magnitude of this
problem. For example, the authors of [7] found (in 2012) 332
previously unknown performance issues in the latest versions
of five mature open-source software suites.

This situation is partially explained by the pervasive na-
ture of performance, which makes it hard to assess as perfor-
mance is influenced by every aspect of the design, code, and
execution environment of an application. The latest trends
in information technology (such as Cloud Computing1) have
also augmented the complexity of applications, further com-
plicating all activities related to performance. Under these
conditions, it is not surprising that performance testing is
complex and time-consuming. A special challenge is that
performance tools heavily rely on human experts to be con-
figured properly and to interpret their outputs [2, 14]. As
this expertise is usually held by only a small number of peo-
ple inside an organization, this issue could lead to bottle-
necks, impacting the productivity of testing teams [2].

To simplify the performance analysis and testing, many
researchers have been developing tools with built-in exper-
tise [1, 2]. However, limitations exist in these tools that pre-
vent their efficient usage in the performance testing of highly
distributed environments. Firstly, these tools still need to
be manually configured. If an inappropriate configuration is
used, the tools might fail to obtain the desired outputs, re-
sulting in significant time wasted. Secondly, testers need to
manually carry out the data collections. In a distributed en-
vironment with multiple nodes to monitor and coordinate,
such a manual process can be time-consuming and error-
prone due to the vast amount of data to collect and con-
solidate. Similarly, excessive amounts of outputs produced
by expert systems can overwhelm a tester due to the time
required to correlate and analyse the results.

Even though these limitations might be manageable in
small testing environments, they prevent the efficient us-
age of these tools in bigger environments. To exemplify
this problem, consider the Eclipse Memory Analyzer Tool2

(EMAT). If a tester wants to use EMAT in an environment
composed of 100 nodes during a 24-hour test run and get re-
sults every hour, the tester would need to manually coordi-

1http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf
2http://www.eclipse.org/mat/



nate the data gathering, the generation of the tool’s reports,
and the analysis of the reports. These steps conducted ev-
ery hour, for a total of 2,400 iterations. As an alternative,
the tester may focus the analysis on a single node, assum-
ing it is representative of the whole system. However this
assumption gives the risk of potentially overlooking issues.

An additional challenge is the overhead generated by any
technique, which should be low to minimise the impact in
the tested environment (e.g., inaccurate results or abnormal
behaviour). Otherwise the technique might not be suitable
for performance testing. Moreover, while manually using
an expert system is not always applicable, its automation
would encourage its usage. This strategy has already been
proven successful in performance testing [6, 13].

This paper proposes an adaptive automation framework
that addresses the common usage limitations of expert sys-
tems in performance testing. During our research we have
successfully applied our framework to the IBM Whole-system
Analysis of Idle Time tool (WAIT). This publicly available
expert system helps to identify the performance inhibitors
in Java systems. Our experimental results proved that the
framework can configure WAIT without the need of manual
tuning. The results also provided evidence about the bene-
fits of the framework: The effort required to use and analyse
the outputs of WAIT was reduced by 68%, while the total
time spent on performance testing was reduced by 27%. The
main contributions of this paper are:

1. A novel policy-based adaptive framework to automate
the usage of expert systems in performance testing.

2. An adaptive policy to self-configure the gathering of
data samples in an expert system, based on a desired
performance threshold.

3. A practical validation of the framework and the policy,
consisting of a prototype and two experiments. The
first experiment proves the accuracy of the framework,
and the second demonstrates the productivity benefits.

2. BACKGROUND AND RELATED WORK
Idle-time analysis is a methodology to identify the root

causes of under-utilized resources. It is based on the be-
haviour that performance problems in multi-tier applica-
tions usually manifest as idle-time of waiting threads [1].
WAIT is an expert system that implements this methodol-
ogy and has proven to simplify the detection of performance
issues and their root causes in Java systems [1, 15]. WAIT
is based on non-intrusive sampling mechanisms available at
Operating System level (e.g., “ps” in Unix) and the Java Vir-
tual Machine (JVM), in the form of Javacores3 (snapshots of
the JVM state, offering information such as threads). From
an end-user perspective, WAIT is simple: A user only needs
to collect as much data as desired, upload it to a public web
page and get a report with the findings. This process can be
repeated multiple times to monitor a system through time.

