

Distributed Spatial Data Clustering as a New Approach for Big

Data Analysis

Malika Bendechache, Nhien-An Le-Khac, M-Tahar Kechadi
Insight Centre for Data Analytics

School of Computer Science
University College Dublin, Ireland

malika.bendechache@ucdconnect.ie

Abstract

In this paper we propose a new approach for Big Data
mining and analysis. This new approach works well
on distributed datasets and deals with data cluster-
ing task of the analysis. The approach consists of
two main phases: the first phase executes a clustering
algorithm on local data, assuming that the datasets
was already distributed among the system process-
ing nodes. The second phase deals with the local
clusters aggregation to generate global clusters. This
approach not only generates local clusters on each
processing node in parallel, but also facilitates the
formation of global clusters without prior knowledge
of the number of the clusters, which many partition-
ing clustering algorithm require. In this study, this
approach was applied on spatial datasets. The pro-
posed aggregation phase is very efficient and does not
involve the exchange of large amounts of data between
the processing nodes. The experimental results show
that the approach has super-linear speed-up, scales
up very well, and can take advantage of the recent
programming models, such as MapReduce model, as
its results are not affected by the types of communi-
cations.

Keywords: Distributed data mining, distributed com-
puting, synchronous communication, asynchronous
communication, super-speedup, spacial data mining.

1 Introduction

Nowadays big data is becoming a commonplace. It is
generated by multiple sources at rapid pace, which
leads to very large data volumes that need to be
stored, managed, and analysed for useful insights.
From organisations point of view, it is not the size
of the generated data which is important. It is what
we learn from it that matters, as this may help un-
derstanding the behaviour of the system that is gov-
erned by this data or help to make some key decisions,
etc. To extract meaningful value from big data, we
need appropriate and efficient mining and analytics
techniques to analyse it. One of the most powerful
and common approaches of analysing datasets for ex-
tracting useful knowledge is clustering. Clustering
has a wide range of applications and its concept is
so interesting that numerous algorithms for various

types of data have been proposed and implemented.
However, big data come up with new challenges, such
as large volumes, velocity, variety, and veracity, that
the majority of popular clustering algorithms are in-
efficient at very large scale. This inefficiency can be
that the final results are not satisfactory or the algo-
rithm has high complexity which requires large com-
puting power and response time to produce final re-
sults. There are two major categories of approaches
to deal with computational complexity of these clus-
tering algorithms: 1) the first category consists of re-
ducing the size of the initial dataset. One can use
either sample-based techniques or dimensionality re-
duction techniques. The second category consists of
using parallel and distributed computing to speed up
the response time. In this case we can try to paral-
lelise or model the algorithm in the form of a client-
server model using MapReduce mechanism. However,
these algorithms are inherently difficult to parallelise,
and designing an efficient distributed version of the al-
gorithm is not straightforward either. This is due to
the fact that the processing nodes, either in the paral-
lel or distributed versions, need to communicate and
coordinate their efforts in order to obtain the same re-
sults. These communications are extremely expensive
and can cancel the benefit of the parallelised version.
To deal with these challenging issues, we propose to
study a distributed approach that takes advantage of
parallel and distributed computing power, while get-
ting ride of the drawbacks of the previous methods.
In addition, one of the main advantages of our ap-
proach is that it can be used as a framework for all
clustering algorithms. In other words, while it is well
known that there is no clustering algorithm that can
universally be used to cluster every dataset of a given
application, our approach can be used for all algo-
rithms or a set of algorithms to derive a distributed
clustering approach for a given data having specific
characteristics.

