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VARIABLE SELECTION FOR LATENT CLASS ANALYSIS
WITH APPLICATION TO LOW BACK PAIN DIAGNOSIS
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The identification of most relevant clinical criteria related to low
back pain disorders may aid the evaluation of the nature of pain suf-
fered in a way that usefully informs patient assessment and treatment.
Data concerning low back pain can be of categorical nature, in form of
check-list in which each item denotes presence or absence of a clinical
condition. Latent class analysis is a model-based clustering method
for multivariate categorical responses which can be applied to such
data for a preliminary diagnosis of the type of pain. In this work we
propose a variable selection method for latent class analysis applied
to the selection of the most useful variables in detecting the group
structure in the data. The method is based on the comparison of two
different models and allows the discarding of those variables with no
group information and those variables carrying the same information
as the already selected ones. We consider a swap-stepwise algorithm
where at each step the models are compared through an approxima-
tion to their Bayes factor. The method is applied to the selection of
the clinical criteria most useful for the clustering of patients in differ-
ent classes. It is shown to perform a parsimonious variable selection
and to give a clustering performance comparable to the expert-based
classification of patients into three classes of pain.

1. Introduction. Musculoskeletal pain is the pain concerning muscles,
bones and joints, that arises in different conditions. Low back pain (LBP) is
the muscoloskeletal pain related to disorders in the lumbar spine, low back
muscles and nerves and it may radiate to the legs. Although there is a lack
of homogeneity in the studies, a considerable proportion of the population
experiences LBP during their lifetime (Hoy et al., 2012; Walker, 2000), with
effects on social and psychic traits and working behaviour (Froud et al.,
2014). Several LBP classification systems have been developed in order to
group patiens into classes with similar characteristics, with the purpose of ef-
fective pain management (Stynes, Konstantinou and Dunn, 2016, and refer-
ences therein). Among the different systems, mechanism-based classification
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of pain is based on the underlying neurophysiological mechanisms respon-
sible for its generation and maintenance. The system has been advocated
in clinical practice on the ground of better pain treatment and improved
patient outcomes (Smart, O’Connell and Doody, 2008; Woolf et al., 1998).
In the absence of any diagnostic gold standards for mechanisms-based pain
diagnoses, such a categorization may be identifiable on the basis of sets of
symptoms and signs characteristic to each category by means of a stan-
dard clinical examination process and experienced clinical judgement (Katz
et al., 2000; Smart et al., 2010; Graven-Nielsen and Arendt-Nielsen, 2010;
Nijs et al., 2015). Furthermore, with the aim of a diagnosis of the nature
of the LBP suffered by a subject, identifying a smaller collection of signs
or symptoms which best relates the manifestation of pain to its neurophys-
iological mechanism is a critical task. Focusing the attention only on few
manifest pain characteristics can guide a preliminary patient evaluation and
can constitute a valid basis for additional investigations and immediate pain
treatment.

Model-based clustering (Fraley and Raftery, 2002; McNicholas, 2016, for
a recent review) is a well established framework for clustering multivari-
ate data. In this approach, the data generating process is modelled through
a finite mixture of probability distributions, where each component distri-
bution corresponds to a group. When the observations are measured on
categorical variables (such as data arising from questionnaires), the most
common model-based clustering method is the latent class analysis model
(LCA) (Lazarsfeld and Henry, 1968). Typically all the variables are consid-
ered in fitting the model, but often only a subset of the variables at hand
contains the useful information about the group structure of the data. When
performing variable selection for clustering the goal is to remove irrelevant
variables, which do not carry group information, and redundant variables,
which convey similar group information, retaining only with the set of rel-
evant variables, which contains the useful information (Dy and Brodley,
2004). Therefore considering all the variables unnecessarily increases the
model complexity and can produce model identifiability problems. More-
over, using variables that do not contain group information or that contain
unneeded information frequently leads to a poor classification performance.

In recent years, wide attention has been given to the problem of vari-
able selection in clustering multivariate data. The problem has been gener-
ally tackled through two general approaches: the wrapper approach, which
combines clustering and variable selection at the same time, and the filter
approach, where the variables are selected after or before the clustering is
performed (Dy and Brodley, 2004). Model-based clustering for continuous
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data has seen the prevalence of the wrapper approach; we cite the works from
Law, Figueiredo and Jain (2004), Tadesse, Sha and Vannucci (2005), Kim,
Tadesse and Vannucci (2006), Raftery and Dean (2006), Maugis, Celeux and
Martin-Magniette (2009a), Maugis, Celeux and Martin-Magniette (2009b),
Murphy, Dean and Raftery (2010), Scrucca and Raftery (2015), Marbac and
Sedki (2017), Malsiner-Walli, Frithwirth-Schnatter and Griin (2016). More-
over, further works in the wrapper approach considered the introduction of
a penalty term in the log-likelihood in order to induce sparsity in the fea-
tures, for example Pan and Shen (2007), Wang and Zhu (2008), Xie, Pan
and Shen (2008), Meynet and Maugis-Rabusseau (2012)

In LCA, the variable selection problem has been assessed only recently.
Under a filter approach, Zhang and Ip (2014) propose two measures for
quantifying the discriminative power of a variable for mixed mode data,
but the method is limited only to binary variables. Under the wrapper ap-
proach, Dean and Raftery (2010) recast the variable selection problem as
a model selection problem, Bontemps and Toussile (2013) suggest an ap-
proach designed on the minimization of a risk function, Silvestre, Cardoso
and Figueiredo (2015) propose a method adapted from Law, Figueiredo and
Jain (2004) and based on feature saliency, White, Wyse and Murphy (2016)
present a full Bayesian framework with a collapsed Gibbs sampler and Bar-
tolucci, Montanari and Pandolfi (2016) present a method based on the work
of Dean and Raftery (2010) for item selection in questionnaires.

All of the above mentioned wrapper methods for LCA have a drawback:
they consider a variable to be added or removed to the already selected set of
clustering ones assuming that the former is independent of the later. By this
assumption, two (or more) informative correlated variables are selected, even
if they contain similar group information, however retaining only one (or a
subset) of them can lead to a clustering of comparable quality with a more
parsimonious variable selection. Thus the result is the methods are capable
of discarding non informative variables, but not the redundant variables.

