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Abstract: 

Bone morphogenetic protein-7 (BMP-7) counteracts pro-fibrotic effects of TGFβ1 in cultured renal 

cells and protects from fibrosis in acute and chronic renal injury models. Using the unilateral ureteral 

obstruction (UUO) model of chronic renal fibrosis, we investigated the effect of exogenous-rhBMP-7 

on pro-fibrotic signaling pathways mediated by TGFβ1 and hypoxia. Mice undergoing UUO were 

treated with vehicle or rhBMP-7 (300μg/kg i.p.) every other day for eight days and kidneys analysed 

for markers of fibrosis and SMAD, MAPK, and PI3K signaling. In the kidney, collecting duct and 

tubular epithelial cells respond to BMP-7 via activation of SMAD1/5/8. Phosphorylation of 

SMAD1/5/8 was reduced in UUO kidneys from vehicle-treated animals yet maintained in UUO 

kidneys from BMP-7-treated animals, confirming renal bioactivity of exogenous rhBMP-7. BMP-7 

inhibited Collagen Iα1 and Collagen IIIα1 gene expression and Collagen I protein accumulation, while 

increasing expression of Collagen IVα1 in UUO kidneys. Activation of SMAD2, SMAD3, ERK, p38 and 

PI3K / Akt signaling occurred during fibrogenesis and BMP-7 significantly attenuated SMAD3 and Akt 

signaling in vivo. Analysis of renal collecting duct (mIMCD) and tubular epithelial (HK-2) cells 

stimulated with TGFβ1 or  hypoxia (1% oxygen) to activate Akt provided further evidence that BMP-7 

specifically inhibited PI3K / Akt signaling. PTEN is a negative regulator of PI3K and BMP-7 increased 

PTEN expression in vivo and in vitro. These data demonstrate an important mechanism by which 

BMP-7 orchestrates renal protection through Akt inhibition and highlights Akt inhibitors as anti-

fibrotic therapeutics. 
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Introduction: 

Bone morphogenetic protein -7 (BMP-7 , or osteogenic protein (OP)-1) is a 35kDa member of the 

transforming growth factor beta (TGFβ) family of secreted extracellular proteins. In addition to its 

role in regulating bone and cartilage formation, BMP-7 is essential for  renal morphogenesis, 

stimulating condensation of the metanephric mesenchyme around the ureteric bud, leading to the 

formation of collecting duct epithelia through promotion of mesenchymal to epithelial transition 

(MET). 1-4 BMP-7 null mice die soon after birth due to renal hypoplasia associated with reduced 

ureteric bud branching, loss of metanephric mesenchyme, cessation of nephrogenesis and a marked 

reduction of glomerular density. 2, 5 BMP-7 expression is retained in adult kidneys and is thought to 

be critical for maintaining tubular epithelial integrity. 6-13 During renal disease, interaction of BMP-7 

with distinct serine / threonine kinase receptors is prevented by binding to endogenously generated 

antagonists such as gremlin, noggin and USAG-1 (Uterine sensitization-associated gene -1, also 

referred to as Sclerostin domain containing -1 , Sostdc1), 13  facilitating damage to the tubular 

epithelium. Several studies have reported that introduction of exogenous recombinant BMP-7 or 

reactivation of endogenous BMP-7 signaling through peptide mediated receptor activation can 

prevent progression of renal disease. 7, 8, 10, 14-17 

BMP-7 is reno-protective in acute and chronic renal injury models (reviewed in 18) including ischemia 

reperfusion injury (IRI), 7, 14 unilateral ureteral obstruction (UUO), 8, 19-21 5/6 nephrectomy, 3, 22 lupus 

nephritis, nephrotoxic serum nephritis (NTN), Collagen type 4α3-null 'Alport' mice, 23 and STZ-

induced diabetic nephropathy. 24, 25 BMP-7 is efficacious  in other fibrotic diseases including cardiac, 

26  liver, 27, 28 corneal, 29 and silica induced pulmonary fibrosis. 30 Preservation of renal function, 

normalisation of serum creatinine, reduction of extracellular matrix accumulation, and reduction in 

pro-inflammatory mediators have been demonstrated. 7, 8, 14, 19, 23, 31  However, the molecular 

mechanisms involved in this protection have not been fully defined. In this report, we describe the 

effect of BMP-7 on key signaling pathways underlying fibrogenesis. 
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TGFβ1 is the prototypic pro-sclerotic cytokine which is aberrantly up-regulated during fibrotic 

disease. It is responsible for the induction and accumulation of interstitial matrix, which is 

considered the pathological hallmark of all kidney injuries regardless of the aetiology. 32 TGFβ1 

promotes pro-fibrotic responses of renal epithelia and pericytes and activates resident fibroblasts. 33 

TGFβ1 binds type I and type II serine / threonine receptors on the plasma membrane activating 

receptor-associated SMAD  proteins (R-SMADs),  predominantly SMAD2 and SMAD3. 