Given its strengths, WAIT is a promising candidate to re-
duce the dependence on a human expert and time required
for performance analysis. However, as with other expert sys-
tems, the volume of data generated can be difficult to man-
age and the accuracy of WAIT depends on its configuration,
where the preferable configuration might vary depending on
the application and usage scenario. These characteristics
make WAIT a good candidate to apply our framework.

3http://www-01.ibm.com/support/docview.wss?
uid=swg27017906&aid=1

Automation in Testing. Most of the research has fo-
cused on automating the generation of load test suites. For
example, the authors in [11] propose an approach to auto-
mate the generation of test cases based on specified levels
of load and resources. Similarly, [4] presents an automation
framework that separates the application logic from the per-
formance testing scripts to increase the re-usability of the
scripts. Meanwhile, [16] presents a framework designed to
automate the performance testing of web applications.

Other research efforts have concentrated on automating
specific analysis techniques. For example, [17] presents a
combination of coverage analysis and debugging to auto-
matically isolate failure-inducing changes. Similarly, the au-
thors of [10] developed a technique to reduce the number
of false memory leak warnings generated by static analysis
techniques by automatically validating those warnings.

Finally, other researchers have proposed frameworks to
support software engineering processes. For example, the
authors of [3, 8] present frameworks to monitor software
services. Both frameworks monitor the resource utilisation
and the component interactions within a system. One fo-
cuses on Java [8] and the other on Microsoft technologies
[3]. Unlike these works, which have been designed to assist
on operational support activities, our framework is designed
to address the specific needs of a tester in performance test-
ing, isolating her from the complexities of an expert system.

3. ADAPTIVE FRAMEWORK
Our objective was to automate the manual processes in-

volved in the usage of an expert system to improve a tester’s
productivity by decreasing the effort needed to use an expert
system. Figure 1 depicts the contextual view of our frame-
work, which executes concurrently with a performance test.
It shields the tester from the complexities of the expert sys-
tem, so that she only interacts with the load testing tool.

Figure 1: Proposed framework - Contextual view

Architecture. The proposed framework is implemented
with the architecture depicted in Figure 1. It is composed
of three types of agents: The Central Agent interacts with
the load testing tool to know when the test starts and ends,
evaluates the adaptive policies and propagates the decisions
to the other nodes. The Application Node Agent performs
any required tasks in each application node. Finally, the
Expert System Agent interfaces with the expert system. All
components communicate through commands, following the
Command4 Design Pattern.

4http://www.oodesign.com/command-pattern.html



Adaptive Automation Framework. Our framework is
depicted in Figure 2. As a self-adaptive system is normally
composed of a managed system and an autonomic manager
[12], our framework plays the role of the autonomic man-
ager. It controls the feedback loops which adapt the man-
aged systems (the expert system and the application nodes
under test) according to a set of goals.

Figure 2: Adaptive automation framework

To incorporate self-adaptation in our framework, we fol-
low the well-known MAPE-K adaptive model [9]. It is com-
posed of 5 elements (depicted in Figure 2): A Monitoring
element to obtain information from the managed systems; an
Analysis element to evaluate if any adaptation is required;
an element to Plan the adaptation, and an element to Exe-
cute it. The key element of our framework is its policy base,
which fulfils the role of the Knowledge element and defines
the pool of available adaptive policies. Each expert system
must have at least two policies: A data gathering policy
(to control the collection of samples), and an upload policy
(to control when the samples are sent to the expert system
for processing). An expert system might have other policies
available (e.g., to back up the obtained samples).