In this work we develop a variable selection method for LCA based on the
model selection framework of Dean and Raftery (2010) which overcomes the
limitation of the above independence assumption. By adapting the variable
role modeling of Maugis, Celeux and Martin-Magniette (2009b) in the vari-
able selection procedure we propose a method capable of discarding variables
that do not contain group information and variables that are redundant.
This variable selection method assesses a variable usefulness for clustering
by comparing models via an approximation to their Bayes factor.

We apply the proposed method to cluster a set of patients suffering of low
back pain. Each patient were diagnosed as having a different type of pain
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by a group of experienced physiotherapists using a list of several clinical
indicators. The aim is to recover in an unsupervised setting a classification
of the patients comparable to the expert-based one and at the same time
selecting a reduced collection of clinical indicators which can be used for a
preliminary assessment of the characteristics of pain.

Section 2 presents the low back pain data which gave the motivation for
the improvement in the variable selection approach for LCA. In Section 3
we give a brief description of model-based clustering and latent class anal-
ysis. The general variable selection methodology for LCA is presented in
Section 4. First, we review the Dean and Raftery (2010) procedure and sub-
sequently we present our proposed variable selection method characterized
by the relaxation of the independence assumption between the clustering
variables and the proposed one. Section 5 is dedicated to the results of the
variable selection method applied to the LBP data. Section 6 presents a
simulation study on two different scenarios. The paper ends with a brief
discussion in Section 7.

2. Low back pain data. A mechanisms-based classification of pain
relates the generation and maintenance of pain to its underlying neurophys-
iological mechanisms. To this purpose, the following categories have been
suggested for a clinically meaningful classification of pain: (Merskey and
Bogduk, 2002; Woolf, 2004):

e Nociceptive: Pain that arises from actual or threatened damage to non-
neural tissue, occurring with a normally functioning somatosensory
nervous system;

e Peripheral Neuropathic: Pain initiated or caused by a primary lesion
or dysfunction in the peripheral nervous system;

e Central Sensitization: Pain initiated or caused by a primary lesion or
dysfunction in the central nervous system.

It is thought that classifying patients low back pain based on a clini-
cal judgement regarding the likely dominant category of neurophysiological
mechanisms responsible for its generation and/or persistence may usefully
inform treatment by inviting clinicians to select treatments either known or
hypothesized to target those mechanisms in an attempt to optimize clin-
ical outcomes (Smart, O’Connell and Doody, 2008). In this regard, a list
of 38 clinical criteria (signs and symptoms) whose presence or absence can
best discriminate the three types of pain has been generated on an expert-
consensus basis (Smart et al., 2010, see Supplementary Material, Section 4
for the complete clinical criteria checklist).
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Smart et al. (2011) conducted a preliminary discriminative validity study
of such mechanisms-based classification of musculoskeletal pain in clinical
practice. The aim of the study was to assess the discriminative validity of
the above classification system for low back disorders. The data are a sample
of 464 patients, each one assigned to one of the three categories of pain by a
group of experienced physiotherapists. For each patient, information regard-
ing the presence/absence of the 38 binary clinical indicators is recorded.

In the present work, in analysing these data the aim is twofold:

1. Implement an unsupervised partition of the patients to form groups
of patients with similar characteristics. Thus, we can establish if the
clusters found using the unsupervised method agree with the expert-
based classification or not. This allows for the discovery of a potentially
novel partition of the patients into homogeneous groups or a further
validation of the expert-based classification;

2. Select a subset of most relevant clinical criteria for partitioning the
patients. Most of the indicators (if not all) have good discriminative
power and large part of them carry the same information about the
pain categories. The interest here is to discard redundant and non-
informative indicators in order to reduce the list of signs and symptoms
to check for a preliminary assessment of a patient condition.

In collecting the data, the presence/absence of some criteria was indicated
as “Don’t know” for some patients as the corresponding information was
unavailable. In particular, Criteria 20 records if a subject condition was
responsive or not to nonsteroidal anti-inflammatory drugs (NSAIDs) and for
a set of patients it was not known if they actually took or not any NSAIDs.
In Smart et al. (2011) these entries were discarded. To be consistent with the
authors approach and consider the same set of data we discard them as well
in the following analysis; Section 1 of Supplementary Material contains a
discussion and a brief analysis with these entries included as extra category.
Furthermore, Criteria 17 and 21 are not available in the data and are not
considered. The final data set is then composed of 425 patients examined
on 36 binary variables.

3. Latent class analysis. Let X the N x M data matrix, where each
row X,, is the realization of a M-dimensional vector of random variables
Xn=(Xn1, -+ Xnm, --- Xna). Model-based clustering assumes that each
X, arises from a finite mixture of G probability distributions, each repre-
senting a different cluster or group. The general form of a finite mixture
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distribution is specified as follows:

G
(1) p(Xp) = ZTgp(Xn‘ag)
g=1

where the 7, are the mixing probabilities and 8, is the parameter set cor-
responding to component g. The component densities fully characterize the
group structure of the data and each observation belongs to the correspond-
ing cluster according to a set of unobserved cluster membership indicators
Zn = (Zn1, Zn2, - .., 2nq), such that z,, = 1 if X,; arises from the gth sub-
population (McLachlan and Peel, 2000; Fraley and Raftery, 2002).

When clustering multivariate categorical data a common model-based
approach is the latent class analysis model (LCA). In this framework, within
each class each variable X, is modelled using a Multinomial distribution,
therefore

mw H 91{)c(m20}7

where c =1, ..., (), are the possible categories values for variable m, 0y, is
the probability of the variable taking value ¢ given class ¢, and 1{z,, = c} is
the indicator function which is equal to 1 if the variable takes value ¢, 0 oth-
erwise. In LCA it is assumed that the variables are statistically independent
given the class value of an observation. This is a basic assumption known
as local independence assumption (Clogg, 1988) and it allows the following
factorization of the joint component density:

M Cp
p(Xnl0g) = [T TT6a4emm=
m=1c=1

consequently the overall density in (1) becomes

M Cn
l nm—
ZTQ [T ITose="
m=1c=1
For a fixed value G the set of parameters {74,0gmc: m =1, ..., M;c =
1,..., Cn;9g =1, ..., G} is usually estimated by the EM algorithm, but also

a Newton-Raphson algorithm or a hybrid form of the two can be considered
(McLachlan and Krishnan, 2008). In any case the algorithm is initialized
through a set of randomly generated starting values and there is no guar-
antee of reaching the global maximum. For this reason is usually a good
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practice to run the procedure a number of times and select the best solution
(Bartholomew, Knott and Moustaki, 2011).