Phosphorylated R-SMADs associate with co-SMAD-4 and bind specific SMAD binding elements in 

gene promoters. SMAD3 mediated signaling plays a central role in renal fibrogenesis 34-37 and SMAD3 

knockout mice are protected against STZ-induced diabetic glomerulopathy, 38 and UUO-induced 

tubulointerstitial fibrosis. 39 In addition, TGFβ1 signals through non-SMAD proteins to effect a variety 

of cellular changes, including the mitogen activated protein kinases (MAPK) p38 and ERK, and 

phosphoinositide -3 kinase (PI3K). 10, 40, 41 These pathways may further enhance or oppose SMAD 

signaling in a context dependent manner. 42, 43 

BMP-7 is predominantly expressed in cortical and corticomedullary proximal tubular cells, distal 

convoluted tubules, collecting duct epithelia and glomerular podocytes, 6, 7, 10, 13, 14, 25, 31, 44, 45 and 

signals through three type I serine / threonine receptors (termed activin-like kinase (Alk) receptors;  

Alk 3 (BMPR-1A),  Alk6 (BMPR-1B) and Alk2 (Type 1A activin receptor) and one type II receptor 

(BMPRII) to phosphorylate SMAD1, SMAD5, and SMAD8. 10, 17, 46-48 SMADs 1, 5, and 8 also bind 

SMAD4 and translocate to the nucleus to activate gene transcription. Alk3 is predominantly 

expressed in renal tubular epithelial cells, with Alk6 expressed in osteoblasts 16 and Alk2 in 

cartilage.10, 31 The importance of Alk3 in mediating the protective effects of renal BMP-7 signaling 

was borne out by the enhanced pro-fibrotic effects of TGFβ1 observed upon deletion of Alk3 in the 

tubular epithelium. 16 

The principle drivers of injury in UUO include TGFβ1 and hypoxia. 49 In this report, we describe the 

effect of BMP-7 on hypoxia- and TGFβ1-induced signaling pathways in the unilateral ureteral 
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obstruction (UUO) model of renal fibrosis. We report that BMP-7 inhibits activation of PI3K signaling 

via Akt in addition to inhibition of SMAD3 in vivo. We demonstrate that BMP-7 specifically inhibits 

TGFβ1- and hypoxia-induced PI3K activity in renal collecting duct and tubular epithelial cells via up-

regulation of the PI3K inhibitor phosphatase and tensin homolog (PTEN). 

 

Results: 

BMP-7 preserves pSMAD1/5/8 activity in fibrotic kidneys 

Phosphorylation of SMAD1/5/8 was analysed in contralateral (CTL) and obstructed (UUO) kidneys to 

determine whether exogenous recombinant human BMP-7 (rhBMP-7) administered via i.p. injection 

could activate BMP-7 signaling in renal tissue. In vehicle treated animals, pSMAD1/5/8 was detected 

in the contralateral kidney (veh-CTL)  but lost during development of fibrosis in the corresponding 

obstructed kidneys  (veh-UUO) (P<0.001, Figure 1A and Supplemental Table 1). In contrast, in 

animals treated with rhBMP-7, pSMAD1/5/8 was detected in the obstructed kidneys (BMP-7-UUO) 

suggesting maintenance of BMP-7 responsive pathways, confirming functional activity of 

exogenously applied rhBMP-7 in the kidney (Figure 1A).   

As a further readout for activation of BMP-7 pathways, expression of the BMP-7-target gene Id-1 

was analysed. In vehicle-UUO kidneys, Id-1 mRNA was significantly down-regulated (P<0.01, Figure 

1A and Supplemental Table 1), mirroring loss of SMAD1/5/8 activity in these kidneys,  however there 

was no significant decrease of Id-1 in BMP-7-UUO kidneys confirming preservation of BMP-7 

regulated pathways (Figure 1B). 

Expression of Bmp-7 mRNA was significantly down-regulated in vehicle-UUO kidneys compared with 

vehicle-CTL kidneys (78.4% reduction, P<0.001) while BMP-7-UUO kidneys maintained Bmp-7 mRNA 

expression (56.8% reduction, P<0.001) (Figure 1B). BMP-7 antagonist Usag1 mRNA  was significantly 

increased in vehicle-UUO (P<0.05), consistent with loss of BMP-7 signaling in veh-UUO, whereas 
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Usag1 mRNA was not increased in BMP-7-UUO kidneys consistent with maintenance of BMP-7 

signaling. BMP-7 antagonist Grem1 mRNA was not changed in response to UUO but was significantly 

increased in BMP-7-CTL kidneys (P<0.05 compared to either veh-CTL or BMP7-UUO, Figure 1B). 

 

Figure 1: Exogenous BMP-7 activates SMAD1/5/8 signaling in fibrotic kidneys in vivo. A Western 

blot of 20µg whole cell lysate from vehicle (veh) or BMP-7 treated contralateral (CTL, C) and 8d-post 

obstructed (UUO , U) kidneys probed for phosphorylated SMAD1/5/8 and GAPDH, n= 5 vehicle and 

n=4 BMP-7 groups, representative blots shown. Graph shows densitometric analysis of pSMAD1/5/8 

normalised to ponceau. B Quantitative PCR analysis of Id-1, Bmp-7, Usag1, and Gremlin 1 (Grem1) 

gene expression normalised to 18S mRNA levels. Graphs show fold-change in mRNA expression with 

Veh-CTL arbitrarily set to 1, n=5 in vehicle and BMP-7 groups, statistical analysis performed using 

One-way ANOVA and Bonferroni's multiple comparison test, *P<0.05, **P<0.001. 