From a configuration perspective, the tester needs to pro-
vide the Information Base (as shown in Figure 2), which
is composed of all the inputs required by the chosen poli-
cies. For example, a data gathering policy might require a
Sampling Interval to know the frequency for the collection
of samples.

From a process perspective, the autonomic manager has
a core process which coordinates the other MAPE-K ele-
ments. It is triggered when the performance test starts, and
depicted in Figure 3. As an initial step, it gets a Control
Test Id, value which uniquely identifies the test run and its
collected data. This value is propagated to all the nodes.
Next all application nodes start (in parallel) the loop speci-
fied in the monitor and analyse phases, until the test finishes:
New data samples are collected following a data gathering
policy. Then the analyser process checks the upload poli-
cies. If any has been fulfilled, the data is sent to the expert
system (labelling the data with the Control Test Id so that
information from different nodes can be identified as part of
the same test). Similarly, updated results are retrieved from
the expert system to be consolidated. Other policies might
be executed depending on the user configuration. This core
process continues iteratively until the performance test fin-
ishes. When that occurs, all applicable policies are evaluated
one final time before the process ends.

Prototype. A prototype has been developed in conjunc-
tion with our industrial partner IBM. The Central Agent was

Figure 3: Automation framework - Core Process

implemented as a plugin for the Rational Performance Tester
(RPT) 5, load testing tool commonly used in the industry
and which eases the collection of testing metrics. The Appli-
cation Node Agent was implemented as a Java Web Appli-

5http://www.ibm.com/software/products/en/performance



cation; and WAIT was the selected expert system due to its
characteristics (discussed in Section 2). Finally, the Expert
System Agent was implemented in PHP to extend the web
interface of WAIT (which is developed in that technology).
Two initial policies were also implemented: A data gathering
policy with a constant Sampling Interval (SI) and an upload
policy with a constant Upload Time Threshold(UTT).

4. ASSESSMENT OF TRADE-OFFS
To understand which adaptive policies would work best

for WAIT, an assessment of its performance trade-offs was
done. It involved comparing the throughput (TP) and the
performance bugs identified by WAIT when using different
configurations. These metrics were collected through RPT
and the WAIT report, respectively.

All tests were done in an environment composed of eight
VMs: Five application nodes, one WAIT server, one load
balancer and one load tester (using RPT 8.5). All VMs had
2 virtual CPUs, 3GB of RAM, and 50GB of HD; ran Linux
Ubuntu 12.04L, and Oracle Hotspot JVM 7 with a maximal
heap of 2GB. The application nodes ran Apache Tomcat 6.
The full DaCapo6 benchmark 9.12 was chosen as application
set because it offers a wide range of application behaviours
to test. For each benchmark, its smallest Sample Size was
used and each individual benchmark run was considered a
transaction. To execute Dacapo from within a RPT HTTP
test script, a wrapper JSP was developed. Also, a 24-hour
test duration was used to reflect realistic test conditions.

As the SI controls the frequency of samples collection
(main potential cause of overhead introduced by WAIT),
a broad range of values was tested (0.125, 0.25, 0.5, 1, 2, 4,
8 and 16 minutes). The smallest value in the range (0.125
minutes) was chosen to be smaller than the minimum recom-
mended value for WAIT (0.5 minutes). Similarly, the largest
value was chosen to be larger than 8 minutes (a SI commonly
used in the industry). As the UTT is not involved in the
data gathering, a constant value of 30 minutes was used.
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Figure 4: Perf. Bugs vs. Throughput

The results showed that there is a relationship between
the selection of the SI and the performance cost of using
WAIT. This behaviour is depicted in Figure 4, which sum-
marizes the results of the tested configurations. It can be
noticed how the throughput decreases when the SI decreases.
This performance impact is mainly caused by the Javacore
generation process which pauses the JVM during its execu-
tion7. Even though its cost was minimum with higher SIs,