The proposed approach has two main phases: the
first phase, based on the SPMD paradigm, consists
of dividing the datasets into K partitions, where K
is the number of processing nodes. Then, for each
partition we cluster its data into Ci clusters. This
phase is purely parallel, as each processing node exe-
cutes a clustering algorithm on its data partition in-
dependently of the others. The obtained clusters on
each node are called local clusters. This phase does
not require any communications, and in addition, in
the majority of applications the data is collected by
various sources, which are geographically distributed.
Therefore, the data is already partitioned. All re-
quired is to cluster locally the data. The second phase
consists of aggregating (or merging) the local clusters
to obtain global clusters by merging overlapping
cluster. In order to determine whether two local
clus-

focus on either merging local models or mining a set of

ters belonging to two different nodes are overlapping
or not, one needs to exchange the local clusters be-
tween the nodes. This operation is extremely expen-
sive when the dataset is very large. The main idea of
our approach is to minimise the data exchange while
maximising the quality of the global clusters. The
methode used to aggregate spatial local clusters into
global clusters allows only to exchange about 2% of
the original datasets (Laloux et al. 2011), which is
highly efficient. In this paper, we want to study the
performance of such distributed clustering technique
by calculating its speedup compared to the sequential
version of the algorithm, its scalability, its communi-
cation overheads, and its complexity in general.

The rest of the paper is organised as follows: In
the next section we will give an overview of the
state-of-the-art of parallel and distributed data min-
ing techniques and discuss their limitations. Then we
will present in more details the proposed distributed
framework and its concepts in Section 3. In section
4, we evaluate its performance based on two types
of implementations; synchronous and asynchronous
communications. In section 5, we discuss the experi-
mental results based on speedup, scalability, commu-
nication overheads, and compare the two implementa-
tion models; synchronous and asynchronous. Finally,
we conclude in Section 6.

2 Related Work

Distributed Data Mining (DDM) is a line of research
that has attracted much interest in recent years (Ji-
awei Han 2006). DDM was developed because of the
need to process data that can be very large or ge-
ographically distributed across multiple sites. This
has two advantages: first, a distributed system has
enough processong power to analyse the data within
a reasonable time frame. Second, it would be very
advantageous to process data on their respective sites
to avoid the transfer of large volumes of data between
the site to avoid heavy communications, network bot-
tlenecks, etc.

DDM techniques can be divided into two cate-
gories based on the targeted architectures of comput-
ing platforms (Zaki 2000). The first, based on par-
allelism, uses traditional dedicated and parallel ma-
chines with tools for communications between pro-
cessors. These machines are generally called super-
computers. The second category targets a network of
autonomous machines. These are called distributed
systems, and are characterised by distributed re-
sources, low-speed network connecting the system
nodes, and autonomous processing nodes which can
be of different architectures, but they are very abun-
dant (Ghosh 2014). The main goal of this category
of techniques is to distribute the work among the sys-
tem nodes and try to minimise the response time of
the whole application. Some of these techniques have
already been developed and implemented in (Aouad,
Le-Khac & Kechadi. 2007, Wu et al. 2014).

However, the traditional DDM methods are not
always effective, as they suffer from the problem of
scaling. One solution to deal with large scale data
is to use parallelism, but this is very expensive in
terms of communications and processing power. An-
other solution is to reduce the size of training sets
(sampling). Each system node generates a separate
sample. These samples will be analysed using a single
global algorithm (Tian Zhang 1996, A. K. Jain 1999).
However, this technique has a disadvantage that the
sampling in this case is very complex and requires
many communications between the nodes which may

impact on the quality of the samples and therefore
the final results. This has led to the development of
techniques that rely on ensemble learning (Rokach
et al. 2014, Eric Bauer 1999). These new techniques
are very promising, as each technique of the ensemble
netwrok attempts to learn from the data and the best
or compromised results of the network will emerge as
the winner. Integrating ensemble learning methods in
DDM framework will allow to deal with the scalability
problem, as it is the case of the proposed approach.

Clustering algorithms can be divided into two
main categories, namely partitioning and hierarchi-
cal. Different elaborated taxonomies of existing clus-
tering algorithms are given in the literature. Many
parallel clustering versions based on these algorithms
have been proposed in the literature (Aouad, Khac
& Kechadi 2007, Dhillon & Modha 1999, Ester et al.
1996, Garg et al. 2006, H.Geng et al. 2005, Dhillon &
Modha 2000, Xu et al. 1999). These algorithms are
further classified into two sub-categories. The first
consists of methods requiring multiple rounds of mes-
sage passing. They require a significant amount of
synchronisations and data exchange. The second sub-
category consists of methods that build local cluster-
ing models and send them to a central site to build
global models (Laloux et al. 2011).