 

BMP-7 reduces extracellular collagen, but not α-SMA, accumulation in vivo 

The protective effect of BMP-7 on the development of fibrosis in vivo was investigated by 

quantifying extracellular matrix (ECM) accumulation in contralateral and obstructed kidneys from 
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vehicle- or BMP-7-treated mice. A significant increase in sirius red staining of newly deposited 

collagen fibrils was observed in vehicle-UUO kidneys compared with vehicle-CTL kidneys (P<0.01) , in 

contrast there was no detectable increase in sirius red-stained collagen in BMP-7-UUO kidneys 

(P>0.05, Figure 2A & B and Supplemental Table 1) confirming reduced ECM accumulation. 

Despite reducing collagen accumulation, BMP-7 had no effect on UUO-induced α-SMA protein 

(P<0.05 in veh-UUO and BMP-7 UUO compared to respective contralateral kidneys, Figure 2A&B) or 

mRNA expression (P<0.001, in veh-UUO and BMP-7-UUO compared to respective contralateral 

kidneys, Figure 2C and Supplemental Table 1). Additionally, BMP-7 had no effect on Fsp-1 mRNA 

expression as a marker of interstitial injury in fibrotic kidneys (P<0.001 in veh-UUO and BMP-7-UUO 

compared to respective contralateral kidneys, Figure 2C and Supplemental Table 1). 

 

Figure 2: Exogenous BMP-7 reduces renal fibrosis and collagen deposition, but not fibroblast 

activation, in vivo. A Extracellular matrix deposition in contralateral (CTL, C) and 8d-post obstructed 

(UUO, U) kidneys, from mice treated with  vehicle (Veh) or BMP-7 as described in Methods, detected 

by Sirius Red or immunohistochemical staining for α-SMA, magnification x20, scale bar 100µm. Neg: 

negative control with sections processed in absence of primary antibody. B Morphometric analysis 
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of positive IHC stained area (mm2). C Quantitative PCR analysis of Fsp-1 and α-Sma mRNA 

normalised to 18S mRNA. n=5 in vehicle and BMP-7 groups. Statistical analysis performed using One-

way ANOVA with Bonferroni's multiple comparison post-test,*P<0.05, **P<0.001. 

 

BMP-7 reduces renal fibrosis in vivo via reduced Collagen I and III and enhanced Collagen IV 

To determine the specific collagen types that were altered by BMP-7 treatment, Collagen Iα1, IIIα1, 

and IVα1 proteins were assessed by immunohistochemistry (Figure 3A and B). Collagen Iα1 was 

significantly increased in veh-UUO kidneys (P<0.01) whereas there was no significant increase 

observed in BMP-7-UUO kidneys (P>0.05, Figure 3A and B and Supplemental Table 1).  Similarly, Col 

Iα1 mRNA was significantly increased in veh-UUO compared to veh-CTL kidneys (P<0.001, Figure 3C). 

While there was a significant increase in Col Iα1 mRNA between BMP-7-CTL and BMP-7-UUO kidneys 

(P<0.001, Figure 2C), Col Iα1 gene expression was significantly reduced in both contralateral and 

obstructed kidneys of BMP-7-treated animals compared with vehicle treated animals (P<0.001).  

Collagen IIIα1 protein was significantly increased in BMP-7-UUO kidneys compared to BMP-7-CTL 

kidneys (P<0.01), and unlike Collagen Iα1,  there was no significant difference in the quantity of 

Collagen IIIα1 protein between veh-UUO kidneys and BMP-7-UUO (P>0.05, Figure 3A & B and 

Supplemental Table 1). However, induction of Collagen IIIα1 mRNA in UUO kidneys was significantly 

impaired (P=0.002) in animals treated with BMP-7 (P<0.001in veh-UUO  and BMP-7 UUO versus 

respective CTL kidneys, Figure 3C). 

Collagen IVα1 protein was not significantly increased in UUO kidneys compared with CTL kidneys of 

either group (P>0.05, Figure 2A & B and Supplemental Table 1). However, Col IVα1 mRNA was 

significantly increased in BMP-7-UUO kidneys compared with vehicle-UUO kidneys (P<0.001, Figure 

3C). 
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Figure 3: Exogenous BMP-7 reduces Collagen I and III and enhances Collagen IV expression in vivo. 

A Extracellular matrix deposition in contralateral (CTL, C) and 8d-post obstructed (UUO, U) kidneys, 

from mice treated with  vehicle (Veh) or BMP-7 as described in Methods, detected by 

immunohistochemical staining for Col Iα1, IIIα1, and IVα1, magnification x20, scale bar 100µm. Neg: 

negative control with sections processed in absence of primary antibody. B Morphometric analysis 

of positive IHC stained area (mm2). C Quantitative PCR analysis of Col Iα1, Col IIIα1, and Col IVα1 

mRNA normalised to 18S mRNA. n=5 in vehicle and BMP-7 groups. Statistical analysis performed 

using One-way ANOVA with Bonferroni's multiple comparison post-test,*P<0.05, **P<0.001. 