More details about the model and the parameter estimation are provided
in Lazarsfeld and Henry (1968), Goodman (1974); Haberman (1979), Clogg
(1995), Agresti (2002) and Bartholomew, Knott and Moustaki (2011).

Regarding parameters interpretation, in the LCA model the parameter
Ogme represents the probability of occurrence of attribute ¢ for variable X,
in class g. Thus for the binary variables of the LBP data, 0. will represent
the probability of having a certain symptom or clinical criteria for each
patient belonging to class g.

Model selection. Different LCA models are specified by assigning dif-
ferent values to GG. Here the selection of the best model and of the related
number of latent classes is carried out using an approximation to their Bayes
factor. When comparing two competing models specified to describe the data
X, say M4 against M p, the extent to which the data support model M4
over M p is measured by their posterior odds. In absence of prior preference
for one of the two models, this quantity is given by

p(Ma|X)  p(X|My)

p(MpIX)  p(X|Mp)’

where p(X|M4) = fp(X|9,MA)p(9|MA) d@ is the integrated likelihood.
The ratio of the integrated likelihoods of the two models is the Bayes fac-
tor, Ba,p. The quantity p(X|M4) is conveniently approximated using the
Bayesian Information Criterion (BIC), defined by

BIC(X| M) =2 log(L}) — va log(N),

where L% is the maximized likelihood and v4 is the number of model pa-
rameters (Schwarz, 1978). Then the following approximation to twice the
logarithm of the Bayes factor holds (Kass and Raftery, 1995):

(2) 2 log(Ba,p) ~ BIC(X|M4) — BIC(X|M3p),

and if this difference is greater than zero the evidence is in favour of model
M 4, otherwise in favour of M p. Several arguments in favor of BIC for model
selection in mixture models have been given in the literature, see McLachlan
and Rathnayake (2014) for a recent review.

For a given number of variables, not all the models specified by assign-
ing different values to G are identifiable. In fact a necessary (though not
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Ml z M; VA

Fic 1. The two competing models in Dean and Raftery (2010)

sufficient) condition to the identifiability of a model with G latent classes is

M M
(3) HCm><ZCm—M+1>G,
m=1 m=1

with C), the number of categories taken by variable X, (Goodman, 1974).
Thus when selecting the number of classes, hereafter we will consider values
of G for which this identifiability condition holds.

4. Variable selection for latent class analysis. To select the vari-
ables relevant for clustering in LCA, Dean and Raftery (2010) suggested
a stepwise model comparison approach. At each step of their method the
authors specify a partition of the variables into

e XY the current set of relevant clustering variables, dependent on the
cluster membership variable z,

e X” the variable proposed to be added or removed from the clustering
variables,

e XO. the set of the other variables which are not relevant for clustering.

Then the decision of adding or removing the considered variable is made
by comparing two models: model Mj, in which the variable is useful for
clustering, and model M3 in which it does not. Figure 1 gives a graphical
sketch of the two competing models.

Both models make the realistic assumption that the relevant variables
are not independent from the irrelevant ones (the edge between X© and
X%, but they differ in the specification of the relationship with X*. In M;
there is no edge between X and X ¥ because the model states that the pro-
posed variable is useful for clustering and we have that the joint distribution
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p(XY, XT|z) factorizes into p(X®|z) p(X|z) by the local independence as-
sumption of LCA. In M3 there is no edge between z and X* because under
this model the proposed variable is not useful for clustering. Also the edge
between X¢ and X' is missing, since Dean and Raftery (2010) assume the
independence of the proposed variable from X¢, even when it is not rel-
evant for clustering. However, this assumption seems to be misleading for
two reasons. On one hand because if model My holds, actually X belongs
to X9, contradicting the fact that the latter is not assumed independent
from X¢. On the other hand because to this assumption the model does
not take into account that the proposed variable could be redundant for
clustering given the set of already selected relevant variables. In fact, as it
has already pointed out in previous works (Law, Figueiredo and Jain, 2004;
Raftery and Dean, 2006; White, Wyse and Murphy, 2016), assuming the in-
dependence between the proposed variable and the current set of clustering
variables can wrongly lead to declare as relevant a variable that could be
explained by (some or all) the variables in X©, even if actually it contains
redundant group information that is no needed or it does not contain further
information at all.

4.1. Relazing the independence assumption. Now let us consider the mod-
els depicted in Figure 2. Model M is exactly the same model as before,
where the proposed variable is useful for clustering. On the other hand, Mo
is the model in which the proposed variable is not relevant for clustering, but
there is an edge between X¥ and X which defines the conditional distri-
bution p(XT|X%). Therefore, M is specified by relaxing the independence
assumption between the proposed variable and the set X¢ and taking into
account the potential redundancy of X*'. Hence, if the evidence is in favor
of model M, the proposed variable is discarded from X¢ for two reasons:
because it does not contain information about the latent classes at all, or
because it does not add further useful information about the groups given
the information already contained in the current clustering variables.

Moreover, another assumption is considered in model Msy: we let the pro-
posed variable to be related only to a subset X% contained in the current set
of clustering variables, since could be the case that not all the variables in
X are associated to X (Maugis, Celeux and Martin-Magniette, 2009a,b).
In this way we do not induce spurious dependencies, avoiding the inclusion
in the model of additional parameters without effectively increasing its like-
lihood. In addition a more realistic modeling framework for the relationship
between X and X is outlined, letting it to be as much flexible as possible.
Clearly it ranges between two extrema: if X® = X all the current cluster-
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My z M z

FiGc 2. The two competing models specified relaring the independence assumption between
XP and XC.

ing variables explain X ¥, which could likely be redundant for clustering; if
X% = &, the proposed variable is not related to the current clustering set,
recalling the assumption of Dean and Raftery (2010).

Hence the two models are specified as follows:

My p(X[z) = p(X9 X7, X%z)
= p(X°X%, XP)p(XC, X" |2);
My p(X|z) = p(X X7, X%z)
= p(XOIXY, XF) p(Xz) p(X7|XF C XO).