In (Dhillon & Modha 1999) and (Dhillon &
Modha 2000), message-passing versions of the widely
used K-Means algorithm were proposed. In (Ester
et al. 1996) and (Xu et al. 1999), the authors dealt
with the parallelisation of DBSCAN; density-based
clustering algorithm. In (Garg et al. 2006) a parallel
message passing version of the BIRCH algorithm was
presented. A parallel version of a hierarchical cluster-
ing algorithm, called MPC for Message Passing Clus-
tering, which is especially dedicated to Microarray
data was introduced in (H.Geng et al. 2005). Most
of the parallel approaches need either multiple syn-
chronisation constraints between processes or a global
view of the dataset, or both (Aouad, Khac & Kechadi
2007). All these approaches deal with the parallelisa-
tion of the sequential version of the algorithm by try-
ing phases of the algorithm which can be executed in
parallel by several processors. However, this requires
many synchronisations either to access shared data
(for the shared memory model) or communications
(for message passing model). In some algorithm these
synchronisations and communications are extremely
expensive and it is not worth parallelising them. This
approach is not usually scalable.

In (Brecheisen et al. 2006) a client-server model
is adopted, where the data is equally partitioned and
distributed among the servers, each of which com-
putes the clusters locally and sends back the results
to the master. The master merges the partially clus-
tered results to obtain the final results. This strategy
incurs a high communication overhead between the
master and slaves, and a low parallel efficiency during
the merging process. Other parallelisations using a
similar client-server model include (Arlia & Coppola
2001, Chen et al. 2010, Coppola & Vanneschi 2002,
Fu et al. 2011, Guo & Grossman 2002, Zhou et al.
2000). Among these approaches, various program-
ming mechanisms have been used, for example, a spe-
cial parallel programming environment, called skele-
ton based programming in (Coppola & Vanneschi
2002) and parallel virtual machine in (Guo & Gross-
man 2002). A Hadoop-based approach is presented
in (Fu et al. 2011).

Another approach presented in (Aouad, Khac &
Kechadi 2007) also applied a merging of local models
to create the global models. Current approaches only

local models to build global ones. If the local models
cannot effectively represent local datasets then global
models accuracy will be very poor (Laloux et al.
2011). In addition, both partitioning and hierarchical
categories have some issues which are very difficult
to deal with in parallel versions. For the partition-
ing class, it needs the number of clusters to be fixed
in advance, while in the majority of applications the
number of classes is not known in advance. For the hi-
erarchical clustering algorithms, they have the issue
of stopping conditions for clustering decomposition,
which is not an easy task and mainly in distributed
versions.

3 Dynamic Distributed Clustering

Dynamic Distributed Clustering (DDC) model is in-
troduced to deal with the limitations of the parallel
and master-slave models. DDC combines the char-
acteristics of both partitioning and hierarchical clus-
tering methodes. In addition, it does neither inherit
the problem of the number of partitions to be fixed in
advance nor the problem of stopping conditions. It is
calculated dynamically and generates global clusters
in a hierarchical way. All these features look very
promising and some of them have been thoroughly
studies in (Bendechache, Kechadi & Le-Khac 2016),
such as the dynamic calculation of the number of the
clusters and the accuracy of the final clustering, in
this study one wants to show the effect of the com-
munications on the response time, the communica-
tion model used, the scalability of the approach, and
finally its performance in terms of speed up compared
to the sequential version. In this paper we will focus
on

• Synchronous and asynchronous communications,
as this approach can be implemented either with
synchronous or asynchronous communications.
Both implementations produce the same results.

• The speed-up of the DDC approach using DB-
SCAN as the basic algorithm for clustering the
partitions. This algorithm is known to have non-
polynomial complexity (O(n2)).

• Scalability of the approach as the size of the
dataset increases.

We start by briefly explaining the algorithm and
then present a performance and evaluation model for
the approach.