 

BMP-7 inhibits phosphorylation of SMAD3 but not SMAD2 in vivo 

To determine the effects of BMP-7 on TGFβ1-mediated signaling pathways in vivo, activation of 

canonical signaling, via SMAD2 and SMAD3 (Figure 4 and Supplemental Table 1), and non-canonical 
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signaling, via ERK, p38 and Akt, was analysed (Figure 5 and Supplemental Table 1). While BMP-7 had 

no effect on the activation and phosphorylation of SMAD2 in UUO kidneys, phosphorylation of 

SMAD3 was completely ablated  in both contralateral and UUO kidneys of BMP-7 treated animals 

(P<0.001, Figure 4). This is the first report of inhibition of SMAD3 by BMP-7 in whole kidneys in vivo 

and corroborates the reported BMP-7-inhibition of SMAD3 in mesangial cells in vitro. 43 

 

Figure 4: Exogenous BMP-7 inhibits SMAD3 activation in diseased kidneys but does not alter 

SMAD2 signaling in vivo. Western blot of 20µg whole cell lysate from vehicle or BMP-7 treated 

contralateral (CTL, C) or corresponding 8d-post UUO (U) kidneys probed for total and 

phosphorylated SMAD2 and SMAD3. Graphs show densitometric analysis of each phosphorylated 

protein normalised to its respective total isoform or GADPH. n=5  in vehicle and BMP-7 groups, 

representative blots shown, statistical analysis performed using One-way ANOVA and Bonferroni's 

multiple comparison test, *P<0.05, **P<0.001. 

 

BMP-7 inhibits phosphorylation of Akt but not ERK or p38 MAPK in vivo 

Renal fibrosis in vivo was associated with activation of PI3K signaling as determined by 

phosphorylation of Akt on Serine 473 and Threonine 308. Activation of PI3K signaling was significantly 

impaired in BMP-7-UUO kidneys compared with vehicle-UUO kidneys (P<0.001, Figure 5A and 

Supplemental Table 1). To determine whether this inhibition had effects further downstream of Akt, 
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the phosphorylation status of the Akt target GSK3β was investigated. UUO significantly increased the 

phosphorylation, and thus inactivation, of GSK3β (P<0.05 in vehicle kidneys) and this was 

significantly reduced in BMP-7 treated UUO kidneys (P<0.01, Figure 5A).  

In contrast, BMP-7 did not alter the activation status of ERK or p38,  both of which were significantly 

up-regulated in response to UUO (pERK: P<0.001  in vehicle kidneys and P<0.01 in BMP-7 kidneys 

compared to respective contralateral kidneys, p38: P<0.01 in BMP7-UUO kidneys versus BMP7-CTL, 

Figure 5B and Supplemental Table 1). Our findings suggest that the protective role of BMP-7 in vivo 

is mediated via inhibition of both SMAD3 and Akt signaling.  

 

Figure 5: Exogenous BMP-7 inhibits phosphorylation of Akt and GSK3β during fibrosis but does not 

alter ERK or p38 MAPK signaling in vivo. Western blot of 20µg whole cell lysate from vehicle or 

BMP-7 treated contralateral (CTL, C) or corresponding 8d-post UUO kidneys (U) probed for total and 

phosphorylated A Akt and GSK3β , and B ERK and p38 MAPK. Graphs show densitometric analysis of 

each phosphorylated protein normalised to its respective total isoform. n=5  in vehicle and BMP-7 

groups, representative blots shown, statistical analysis performed using One-way ANOVA and 

Bonferroni's multiple comparison test, *P<0.05, **P<0.001. 
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BMP-7  inhibits TGFβ1- and hypoxia-induced-Akt signaling in renal epithelia 

To investigate the effects of BMP-7 on Akt signaling in renal epithelial cells in culture, collecting duct 

(mIMCD) and proximal tubular (HK-2) cells were treated with 5-100ng/ml BMP-7. BMP-7 inhibited 

phosphorylation of Akt-Ser473 and Akt-Thr308 in a dose dependent manner in mIMCD and induced 

expression of E-cadherin (Supplemental Figure 1A). HK-2 tubular epithelial cells were stimulated 

with hypoxia (1% O2) to activate Akt signaling, BMP-7 inhibited phosphorylation of Akt-Ser473 in a 

dose dependent manner but not Akt-Thr308 (Supplemental Figure 1B). Interestingly, in both cell types 

BMP-7 dose-dependently increased phosphorylation of SMAD2 (Supplemental Figure 1A&B). 

 

Supplemental Figure 1: BMP-7 inhibits Akt activation in renal collecting duct (mIMCD) and tubular 

epithelia (HK-2) in a dose dependent manner. A Western blot of 20µg whole cell lysate from 

mIMCD cells treated with BMP-7 (0-100ng/ml for 150 minutes) and probed for phosphorylated and 

total Akt , SMAD2, SMAD 1/5/8 and E-Cadherin, GAPDH was analysed as a loading control. B 

Western blot of 20µg whole cell lysate from HK-2 cells pre-treated with rhBMP-7 (0-100ng/ml for 30 

minutes) followed by 1% O2 for 60 minutes. Blots were probed for phosphorylated and total forms of 

Akt and SMAD2. The experiments were repeated twice, representative blots shown. 
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To determine the effects of BMP-7 on TGFβ1-induced signaling in vitro, collecting duct epithelia 

(mIMCD) were co-stimulated with 100ng/ml BMP-7 and 5ng/ml TGFβ1. BMP-7 inhibited TGFβ1-

induced phosphorylation of Akt at Ser473 but not at Thr308 (P<0. 05, Figure 6A and Supplemental 

Table 1).  TGFβ1 induced phopshorylation of GSK3β (P<0.05, Figure 6A) and reduced E-cadherin 

protein (P<0.01, Figure 6A), although BMP-7 did not alter the phosphorylation status of GSK3β it 

restored E-cadherin protein expression (P<0.05 versus TGFβ, Figure 6A). BMP-7 had no effect on 

TGFβ1-induced phosphorylation of ERK and p38 (Figure 6B). 