Following Dean and Raftery (2010), models M; and My are then com-
pared via the Bayes factor

5. PXIM)
12~ —=
p(X[My)

Model M is specified by the probability distribution of the latent class
model p(X¢, XT|6¢, 67, M) and the distribution p(X°|X%, X* 69, M,).
We denoted 6¢, 8F and 69 the parameters vectors that identify these dis-
tributions and we assume that their prior probability distributions are in-
dependent. Hence the integrated likelihood factors as follows:

p(X|M1) = p(XO‘Xcv XP7 Ml)p(Xcv XP|M1)7
with

P(XOX, X7, My) = [ p(XOIXC, X7, 60, M) 6] 01) a6

p(XC, XP|My) = / / p(XC, X716, 07, M) p(65, 07| M,) oS d6?.
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Similarly the integrated likelihood of model My factors in
p(X|Mz) = p(X2|XY, X7, Ma) p(X| Ma) p(XT|XT € X9, Ms),
with
PXOXC X7 M) = [ p(XOIXC, X", 09, Mo) p(6 M) d6S
PXOIM) = [ (X165 My) p(65 | M) doS
POTXTCXE M) = [ pOCTIXT C XY My) p(6] | M2) dBY
Assuming that the prior distributions for 89 and 9 are the same under

both models, we obtain that p(X?|X%, X7, M;) = p(XO|XY, X, My).
Therefore

. p(X7, XP M)

T p(XC M) p(XFIXE C XC Ma)

Note that in the Bayes factor the distribution of the non-clustering vari-
ables given the rest cancels out; this represents an advantage in terms of
computations because there is no need to specify the joint distribution of all
the non-clustering variabels (unlike in White, Wyse and Murphy, 2016, for
example). Then this Bayes factor is estimated by the BIC approximation
outlined in (2), leading to the following criterion:

BICqs¢ = BIC(XY, XP|M;) - BIC(XY, XT|M,)
— BIC(XS, XPlz, My) — [BIC(XC |z, My) + BIC(XP[XE C XC,MQ)],

where BIC(XY, X|z, M) and BIC(X®|z, M3) are the BIC of the LCA
model on the sets X¢ U X and X¢ respectively, while BIC(X?|X® C
X¢, Msy) is the BIC of the model for the conditional distribution of the
proposed variable (note that we made explicit the dependence on the latent
variable z). If this difference is greater than zero, there is evidence in favor of
X P adding further information about the clusters to the information already
contained in the current set X¢. On the other hand, if the difference is
less than zero there is evidence that no useful information is added by the
proposed variable.

4.2. Proposed variable conditional distribution. The conditional distri-
bution of the proposed variable given X¢ is modeled by a multinomial lo-
gistic regression using the softmaz link function:

X8

P _ R Cy _
@ pXP = X" € X) = g
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where (3. is the vector of regression parameters for category ¢ and ¢ =
1, ..., Cp are the categories for the proposed variable; the model reduces to
a standard logistic regression with logit link if the proposed variable is bi-
nary. We refer to Ripley (1996) and Agresti (2002) for a detailed description
of the model and its estimation.

In the regression model (4) the subset X* contains the relevant predictors
of the proposed variable. Their selection is carried out using a standard
stepwise algorithm (described in the Supplementary Material, Section 2).
When selecting the variables that compose X%, we allow it to be the empty
set, thus taking into account the general variable role modeling described in
Maugis, Celeux and Martin-Magniette (2009b).

If the proposed variable is highly correlated with the predictors, the prob-
lem of separation may occur. Separation arises when a linear combination
of the predictors perfectly or quasi-perfectly separates the classes of the re-
sponse variable, leading to infinite estimates of the regression coefficients
and large standard errors (Albert and Anderson, 1984; Lesaffre and Albert,
1989). Different remedies have been proposed in literature in order to per-
form inference on the parameters, for example Heinze and Schemper (2002),
Zorn (2005) and Gelman et al. (2008). In the present framework separation
does not represent a problem, as the regression coefficients are only acces-
sory to the computation of the maximum of the log-likelihood of the logistic
regression. In fact, even in case of separation the log-likelihood surface is
concave, bounded above and has a finite maximum (Albert and Anderson,
1984). In practice, if separation occurs the log-likelihood surface becomes
flat, approaching a limiting value as some (or all) regression coefficients are
going to infinity. So convergence criteria are satisfied, and the log-likelihood
is numerically maximized and computation of quantities based on that max-
imum, such as the BIC, are still valid (Agresti, 2015; Albert and Anderson,
1984).

4.3. Swap-stepwise selection algorithm. The clustering variables are se-
lected using a stepwise algorithm which alternates between exclusion, inclu-
sion and swapping steps. In the removal step all the variables in X are
examined in turn to be removed from the set. In the inclusion step all the
variables in X© are examined in turn to be added to the clustering set. In
the swapping step, a non-clustering variable is swapped with a clustering
variable.

In the removal and inclusion step we compare model M against model
M. Instead, in the swapping steps we actually compare two different con-
figurations of model M3 that differ in the fact that one clustering variable
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is replaced by one of the non-clustering variables. The rationale for the
swap step lies in the assumptions of model Ms. In model My the proposed
variable is assumed independent from z conditionally on the set of already
selected variables and not marginally (which would be a special case). There-
fore X* is actually allowed to contain some information about the clusters,
which in some situations may be the best information available if one of the
variables of the optimal set for X¢ has been discarded during the search.
Hence the algorithm could converge to a sub-optimum. To avoid it we com-
pare two different sets of clustering variables in the swapping step. Then if
a “true” clustering variable has been removed during the search, when com-
pared to a less informative one is likely to be added back to the clustering
set.

The algorithm also performs the selection of the number G of latent
classes, finding at each stage the optimal combination of clustering vari-
ables and number of classes. The procedure stops when no change has been
made to the set X after consecutive exclusion, swapping, inclusion and
swapping steps.

A detailed description of the algorithm is in Appendix A.

4.4. Comparing selected and discarded variables. By means of the out-
lined variable selection procedure we aim to remove variables that do not
contain any information about the clustering and variables that contain ad-
ditional information, which are redundant given the already selected relevant
variables. Since it is likely that related variables carry similar information
about the groups, it is of interest to analyze the association between each
discarded variable and each selected one after the selection is performed. We
accomplish this task as a result of simple considerations.