The DDC approach has two main phases. In the
first phase, we cluster the datasets located on each
processing node and select good local representatives.
All local clustering algorithms are executed in paral-
lel without communications between the nodes. As
DBSCAN is the basic algorithm for clustering local
datasets, we can reach a super lineare speed-up of p2 ,
where p is the number of processing nodes. The sec-
ond phase collects the local clusters from each node
and affects them to some special nodes in the sys-
tem; called leaders. The leaders are elected according
to their characteristics such as capacity, processing
power, connectivity, etc. The leaders are responsi-
ble for merging the local clusters. In the following
we explain how the local clusters are represented and
merged to generate global clusters.

3.1 Local Models

The local clusters are highly dependent on the clus-
tering techniques used locally in each node. For in-
stance, for spatial datasets, the shape of a cluster

is usually dictated by the technique used to obtain
them. Moreover, this is not an issue for the first
phase, as the accuracy of a cluster affects only the
local results of a given node. However, the second
phase requires sending and receiving all local clusters
to the leaders. As the whole data is very large, this
operation will saturate very quickly the network. So,
we must avoid sending all the original data through
the network. The key idea of the DDC approach is to
send only the cluster’s representatives, which consti-
tute between 1% and 2% of the whole data. The clus-
ter representatives consist of the internal data repre-
sentatives plus the boundary points of the cluster.

There are many existing data reduction techniques
in the literature. Many of them are focusing only on
the dataset size. For instance, they try to reduce
the storage capacity without paying attention to the
knowledge contained in the data. In (Le-Khac et al.
2010), an efficient reduction technique has been pro-
posed; it is based on density-based clustering. Each
cluster is represented by a set of carefully selected
data-points, called representatives. However, select-
ing representatives is still a challenge in terms of qual-
ity and size (Januzaj et al. 2004, Laloux et al. 2011).

The best way to represent a spatial cluster is by
its shape and density. The shape of a cluster is rep-
resented by its boundary points (called contour) (see
Figure 1). Many algorithms for extracting the bound-
aries from a cluster can be found in the literature
(Fadilia et al. 2004, Chaudhuri et al. 1997, Melkemi
& Djebali 2000, Edelsbrunner et al. 1983, Moreira &
Santos 2007). We use an algorithm based on trian-
gulation to generate the clusters’ boundaries (Duck-
hama et al. 2008). It is an efficient algorithm for
constructing non-convex boundaries. It is able to ac-
curately characterise the shape of a wide range of dif-
ferent point distributions and densities with a reason-
able complexity of O(n log n).

3.2 Global Models

The global clusters are generated in the second phase
of the DDC. This phase is also executed in a dis-
tributed fashion but, unlike the first phase, it has
communications overheads. This phase consists of
two main steps, which can be repeated until all the
global clusters were generated. First, each leader col-
lects the local clusters of its neighbours. Second, the
leaders will merge the local clusters using the overlay
technique. The process of merging clusters will con-
tinue until we reach the root node. The root node
will contain the global clusters (see Figure 1).

The pseudo code of the algorithm is given in Al-
gorithm 1.

In DDC we only exchange the boundaries of the
clusters. The communications can be synchronous
or asynchronous. We implemented this phase using
both types of communications. An evaluation model
is presented in the next Section.

4 DDC EVALUATION

In order to evaluate the performance of the DDC ap-
proach, we use different local clustering algorithms.
For instance, with both K-Means (Bendechache &
Kechadi 2015) and DBSCAN (Bendechache, Kechadi
& Le-Khac 2016, Bendechache, Le-Khac & Kechadi
2016), the DDC approach outperforms existing al-
gorithms in both quality of its results and response
time including K-Means and DBSCAN applied to the
whole dataset. In this section we evaluate its speed-
up, scalability, and which architecture is more appro-

Figure 1: An overview of the DDC Approach.

priate to implement it. In addition, we compare DDC
with the sequential version of the basic clustering al-
gorithm used within DDC.

The proposed approach is more developed for dis-
tributed systems than pure parallel systems. There-
fore, it is worth analysing the benefits of using syn-
chronous or asynchronous processing mechanism, as
distributed systems are asynchronous and the block-
ing operations have a strong impact in communica-
tion time (Solar et al. 2013).