 

Figure 6: BMP-7 inhibits TGFβ1-induced Akt activation and restores E-cadherin expression in 

collecting duct epithelial cells. Western blot of 20µg whole cell lysate from mIMCDs pre-treated 

with vehicle or rhBMP-7  (100ng/ml for 30 minutes) followed by vehicle or TGFβ1 (5ng/ml  for 60 

minutes) probed for  phosphorylated and total isoforms of A Akt and GSK3β, and E-cadherin, and B 

ERK and p-38 MAPK. GAPDH was analysed as a loading control. Graphs show densitometric analysis, 

V: Vehicle, B: BMP-7, T: TGFβ1, BT: BMP-7 & TGFβ1. Treatments were performed in triplicate and 

experiments repeated three times, statistical significance was determined by one-way ANOVA and 

Bonferroni's multiple comparison test, *P<0.05, **P<0.001. 
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BMP-7 inhibits Akt signaling via up-regulation of PTEN 

Activation of PI3K signaling involves conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-triphosphate ( PIP3) enabling subsequent phosphorylation of Akt. 

Phosphatase and tensin homologue (PTEN) negatively regulates PI3K signaling by converting PIP3 

back to PIP2. 50 In UUO kidneys, gene expression of Pten was significantly reduced in response to 

UUO in vehicle treated animals (P<0.05, Figure 7A) consistent with the observed phosphorylation of 

Akt (Figure 5A). However, the opposite was observed in UUO-kidneys from BMP-7-treated animals 

where Pten expression was significantly up-regulated compared to contralateral kidneys (P<0.05, 

Figure 7A), consistent with the observed dephosphorylation of Akt in BMP-7-UUO kidneys (Figure 

5A). 

Similarly in collecting duct cells, BMP-7 induced expression of Pten (P<0.05, Figure 7B). Interestingly, 

when collecting duct epithelia were co-stimulated with BMP-7 and TGFβ1 expression of Pten was 

further amplified (P<0.05 versus individual treatments, Figure 7B). This synergistic effect of BMP-7 

and TGFβ1 on Pten expression correlates with the reduction of Akt phosphorylation observed in the 

BMP-7-UUO kidneys (Figure 5A).  

 

Figure 7: BMP-7 increases expression of Akt negative regulator Pten in vivo and in vitro. 

Quantitative PCR analysis of Pten mRNA normalised to 18S expression in A contralateral (C) and 

obstructed (U) kidneys from vehicle-treated (Veh) and BMP-7-treated animals, n=5 for vehicle and 
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BMP-7 groups, B collecting duct epithelial cells treated with vehicle (V), BMP-7 (B, 100ng/ml), TGFβ1 

(T, 5ng/ml), or combined BMP-7 and TGFβ1 (BT). Treatments were performed in triplicate and the 

experiments repeated three times. Statistical analysis was determined by one-way ANOVA and 

Bonferroni's multiple comparison test, *P<0.05, **P<0.001. 

 

Discussion:  

A protective role for BMP-7 has been reported in a number of renal injury models however, the 

molecular mechanisms by which BMP-7 exerts this protection have focussed primarily in vitro on the 

effect of BMP-7 on TGFβ1-induced extracellular matrix (ECM) accumulation, 10, 51 and E-cadherin 

expression in cultured renal cells 11, and genomic methylation. 52-57 Here we describe specific effects 

of BMP-7 on TGFβ1-signaling and show  in vivo and in vitro that BMP-7 not only inhibits activation of 

SMAD3  but also inhibits Akt resulting in loss of pro-fibrotic signals and protection from fibrogenesis. 

Exogenous rhBMP-7 activated SMAD1/5/8 signaling within the obstructed kidney, maintaining the 

expression of the BMP-7 target gene Id1 (Figure 1). Gene expression of Bmp-7  was significantly 

down-regulated in response to injury in vehicle treated animals, similar to reports in human renal 

disease 58-60, however rhBMP-7 induced a significant induction of Bmp-7 mRNA expression 

suggesting that BMP-7 can regulate its own expression in a positive feed forward loop (Figure 1B). 

BMP-7 prevented the up-regulation of Usag1 expression observed in veh-UUO kidneys (Figure 1B) 

suggesting that BMP-7 can regulate it's bioactivity by inhibiting expression of its antagonists. 

Additionally, in BMP-7-CTL kidneys Grem1 expression was significantly up-regulated, perhaps in an 

attempt to regulate the bioactivity of exogenous BMP-7 under physiologic conditions. This induction 

of Grem1 was not observed in BMP-7-UUO kidneys suggesting the involvement of active BMP-7 

under pathophysiologic conditions as a protective mechanism against fibrosis. 
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Remarkably, BMP-7 abrogated fibrosis and ECM deposition despite an inability to alter myofibroblast 

activation. Similar induction of α-SMA, the hallmark marker of the myofibroblast, was observed in 

fibrotic kidneys from both vehicle- and BMP7-treated animals suggesting that BMP-7 works 

downstream of myofibroblast activation to block ECM production (Figure 2). Myofibroblast numbers 

are increased during renal fibrosis and they are considered to contribute to collagen and ECM 

production in fibrotic diseases. 61 Interestingly, Takeji et al reported that α-SMA null mice had 

significantly worse renal disease, in two separate in vivo models, than mice wild-type for α-SMA 

expression, concluding that myofibroblasts play a role in suppressing renal fibrosis. Given their 

findings, it is perhaps not surprising that the beneficial effects of BMP-7 require that myofibroblast 

activation and α-SMA expression remains intact. 62 

Induction of Collagen Iα1 and IIIα1 gene expression during fibrosis was abrogated by BMP-7-

treatment and a significant reduction of Collagen Iα1 protein accumulation was observed in BMP-7-