6http://dacapobench.org/
7http://www-01.ibm.com/support/docview.wss?
uid=swg27017906&aid=1

it gradually became visible (especially with SIs below 0.5
minutes). On the contrary, the number of identified bugs
increases when the SI decreases. This positive impact is a
direct consequence of feeding more samples to the WAIT
server, which is pushed to do a more detailed analysis of
the monitored application. A second round of analysis con-
centrated on the most critical issues identified by WAIT to
assess if the previously described behaviours were also ob-
served there (critical issues are defined as those ranked with
an occurrence frequency above 80%). As shown in Figure 5,
similar behaviours were confirmed. These observations led
us to select the SI as an adaptive policy in our framework.
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Figure 5: Perf. Critical Bugs vs. Throughput

5. ACCURACY-TARGET POLICY
This policy was designed to balance the trade-off between

accuracy and performance, caused by the selection of the SI.
The policy process is depicted in Figure 6, where each

step is mapped to the corresponding MAPE-K element. It
requires two inputs: A response time threshold, which is
the maximum acceptable impact to the response time (ex-
pressed as a percentage); and the warm-up period. Resem-
bling its usage in performance testing8, the warm-up period
is the time after which all transactions have been executed
at least once (hence contributing to the RTAV G of the test
run). Two other parameters are retrieved from our policy
base, as their values are specific for each expert system: The
minimum SI that should be used for collection; and the ∆SI,
which indicates how much the SI should change in case of
adjustment.

The process starts by waiting the configured warm-up pe-
riod. Then it retrieves the average response time (RTAV G)
from the load testing tool. This value becomes the response
time baseline (RTBL). After that, the process initialises the
application nodes with the minimum SI. This strategy al-
lows collecting as many samples as possible, unless the per-
formance degrades below the desired threshold, thus violat-
ing the SLA. Next, an iteratively monitoring process starts
(which lasts until the test finishes): First, the process waits
the current SI (as no performance impact caused by the ex-
pert system might occur until the data gathering occurs).
Then, the new RTAV G is retrieved and compared against
the RTBL to check if the threshold has been exceeded. If so,
it means that the current SI is too small to keep the over-
head below the configured threshold. In this case, the SI is
increased by the value configured as ∆SI. Finally, the new
SI is propagated to all the application nodes, which start
using it since their next data gathering iteration.
8http://msdn.microsoft.com/en-us/library/ff406976.aspx



Figure 6: Accuracy-Target Data Gathering Policy

6. EXPERIMENTAL EVALUATION
Two experiments were done to evaluate the performance

of our framework. The first evaluated the accuracy of the
implemented policy, while the second assessed the produc-
tivity gains of our framework. The next sections describe
these experiments and their results.

Assessment of Adaptive Policy. The objective was to
evaluate if the adaptive policy fulfilled its purpose of con-
figuring the tool without the need for manual intervention.
The set-up was equal to the one used in the assessment of the
WAIT trade-offs (Section 4) except the SI selection, as the
adaptive policy took the place of this manual configuration.

The adaptive policy used a 20% response time threshold,

(value suggested by IBM to reflect real-world conditions);
and a warm-up period of 5 minutes (found to be enough for
all test transactions to execute at least one). Finally, the
minimum SI and the ∆SI were set to 30 seconds.

The results obtained were compared against the results
from the assessment of WAIT trade-offs (Section 4). This
demonstrated that the accuracy policy worked, as it was pos-
sible to finish the test with the overhead caused by WAIT
within the desired threshold. This was the result of increas-
ing the SI when the threshold was exceeded to reduce the
performance impact. In our case, this adjustment involved
that the SI was increased twice, moving from its initial value
of 30 seconds to 60 seconds, then to a final value of 90 sec-
onds. Also, the number of bugs found with the adaptive
policy was higher than those found with all the static SIs
which fulfilled the response time threshold of 20% (the SIs
of 1 minute or higher). This was the result of using other
(smaller) SIs during the test, which yielded a better bug
coverage during certain periods of the test. This behaviour
also proved that the policy could avoid the need of manu-
ally tuning the tool, as it automatically identified the best
SI configuration (which varied during the test). The same
analysis was done considering only the critical bugs, and sim-
ilar behaviours were observed. These results are presented
in Figures 7 (overall bugs) and 8 (critical bugs), where the
response time threshold is shown as a grey horizontal line.
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Figure 7: Perf. Bugs vs. Throughput
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Assessment of benefits in testing productivity. The
objective was to assess the benefits that our framework brings
to a tester in terms of reduced effort and time. The set-
up was similar to the one used in the previous experiment
with two exceptions: First, the well-documented open source
iBatis JPetStore 4.0 9 application was used with a workload
of 2,000 concurrent users. Second, the number of applica-
tion nodes was increased (to 10 nodes) to test our framework