Let X, € X9 be one of the discarded variables, and X, € X be one of
the selected ones; let also z be the estimated cluster membership allocation
vector. In the light of the described general modeling framework, we analyze
the association between X. and X, by comparing the following two models
for the joint conditional distribution p(X., X,|z):

Mys p(X67X0|2) :p(XC|2)p(XO|XC);
Moo as - p(X07Xo‘2) :p(XC|i)p(XO)‘

In a similar fashion to the models involved in the variable selection pro-
cedure, this two models are compared via the Bayes factor Bas noas =
p(Xe, Xolz, Mas) /p(Xe, Xo|Z y Mo as). Applying the same arguments of Sec-
tion 4.1 and noting that p(X.|z, Ma,s) = p(X¢|Z , My as) we obtain that the
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above Bayes factor reduces to

B _ p(Xo‘Xc,Mas)
as, no as P(XO\MHO as) .

Then using the BIC approximation of (2) leads to
(5) Bas, no as ~ BICdiff as — BIC(XO|X67 Mas) - BIC(X0|M110 as)-

The quantity BICgis 25 corresponds to the difference between the BIC of
a multinomial logistic regression where X, depends on X. and the BIC
of the regression with only the constant terms. Then if this difference is
greater than zero, there is evidence of the association between the considered
selected variable and the discarded one.

5. Latent class model and clinical criteria selection. The pro-
posed model is applied to the low back pain data. We measure the agreement
between the model-based partition of the data and the expert-based classi-
fication using the adjusted Rand index (ARI) which is equal to 1 when two
partitions are exactly the same, otherwise it is close to 0 when they do not
agree (Hubert and Arabie, 1985); compared to other indices, Milligan and
Cooper (1986) recommended the ARI as the index of choice for clustering
validation.

We consider LCA models with the number of latent classes G ranging
from 1 to 7. The clustering results for the different models are summarized
in Table 1. When fitting a LCA model on all of the clinical criteria, the
BIC selects a model with 5 classes, providing an ARI of 0.50. By fixing the
number of classes equal to 3 in advance we obtain a model with an ARI of
0.82. By performing the variable selection with the independence assumption
of Dean and Raftery (2010) only one variable is discarded, Criterion 36, and
the BIC selects again a model with 5 classes, identifying the same clusters of
the model on all the variables. Note that also in White, Wyse and Murphy
(2016) only one variable is discarded. Using the variable selection method
proposed here with swap-stepwise search we retain 11 variables and the BIC
selects a 3-class model on these. The ARI for the model on the 11 selected
clinical criteria is 0.75, thus the number of variables is reduced by about
two thirds, identifying a partition of the patients that agrees well with the
physiotherapists’ classification. For comparison we also performed the same
variable selection with a standard stepwise search, selecting a model on 10
criteria, but with a smaller ARI. Therefore the use of the swap move in the
search avoided selection of sub-optimal informative clustering variables.
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TABLE 1
Clustering summary of the LCA model for different sets of variables and different
number of classes for the LBP data (note that the BIC are not comparable for differing
sets of variables).

Selection N. latent

method Variables classes BIC ARI
— All 5 -12586.48 0.50
- All 3 -12763.81  0.82
Dean and Raftery 35 Criteria 5 -12116.32  0.50
Stepwise 10 Criteria 3 -3462.82 0.66
Swap-stepwise 11 Criteria 3 -3946.31 0.75

* We fixed the number of classes to this value in advance.

TABLE 2
Cross-tabulation between the estimated partition on the 11 clustering variables and the
expert-based classification of the LBP data.

Estimated
Class 1 Class 2 Class 3
Expert- Nociceptive 210 21 4
based Peripheral Neuropathic 5 88 2
Central Sensitization 3 3 89

A cross-tabulation of the estimated partition on the 11 selected variables
versus the expert-based classification is reported in Table 2. It seems rea-
sonable to match the 3 detected classes to the Nociceptive, Peripheral Neu-
ropathic and Central Sensitization group respectively.

Table 3 lists the 11 selected clinical criteria and the estimated probability
of occurrence given the class which a patient is assigned to; also the observed
proportion of occurrence is reported in brackets. Figure 3 is a heatmap of
the estimated class conditional probabilities: the selected variables present
good degree of separation between the three classes which are generally
characterized by the almost full presence or almost complete absence of the
selected criteria.

Smart et al. (2011) fit a logistic regression of each type of pain versus the
others, ending with the selection of a set of 14 features whose presence or
absence best describes each class of pain. They selected Criteria 3, 4, 5, 7,
8,9, 11, 13, 15, 19, 25, 27, 29, 33. Six out of eleven of our selected crite-
ria match those selected in a supervised setting. Furthermore the estimated
parameters reported in Table 3 agree with the description of the factors
related to each class of pain given by the authors: Nociceptive pain (Class
1) is well described by the presence of a pain localized to the area of injury
or dysfunction, and by the absence of dysaesthesias (unpleasant sensations,
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TABLE 3

Estimated class conditional probability of occurrence and actual frequency (in brackets)
for the selected clinical criteria in the low back pain data.

Crit. Description Class 1 Class 2 Class 3

9 Pain associated to trauma, pathologic 0.94 0.90 0.04
process or dysfunction (0.94) (0.92) (0.04)

6 More constant/unremitting pain (882) (8%% (8;8)
8 Pain localized to the area of 0.97 0.50 0.31
injury/dysfunction (0.97) (0.42) (0.33)

9 Pain referred in a dermatomal or 0.06 1.00 0.11
cutaneous distribution (0.12) (0.97) (0.13)

13 Disproportionate, nonmechanical, 0.01 0.00 0.91
unpredictable pattern of pain (0.01) (0.01) (0.87)

15 Pain in association with other 0.03 0.51 0.34
dysesthesias (0.06) (0.51) (0.34)

. - g 0.34 0.70 0.86

19 Night pain/disturbed sleep (0.37) (0.68) (0.85)
2% Pain in association with high levels of 0.07 0.36 0.79
functional disability (0.09) (0.36) (0.78)

28 Clear, consistent and proportionate 0.97 0.94 0.07
pattern of pain (0.95) (0.94) (0.12)

33 Diffuse/nonanatomic areas of 0.03 0.01 0.73
pain/tenderness on palpation (0.03) (0.01) (0.73)

37 Pain/symptom provocation on palpation 0.07 0.57 0.19
of relevant neural tissues (0.09) (0.58) (0.21)
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Fic 3. Heatmap plot of the estimated probability of occurrence of the 11 selected clinical
criteria.