UUO kidneys (Figure 3). Collagen accumulation during fibrosis is dependent not only on increased 

synthesis of proteins but also on decreased collagen turn-over. BMP-7 increases collagen 

degradation through up-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 23 and down-

regulation of plasminogen activator inhibitor-1 (PAI-1). 51 We propose that the reduced type I 

collagen accumulation observed in BMP-7-UUO kidneys is likely due not only to reduced production 

but enhanced degradation of ECM molecules. TGFβ1-induced Collagen I and III expression is 

mediated via activation of SMAD3, 50, 63 therefore inhibition of SMAD3 activity by BMP-7 in vivo 

(Figure 4) may explain the reduced gene expression of Col Iα1 and IIIα1 observed in BMP-7-UUO 

kidneys (Figure 3). Our findings support those of Wang and Hirschberg  in cultured renal mesangial 

cells whereby a BMP-7-SMAD5-dependent up-regulation of SMAD6 inhibited nuclear accumulation 

of phospho-SMAD3 leading to loss of TGFβ1-induced Col  Iα1  gene expression. 43, 64 Our results 

highlight that BMP-7 inhibits SMAD3 mediated TGFβ1 signaling in vivo and expands the repertoire of 
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cell responses from the previously reported mesangial cells to collecting duct  (Figure 6) and tubular 

epithelial cells (Supplemental Figure 1). 

In contrast to the inhibitory effects of BMP-7 on SMAD3, BMP-7 had no effect on ERK and p38 MAPK 

signaling pathways in vivo or  in cultured epithelia, consistent with the findings of Wang and 

Hirschberg in mesangial cells. 43 However, BMP-7 significantly reduced phosphorylation of PI3K, Akt 

and GSK3β. In veh-UUO kidneys, both phosphorylated Akt-Ser 473 and -Thr308 were increased, 

however both phosphorylation events were inhibited in the presence of BMP-7 (Figure 5). In vitro, 

BMP-7 inhibited TGFβ1-induced phosphorylation of Akt-Ser473 in collecting duct epithelial cells 

(Figure 6) and hypoxia-induced phosphorylation of Akt-Ser473 in proximal tubular epithelial cells 

(Supplemental Figure 1). However, only the initial phosphorylation event at Ser473 was successfully 

inhibited by BMP-7 whereas phopsho-Akt -Thr308 was still detected in cultured cells in vitro. This may 

be due to increased secretion of endogenous TGFβ1 or other cytokines that may overcome BMP-7's 

ability to  inhibit PI3K signaling in vitro.  

Under physiologic conditions, active GSK3β phosphorylates β-catenin causing its ubiquitination and 

degradation. In response to renal injury in veh-UUO kidneys (Figure 5) or to TGFβ1 (Figure 6), 

phosphorylation and inactivation of GSK3β results in stabilisation and nuclear translocation of β-

catenin inducing the expression of its target gene Snai1.  65, 66 Snail is an E-cadherin E-box 

transcriptional repressor which decreases E-cadherin protein as part of the epithelial injury process. 

67 Inactivation of GSK3β, observed during renal injury, inhibits interaction between GSK3β and Snail, 

resulting in nuclear translocation of Snail and repression of E-cadherin transcription 65, 66. In the 

presence of BMP-7, GSK3β  remains active and phosphorylates Snail promoting ubiquitin-mediated 

degradation of Snail 65 and stabilisation of E-cadherin expression. Our results in collecting duct cells 

confirmed this regulation, where TGFβ1 increased phosphorylation of GSK-3β and reduced 

expression of E-cadherin protein (Figure 6). Furthermore addition of BMP-7 reversed the TGFβ1 

down-regulation and restored E-cadherin protein expression. Our findings further delineate the 
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mechanism by which BMP-7 impacts cellular signaling pathways to orchestrate  protection from 

fibrogenesis. 

PTEN dephosphorylates PIP3 to PIP2 antagonizing PI3K signaling. Loss of PTEN leads to accumulation 

of PIP3 and activation of Akt. Conversely, over-expression of PTEN leads to accumulation of PIP2 and 

subsequent inhibition of PI3K signaling and Akt phosphorylation. A recent publication by 

Samarakoon et al reported that expression of PTEN was lost in several models of renal injury 

including UUO, aristocholic acid induced nephropathy (AAN), and streptozotocin-mediated injury.68 

We now report that BMP-7 can prevent the loss of PTEN during UUO-induced fibrosis ensuring that 

activation of Akt does not occur (Figure 7). 