9http://sourceforge.net/projects/ibatisjpetstore/



in a bigger test environment. This experiment also involved
modifying the source code of JPetStore to manually inject
five common performance issues (two lock contentions, two
deadlocks and one I/O latency bug).

Two types of runs were performed: The first type involved
a tester using WAIT manually (M-WAIT). A second type of
run involved using WAIT through our automation frame-
work (A-WAIT). In both cases, the tester did not know the
number or characteristics of the injected bugs.

The results are summarized in Table 1. After comparing
the runs, two time savings were documented when using A-
WAIT: First, the effort to identify bugs was decreased 68%.
This was the result of simplifying the analysis of the WAIT
reports: Instead of having multiple reports to be manually
correlated, the tester using A-WAIT only needed to monitor
a single report which incrementally evolved. This allowed
the tester using A-WAIT to get intermediate results during
the test run. In our case, all bugs were identified after the
first hour of test execution. Thus, she was able to start the
analysis of the bugs in parallel to the rest of the test exe-
cution (which she kept monitoring). A consequence of this
was that the duration of the performance testing activity de-
creased 27%. It is worth mentioning that both testers were
able to identify all bugs with the help of the WAIT reports.

Table 1: M-WAIT and A-WAIT Comparison

Metric
M-WAIT

(hr)
A-WAIT

(hr)
M-WAIT vs.
A-WAIT (%)

a. Duration of Perf.
testing activity

32.8 24.1 -27%

b. Duration of Perf.
Testing

24.0 24.0 0%

c. Effort of Perf. Anal-
ysis (d+e)

8.8 4.2 -52%

d. Effort of Bug Iden-
tification

6.8 2.2 -68%

e. Effort of Root Cause
Analysis

2.0 2.0 0%

An additional observation from this experiment is that
the time savings gained by the automated framework are
directly related to the duration of the test and the number
of application nodes in the environment. This behaviour
is especially valuable in long-term runs, which are common
in performance testing and typically last several days. The
same situation occurs with the performance testing of highly
distributed environments, as the obtained time savings will
be higher under those conditions.

To summarize the experimental results, they allowed the
measurement of the productivity benefits that a tester can
gain by using an expert system through our proposed au-
tomation framework. A direct consequence of these time
savings is the reduction of expert knowledge dependency
and effort required to identify performance issues, hence im-
proving the productivity of testers.

7. CONCLUSIONS AND FUTURE WORK
The identification of performance problems in highly dis-

tributed environments is complex. Even though researchers
have been developing expert systems to simplify this task,
limitations still exist in such systems that prevent their effec-
tive usage in performance testing. To address these limita-
tions, this paper proposed an adaptive policy-enabled frame-
work to automate the usage of an expert system in a dis-
tributed testing environment. In particular, our experimen-
tal results showed significant time savings gained by apply-
ing the proposed framework: The effort required to identify

bugs was reduced by 68%(compared to the manual usage of
the expert system), while the total duration of the perfor-
mance testing activity was reduced by 27%. The results also
proved that such an adaptive framework is capable of sim-
plifying the usage of an expert system. This was achieved
by balancing the effectiveness of the tool and its overhead
without manual configuration. Future work will focus on
extending the adaptive capabilities of our framework.
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