e.g. crawling) and pain at night; Peripheral Neuropathic (Class 2) is char-
acterized by the presence of a dermatomal distribution of pain and pain on
palpation of nerve tissue, and Central Neuropathic (Class 3) is linked to
the presence of pain which is more constant and has a disproportionate and
unpredictable pattern of provocation and is associated with diffuse areas of
pain on palpation as well as the absence of pain in proportion to trauma or
pathology in addition to consistent and proportionate pain on clinical provo-
cation tests. Also, fitting a LCA model on the criteria selected by Smart
et al. (2011), a model with 3 latent classes is chosen, with an ARI of 0.77.
By comparing the latter partition with the classification of the LCA model
on the 11 criteria of Table 3, an ARI of 0.79 is obtained. Thus the classifi-
cation attained by the variable selection method in an unsupervised setting
has a satisfying rate of agreement with the classification of patients based
on the variables selected in a supervised setting, and with a smaller set of
relevant clinical criteria. These findings provide some confirmatory discrimi-
native validity evidence for a three-category mechanisms-based classification
system for musculoskeletal pain. Furthermore it is shown that the proposed
method is able to reduce the number of useful clinical criteria to be checked
for elaborating a preliminary assessment of the pain characteristics.

Discarded clinical criteria. The clinical criteria in the data are specified
in advance on a expert-consensus basis (Smart et al., 2010). Indeed they were
chosen such that most are good in discriminating between the three types
of pain. Here we want to point again the fact that the discarded criteria
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TABLE 4
Cross-tabulation between the estimated 3-class partition on the discarded variables and
the expert-based classification of the LBP data.

Estimated
Class 1 Class 2 Class 3
Eapert- Noc.iceptive ) 208 25 2
based Peripheral Neuropathic 2 91 2
Central Sensitization 8 1 86

are removed from the set of clustering ones not only because they may not
contain discriminative information about the pain classes, but also because
they may carry information that is not needed, as it is already included in
the set of selected ones.

We fit a LCA model on the 25 removed clinical criteria, selecting a model
with 4 latent classes with a BIC of -9355.407 and an agreement to the
experts’ classification of 0.51. By setting in advance the number of classes
equal to 3, we obtain a model with a BIC of -9470.552 and an ARI of 0.73.
The cross tabulation of the fitted classification and the expert-based one for
the 3-class model is presented in Table 4

The partition thus obtained is comparable to the partition estimated on
the selected clinical criteria. Therefore by taking into consideration the dis-
carded clinical criteria, it is still possible to get an acceptable classification
of patients into clusters that sufficiently agrees with the expert-based clas-
sification. Thus it seems reasonable to consider the fact that the removed
criteria are discarded mostly because they are redundant given the set of 11
selected clustering clinical criteria.

We check the association between each discarded clinical criterion and
each selected one by calculating the BIC difference in (5). The computed
differences range from -6.05 to 366.55 and the results are reported in Fig-
ure 4. Apart from Criterion 1 and Criterion 36, all the discarded criteria
present evidence of association with some of the selected criteria. It is also
worth to notice that Criterion 36 is the only discarded criterion in the Dean
and Raftery (2010) modeling framework with the independence assumption
between the proposed variable and the clustering ones.

6. Simulation study. In this section we evaluate the proposed vari-
able selection method through two different simulated data scenarios, also
discussing the robustness of our method and comparing the results with the
Dean and Raftery (2010) modelling framework. In both scenarios we sim-
ulate 100 datasets for different sample sizes. The scenarios are sketched in
Figure 5 and 6. The details of the simulation methodology are exposed in
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FiG 5. First simulated data scenario. F1G 6. Second simulated data scenario.

the Supplementary Material, Section 3.

6.1. First scenario. In the first simulation setting we consider 12 categor-
ical random variables. Figure 5 presents the scenario. Variables X1, X5, X3,
X4 are the clustering variables, distributed according to a mixture of G = 3
multinomial distributions with mixing proportions 0.3, 0.5 and 0.2. Variables
X5, X6, X7, Xg are redundant variables, each one generated dependent on
one of the clustering variables. The last four variables, Xg, X719, X711, X12 are
irrelevant variables not related to the previous ones. We consider three sam-
ple sizes: N = 500, 750, 1000. Figure 7 shows the proportion of times each
variable was declared a clustering variable by our variable selection method
and the variable selection with the independence assumption of Dean and
Raftery (2010). Both methods are able to discard the noisy variables. Only
the proposed method never selects almost any of the redundant variables,
while the Dean and Raftery (2010) method includes also the redundant vari-
ables in the clustering set, especially as the sample size increases. Figure 8
displays the boxplots of the ARI between the actual classification of the
data and the estimated classification from the LCA model fitted on: (i) all
the variables (all), (ii) the “true” clustering variables (clus), (iii) the vari-
ables selected by the method with the Dean and Raftery (2010) assumption
(sellnd), (iv) the proposed method (selSwap). As expected the inclusion of
the redundant variables in the clustering set leads to a poor performance
in terms of classification. Figure 9 presents the three most frequent sets of
variables declared as clustering variables by our variable selection procedure.
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The most selected set is the one composed by the “true” clustering variables,
and is the only one chosen for a sample size of 750. It is also worth noting
that the other selected subsets contain mainly clustering variables.

6.2. Second scenario. In the second simulation setting we consider 10 bi-
nary random variables. Figure 6 shows the scenario. Variables Xy, Xa, X3,
X4, X5 are the clustering variables, distributed according to a mixture of
G = 2 binomial distributions with mixing proportions equal to 0.3 and 0.7.
Variables Xg, X7, Xg, X9, X190 are redundant variables; each one of these
is generated in order to be dependent on more than one of the cluster-
ing variables and the other redundant variables. We consider three sample
sizes: N = 750, 1000, 1500. Figure 10 displays the proportion of times each
variable was declared a clustering variable. The figure shows that the se-
lection with the Dean and Raftery (2010) assumption almost never discard
any of the redundant variables. Furthermore with the proposed method the
probability of selecting a “true” clustering variable increases as N becomes
larger. Figure 11 presents the boxplots of the ARI between the actual clas-
sification of the data and the estimated classifications. The classification of
the observations based on the selected variables gives on average a better
performance in terms of ARI. However there are some situations in which
the proposed method does not converge to the selection of the correct set
of relevant variables. In Figure 12 the three most frequent sets declared as
clustering variables are shown. Again the set of “true” clustering variables
is the one selected more often.