Akt has been implicated in renal fibrogenesis previously, however this is the first report of BMP-7 as 

an inhibitor of Akt signaling. Crosstalk between Akt and SMAD signaling pathways has been reported 

by a number of independent studies,  Kattla et al reported that while TGFβ1-activation of PI3K and 

SMAD3 occurred independently, inhibition of Akt, by LY294002 or Akt inhibitor II or PTEN over-

expression, abrogated TGFβ1-induced pro-fibrotic responses in renal epithelial cells. 69 Similarly Bakin 

et al reported that Akt was required for TGFβ1-induced EMT of mammary epithelial cells. 70  Finer et 

al reported that Akt mediated pro-fibrotic changes in a mouse adriamycin nephropathy model. By 

treating mice with a specific inhibitor of PI3K they observed reduced phospho-Akt-Ser473 in glomeruli 

and tubular epithelial cells which abrogated fibrosis and proteinuria in response to adriamycin. 71 We 

previously reported that the protective effect of Lipoxin A4 in a model of rapidly progressing renal 

fibrosis was associated with reduced activation of Akt and reduced Collagen I accumulation in the 

obstructed kidney. 72 Runyan et al reported that inhibition of PI3K, by LY294002 or over-expression 

of a dominant negative kinase deficient Akt construct, abrogated TGFβ1-induced collagen I 

expression via reduced SMAD3 activity. 50 Connective tissue growth factor (CTGF) mediates the pro-

fibrotic effects of TGFβ1 through interaction with β3-integrins,  resulting in activation  of Akt and 

subsequent induction of fibronectin in primary human mesangial cells. 73 BMP-7 binds and inhibits 
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CTGF 74 highlighting a further potential mechanism through which BMP-7 may inhibit Akt activation 

to prevent fibrosis. 

Our data shows that exogenous BMP-7 activates SMAD1/5/8 signaling in the kidney as determined 

via maintenance of pSMAD1/5/8 and Id-1 gene expression in BMP-7-UUO kidneys (Figure 1), BMP-7 

inhibits collagen type I and III gene and protein expression in renal injury (Figure 2&3) via inhibition 

of SMAD3 and Akt signaling (Figures 4-6), and that these effects are mediated by up-regulation of 

PTEN (Figure 7). In addition to inhibition of SMAD3, BMP-7 promoted activation of SMAD2-mediated 

signaling (Supplemental Figure 1), consistent with previous reports describing a protective role for 

SMAD2 against fibrogenesis. 75 This report delineates the key role that Akt plays in mediating the 

pro-fibrotic changes that occur during kidney injury and describes how BMP-7 can up-regulate PTEN 

to prevent activation of Akt signaling. We highlight the potential of Akt inhibition as a therapeutic 

approach to preventing progression of renal disease. It will be interesting to investigate whether Akt 

inhibitors, developed as anti-cancer and anti-inflammatory therapeutics 76 may also be useful as 

anti-fibrotic agents. 

 

Methods: 

Unilateral ureteral obstruction (UUO): 

UUO was performed on 8-10 week old C57BL/6, FVB mice and  kidneys harvested at 8 days.  49 

Animals were randomized into two groups (n=5 each) receiving vehicle (20mM histidine, 140mM 

NaCl, Roche) or 300µg/kg recombinant human BMP-7 (R&D systems) i.p. on days 0, 2, 4, and 6. One 

third of each contralateral and obstructed kidney was formalin fixed, one third methyl Carnoy's 

fixed,  and one third divided for RNA and protein extraction. The animal study was performed in 

accordance with ethical guidelines of UCD AREC and under license from the Department of Health. 

Immunohistochemical analysis of kidney tissue: 
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4µm thick sections were prepared from formalin and Methyl Carnoys fixed paraffin embedded 

kidneys. Sirius red stain of collagen was detected on formalin fixed tissue. 49 IHC for type I, type III, 

type IV Collagen (Southern Biotech) and α-SMA (Sigma) was performed on Methyl Carnoy's fixed 

tissue. 77 Sections were scanned using Aperio Scanscope and analysed mophometrically using Aperio 

Imagescope software. 49 

Cell culture: 

Murine inner medullary collecting duct (mIMCD) and human tubular epithelial (HK-2) cells were 

cultured as described. 78, 79 Cells were serum starved for 24 hours prior to stimulation with 0-

100ng/ml rhBMP-7, 5ng/ml TGFβ1 (both R&D systems), or 1% oxygen (Coy hypoxia chamber) for 60 

minutes before lysis with either TRIzol or Cellytic. 49 

Quantitative real time PCR: 

2µg RNA was reverse-transcribed using 200U superscript reverse transcriptase II and the cDNA 

analysed for Collagen type Iα1, IIIα1, IVα1, α-Sma, Fsp-1,  Id-1, Bmp-7, and Pten  using Taqman 

primer probes and SYBR green analysis of Usag1 (forward: GCATTTCAGTAGCACTGGAC and reverse: 

ATGTATTTGGTGGACCGCAG), and Grem1 (forward: TCATTGTGTTCCATGTGCCT and reverse: 

CAGCCCTCAGAGTTACCTCC). 80 qPCR results were analysed using ∆∆Ct normalised against 18S rRNA 

and calibrated against vehicle treated contralateral kidneys or vehicle-treated cells. 

Western blot protein analysis: 

20µg denatured whole cell lysates were probed with primary antibodies against α-SMA, pSMAD1 

(Ser465/465), 5 (Ser463/365), 8 (Ser426/458), SMAD5, pSMAD2 (Ser 465/467), SMAD2, pERK1/2 (Thr202/Tyr204), 

ERK, p-p38 (Thr180/Tyr182), p38, pAkt (Ser 473 and Thr308), Akt, pGSK3β (Ser9) and GAPDH (Cell 

Signaling), pSMAD3 (Ser423/425), SMAD3 (Abcam), followed by incubation with appropriate secondary 

HRP-IgG antibody. Bands were detected by chemiluminescence.  
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mean SEM mean SEM mean SEM mean SEM

1A pSMAD1/5/8 / SMAD5 2.89 0.37 0.49 0.17 <0.001 1.96 0.22 1.74 0.43 n.s.

1B Id-1  mRNA 1.03 0.09 0.59 0.08 <0.01 0.88 0.09 0.64 0.07 n.s.

1B Bmp-7  mRNA 1.02 0.10 0.22 0.05 <0.001 0.95 0.10 0.41 0.05 <0.001

1B Usag1  mRNA 1.00 0.06 1.58 0.18 <0.05 0.80 0.05 1.15 0.03 n.s.

1B Grem1  mRNA 1.04 0.17 0.96 0.08 n.s. 1.87 0.08 0.85 0.13 <0.01

2B Sirius red (mm2) 0.04 0.01 0.11 0.02 <0.01 0.04 0.01 0.06 0.01 n.s.

2B α-SMA (mm2) 0.48 0.46 2.98 0.30 <0.05 0.67 0.07 3.11 0.59 <0.05

2C α -SMA mRNA 1.07 0.12 4.21 0.51 <0.001 0.91 0.08 4.47 0.65 <0.001

2C Fsp-1  mRNA 1.00 0.05 7.21 0.96 <0.001 0.90 0.20 5.03 0.43 <0.001

3B Collagen Iα1 (mm2) 0.35 0.13 1.22 0.49 <0.01 0.32 0.08 0.59 0.24 n.s.

3B Collagen IIIα1 (mm2) 2.19 0.39 3.21 0.63 n.s. 1.35 0.44 2.98 0.62 <0.01

3B Collagen IVα1 (mm2) 4.38 0.77 5.26 1.05 n.s. 3.54 0.35 4.69 0.82 n.s.

3C Collagen Iα 1  mRNA 1.30 0.35 23.16 8.86 <0.001 0.31 0.05 8.78 0.56 <0.001

3C Collagen IIIα 1  mRNA 1.26 0.30 23.83 5.42 <0.001 0.47 0.09 5.62 0.81 <0.001

3C Collagen IVα 1 mRNA 1.08 0.14 2.47 0.41 <0.05 1.09 0.05 4.51 0.50 <0.001

4 pSMAD2 / SMAD2 0.06 0.01 0.22 0.06 n.s. 0.09 0.01 0.17 0.05 n.s.

4 pSMAD3 / GAPDH 0.45 0.20 1.22 0.19 <0.01 0.08 0.02 0.06 0.03 n.s.

5A pAkt Ser 473 / Akt 0.04 0.11 0.40 0.06 <0.001 0.03 0.01 0.12 0.03 <0.05

5A pAkt Thr 308 / Akt 0.01 0.00 0.20 0.02 <0.001 0.03 0.01 0.10 0.02 <0.05

5A pGSK3β / GSK3β 0.24 0.05 0.05 0.09 n.s. 0.04 0.01 0.17 0.06 n.s.

5B pERK / ERK 0.21 0.05 1,17 0.20 <0.001 0.38 0.09 1.12 0.10 <0.01

5B p-p38 / p38 1.51 0.37 2.11 0.29 n.s. 0.87 0.11 1.80 0.24 <0.01

7A Pten  mRNA 1.05 0.12 0.74 0.09 <0.05 0.60 0.04 0.79 0.06 <0.05

P  vs BMP7-CTL

CTL UUO

P vs Veh-CTL

CTL UUO

Figure Target

Veh BMP-7
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mean SEM mean SEM mean SEM mean SEM

6A pAkt Ser 473 / Akt 1.00 0.12 0.62 0.28 n.s. 2.04 0.50 n.s. 0.50 0.18 <0.05 <0.05

6A pAkt Thr 308 / Akt 1.00 0.08 0.50 0.06 <0.01 1.09 0.09 n.s. 1.02 0.08 n.s. n.s.

6A pGSK3β / GSK3β 1.00 0.09 2.04 0.06 n.s. 2.94 0.29 <0.05 2.76 0.30 <0.05 n.s.

6A E-cadherin / GAPDH 0.96 0.09 0.54 0.15 n.s. 0.44 0.01 <0.01 0.83 0.13 n.s. <0.05

6B pERK / ERK 1.00 0.06 0.44 0.08 <0.001 0.74 0.09 <0.05 0.82 0.07 n.s. n.s.

6B p-p38/ p-38 1.00 0.29 1.56 0.69 n.s. 0.99 0.55 n.s. 0.89 0.40 n.s. n.s.

7B Pten mRNA 1.01 0.07 2.15 0.29 <0.05 1.69 0.04 <0.001 4.39 0.85 <0.001 <0.05

Figure Target
Veh BMP-7

P vs Veh
TGFβ1 P  vs 

Veh
BMP-7 & TGFβ1

P vs Veh P  vs TGFβ1

 

Supplemental Table 1: Statistical analysis for quantitative PCR, morphometric analysis of immunohistochemical staining, and densitometric analysis of western 

blot protein analysis for Figures 1-7. 
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