7. Discussion and further work. In this paper we have presented an
improved variable selection method for LCA which overcomes the limita-
tions of the Dean and Raftery (2010) and White, Wyse and Murphy (2016)
methods, which lies in the independence assumption between the selected
clustering variables and the variable proposed for removal or inclusion. The
proposed method performs the selection of the most informative cluster-
ing variables, discarding those that are not informative and those that are
redundant. The ability of the method of discriminating among relevant vari-
ables and redundant or non-informative variables has been shown in two
simulated data settings.

The work was motivated by the nature of the LBP data examined. In
the data all the variables possess good discriminative power, since the clin-
ical criteria list was built by experts in order to best identify the traits of
the three classes of pain. The aim was to remove those criteria that are
not needed because they contain similar group information to that already
included in the selected clinical criteria. This resulted in a smaller set of cri-
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Fic 7. First simulation scenario: Proportions of times each variable has been declared
a clustering variable by the proposed variable selection method (circle) and the variable
selection method with the independence assumption of Dean and Raftery (2010) (square).
From top: sample sizes corresponding to 500, 750, 1000.
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Fia 8. First simulation scenario: Boxplots of the ARI between the actual classification of
the data and the estimated classification from the LCA model fitted on: (i) all the variables
(all), (i1) the “true” clustering variables (clus), (i) the variables selected by the method
with the Dean and Raftery (2010) assumption (sellnd), (iv) the proposed method (selSwap).
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Fi1c 9. First simulation scenario: Proportions of the three most frequent sets of variables
declared as relevant for clustering by the presented variable selection method. From top:
sample sizes corresponding to 500, 750, 1000.
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Fic 11. Second simulation scenario: Boxplots of the ARI between the actual classification
of the data and the estimated classification from the LCA model fitted on: (i) all the
variables (all), (i) the “true” clustering variables (clus), (iii) the variables selected by the
method with the Dean and Raftery (2010) assumption (sellnd), (iv) the proposed method

(selSwap).
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Fic 12. Second simulation scenario: Proportions of the three most frequent sets of vari-
ables declared as relevant for clustering. From top: sample sizes corresponding to 750,

1000, 1500.
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teria to be considered in order to derive a mechanisms-based classification of
pain. Further, the modeling of the data in an unsupervised manner allowed
for the validation of the mechanisms-based classification of pain because the
patients clustered into groups that closely correspond to this classification.

We built the variable selection method on the model comparison frame-
work pioneered by Law, Figueiredo and Jain (2004) and completely defined
in Raftery and Dean (2006). However, another framework for performing
variable selection is the regularization approach, although to the authors
knowledge it has not been explored yet in categorical data clustering. Fur-
thermore, for continuous data, Celeux et al. (2014) showed that the model
comparison approach is a better methodology in terms of classification and
variable selection accuracy than the recent regularization method of Witten
and Tibshirani (2010).

We considered a greedy swap-stepwise searching algorithm to perform the
variable selection. The idea of replacing a selected variable with one of the
discarded variables has already been considered. For example, Miller (2002)
in subset selection for regression presents a sequential replacement heuristic
where in sequence each of the selected predictors is replaced by one of the
non-selected variables. In a model-based clustering context, Tadesse, Sha
and Vannucci (2005) and Kim, Tadesse and Vannucci (2006) use a stochas-
tic search for Bayesian variable selection where the values of a latent variable
selection indicator are randomly swapped. Many other searching strategies
and metaheuristics could be used in order to conduct a robust search through
the solution space and avoid local optima. For example, genetic algorithms
(Goldberg, 1989) have already been applied for variable selection in cluster
analysis for market segmentation (Liu and Ong, 2008) and subset selection
for model-based clustering of continuous data (Scrucca, 2016). In a high di-
mensional problem with many variables, a forward algorithm and a headlong
search (Badsberg, 1992) can be considered, as has been done in Dean and
Raftery (2010). Although in this case the problem of a good initialization of
the clustering variables arises.

The variable selection method is developed in application to clinical crite-
ria selection. However it can be applied to any kind of multivariate categor-
ical data, although its use is limited to only unordered categorical variables.
A further extension in that direction is the incorporation of the capability
of dealing with ordinal data, which often arise from likert scale question-
naires. In this context it is worth mentioning the work of Arima (2015),
where a Bayesian approach is developed to reduce the items of a question-
naire used to evaluate patients’ quality of life, with the goal that the reduced
questionnaire will provide the same information of the complete question-
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naire. Another limitation of our methodology lies in the local independence
assumption of the LCA model. Much work has been done towards relax-
ing this assumption and allowing class-conditional dependencies between
the variables. Among the most recent, Gollini and Murphy (2014) present
a setting where it is assumed that the class distribution of the categorical
variables depends on a number of continuous latent variables, which allow to
model the dependences among the observed categorical variables. Another
approach is the one by Marbac, Biernacki and Vandewalle (2015), where,
conditional on a class, the variables are grouped into independent blocks,
each one following a specific distribution that takes into account the depen-
dency between variables. Including these frameworks in a variable selection
method for clustering categorical data could be promising and may be of
interest for further developments.

APPENDIX A: SWAP-STEPWISE SELECTION ALGORITHM

Here we give a more detailed description of the swap-stepwise variable
selection algorithm for the LCA model. At each stage of the algorithm a
greedy search over the model space is conducted and all the variables are
examined for being removed, added or swapped.

Note that in fitting the LCA model we perform multiple runs with random
starting values. Also in this case the aim is to allow the search for the global
maximum of the log-likelihood rather than a local one; then the model with
the greatest log-likelihood is retained. In the following, in the notation we
drop the conditioning on the model M for ease of reading.

Initialization. Set Gax, the maximum number of clusters to be consid-
ered for the data. Then when fitting the LCA models, a maximum number
G* < Gax of latent classes will be considered at each stage. Here G* is the
maximum number of latent classes which satisfies the identifiability condi-
tion in (3) for the set of variables currently taken into account in fitting the
LCA model.

Initialize the set of clustering variables and the set of non-clustering vari-
ables by assigning X¢ = X and X© = & respectively.

Removal step. Fit a LCA model on all the elements contained in the
current set of clustering variables XC, for 1 < G < G* and set

BIC, s = mélx{ BIC(X%|z) }.
Then for each variable XjC € X% compute

BICu0 aus(X[) = max{ BIC(X|z) } + BIC(X[[X]' € X)),
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where ng = X%\ X]-C; BIC(XQJ- z) is the BIC of the latent class model on
the current clustering variables after removing variable X jc , maximized over
1<G<GY BIC(XJC|X§% C ng) is the BIC of the multinomial logistic
regression model of variable ch given the set Xf of selected predictors ob-
tained using the algorithm outlined in the Supplementary Material, Section
2.

Subsequently for each variable in X¢ estimate the evidence of being a
relevant clustering one versus the evidence of not being useful for clustering
by computing the difference:

BICle(X ) BICcluS BICno clus(XjC)'

According to the values of BICq;g(X ]C ) rank the current clustering variables
in increasing order, generating the ordered set {X X(g), .. (Mc)}
with M the number of variables in the current set X . Then X ) is such
that
XG) = argxgleichICdiﬁ(Xf).
J

Set X =X g) and propose it for removal. Next if BIC4g(X*) < 0, remove

the proposed variable from X¢ and set X¢ = XC\X Pand X0 = XOuXx?;
otherwise leave the set of clustering variables unchanged. Go to the swapping
step 1.

Swapping step 1. If a variable has been removed in the removal step, set
_ yvC : _ vC
Kswap = X(Q), otherwise set Xgwap = X(l).
Swap each variable X,? e X9 with Xswap generating the sets Xkc =
XC\XswapUX,?. Fit a LCA model on the set of variables Xkc for1 <G <G*
and compute

BIC 1us(XY) = méxx{ BIC(X{ |z) } + BIC(Xawap Xp € X5),
where BIC(X¢|z) is the BIC of the latent class model on the current clus-
tering variables after swapping the variable Xqyap with the variable X O and
BIC( swapfxswap C X¢) is the BIC of the multinomial logistic regression of
variable Xqyap given the selected predictors XE
Then calculate

swap*

BICy, clus(XkO) = mGaX{ BIC(XC|Z) } + BIC(XkO’XkR - XC),

where BIC(X?|XE C X¢) is the BIC of the multinomial logistic regression
model of variable XkO given the set XkR of relevant predictors in X¢.
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Subsequently for each variable in X© estimate the evidence of carrying
more clustering information than Xgyap versus the evidence of containing
less clustering information by computing the difference

BICqin(X}) = BICaus(X{') — BICuo cius(XF),
and propose for swapping with Xgyap the variable X P such that

XP = arg max BICdiﬁ“(XkO).
XPexo

Then if BICqis(X*) > 0, replace Xswap by the proposed variable and set
X¢ =X\ Xswap U XP and X0 = X9\ XPu Xswap; otherwise leave the
set of clustering variables unchanged. Go to the inclusion step.

Inclusion step. For each variable X ko € X9 compute

BIC 1us(XY) = mgx{ BIC(X$,|z) },

where ng = X%uU Xx9; BIC(ng\z) is the BIC of the latent class model
on the current clustering variables after adding variable X kO .

Then compute

BICy0 cus(XY) = m(&;mx{ BIC(X®|z) } + BIC(X | X/ C XO).

Subsequently for each variable X,? estimate the evidence of being a cluster-
ing variable versus the evidence of not being useful for clustering by com-
puting the difference.

BICqig(XY) = BICus(XY) — BICy, clus(X9).

According to the values of BIC4g(X ,? ) rank the current non-clustering vari-
ables in decreasing order, generating the ordered set {X(%, X(O2), e X(C;V[O)}7

with Mo the number of variables in the current set X©. Then X (01) is such
that

X(Ol) = arg IglaXOBICdiff(XjO).

X7eX

Set X* = X(Ol) and propose it for inclusion in the clustering set. Next if

BICgig(XT) > 0, add the proposed variable to X and set X¢ = X% U
XP and X9 = X© \ XP: otherwise leave the set of clustering variables
unchanged. Go to the swapping step 2.
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Swapping step 2. If a variable has been added in the inclusion step, set

Xswap = X(O2), otherwise set Xqwap = X(Ol).
Swap each variable XjC € X with Xswap generating the sets X]C =

XU Kswap \ ch. Compute
BICcs(X[) = InGaX{ BIC(X%|z) } + BIC(Xgwap| X&ap € XO).

Then fit a LCA model on the set of variables X]C for1 < G < G* and
calculate

BICno clus(XjC) = IHC?X{ BIC(X]C|Z) } + BIC(XJC‘X;% < XJC)’

where BIC(XJC|Z) is the BIC of the latent class model on the current clus-
tering variables after swapping the variable Xqyap with the variable X jC , and
BIC(XJ-C|X§% C XJC) is the BIC of the multinomial logistic regression model
of variable ch given the set Xf of relevant predictors in XJC

Subsequently for each variable in X estimate the evidence of carrying
more clustering information than Xgyap versus the evidence of containing
less clustering information by computing the difference

BICqifi(X{) = BICe1s(X{) — BICuo cus (X ),
and propose for swapping with Xgyap the variable X P such that

XP = arg min BICqg(X%).
ngOGXC air(X5)

Then if BICg4is(XT) < 0, replace Xgyap by the proposed variable and set
X¢ =X\ Xswap U XP and X9 = X9\ XPu Xswap; otherwise leave the
set of clustering variables unchanged.

The algorithm starts with two successive removal steps, then it iterates
alternating between removal, swapping, inclusion, swapping steps. It stops
when all the moves are rejected since no further change can be produced on
the set of clustering variables. In the swapping steps we do not look at all
possible pairs of variables because it could be too computational demanding.
Instead we consider the variable with the largest evidence of being removed
or added, because it is the one most likely to be swapped.
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SUPPLEMENTARY MATERIAL

Supplementary information
(INSERT URL HERE). Further considerations regarding the “Don’t know”
entries. Description of the backward-stepwise selection algorithm for the
multinomial logistc regression. Detailed description of the simulated data
experiments. Complete list of clinical criteria. Notation page for reference.
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