Figure 3: Asynchronous communications.

As can be seen in the example given in Figure 3, M3

and M4 start merging their results before M1 and M2

finish their computations.

Figure 2: Synchronous communications.

In synchronous model, as illustrated in Figure 2,
although machines M3 and M4 have finished their
computations before M1 and M2 , they can not send
their results until M1 and M2 finish as well. In this
model, Not only the computations and communica-
tions are not overlapped but also the machines which
finished early wasted sometime waiting for the other
to finish (Solar et al. 2013).

In asynchronous model the machines which fin-
ished early can advance to the next step. The ma-
chines manage their communications and the 1st and
2nd phase overlap. This model is much more suitable
for distributed computing, where the nodes are het-
erogeneous and the communications are usually slow.

4.1 DDC Computational Complexity

Let M be the number of nodes and ni the dataset
given to each node vi in the system. The complexity
of our approach is the sum of its components’ com-
plexity; local mining, local reduction, and global ag-
gregation.

Phase1 - Local clustering: Let Γ(ni) denote the
local clustering algorithm running on node (vi), and
∆(ci) be the time required to execute the reduction
algorithm. The cost of this phase is given by:

M

TP hase1
= Max(Γ(ni) + ∆(ci)) (1)

i=1

Where ci is the cluster points generated by node

vi . Note that the reduction algorithm is of complexity
O(ci log ci).

Machine’s name Operating System Processor Memory

Dell-XPS L421X Ubuntu
(V.14.04 LTS)

1.8GHz*4
Intel Core i5

8 GB

Dell-Inspiron-3721 Ubuntu
(V.14.04 LTS)

2.00GHz*4
Intel Core i5

4 GB

Dell-Inspiron-3521 Ubuntu
(V.16.04 LTS)

1.8 GHz*4
Intel Core i5

6 GB

iMac-Early 2010 cinux Mint
(V.17.1 Rebecca) 3.06GHz*2 4 GB

Dell-Inspiron-5559 Ubuntu
(V.16.04 LTS)

2.30GHz*4
Intel Core i5

8 GB

iMac-Early 2009 OS X El Capitan
(V.10.11.6)

2.93 *2 GHz
Intel Core Due

8 GB

MacBook Air OS X El Capitan
(V.10.11.3)

1.6 *2 GHz
Intel Core i5

8 GB

Benchmark Size Descriptions

D1

10,000 Points
Different shapes, with

some clusters surrounded
by others

D2

30,000 Points

2 small circles,
1 big circle

and 2 linked ovals

Algorithm 1 DDC Algorithm

initialization
 N odei ∈ N , N : The Total nodes in the system.

Phase 1 – Local Clustering

input : Xi : Dataset Fragment, P aramsi : In-
put parameters for the local clustering: P aramsi =
(Epsi , M inP tsi) for DBSCAN

output: Ci : Cluster’s contours of N odei

foreach N odei do
Li =Local Clustering(Xi ,P aramsi)
// N odei executes a clustering
algorithm locally.
Ci =Contour(Li) // N odei executes a

contour algorithm locally.
end

4.2 DDC Speedup

The DDC speedup is calculated against the sequential
version of the approach. The sequential version con-
sists clustering all the data on one machine. There-
fore, it does require neither reduction nor aggregation.
Let T1 be the execution time of the sequential version
and Tp the execution time of the DDC on p nodes.
The speedup α is given by

α =
T1

(3)
Tp

Note that if the complexity of the clustering algo-

rithm is polynomial then the optimal speedup that
can be reached is P , under the condition that there is
no overhead due to communications and extra work.

 If the complexity of the clustering algorithm is O(n2)
 Phase 2 – Merging

input : D: tree degree, Ci : Local cluster’s
contours generated by N odei in the phase01

output: CGk,level
: Global Cluster’s contours

(global results, level=0)

repeat
level = treeheight
N odei joins a group GK,Level of D elements
// N odei joins its neighbourhood
N odej =ElectLeaderNode(GK,Level)
// N odej is the leader of the group G
// In parallel
foreach N odei ∈ GK,Level do

if (i <> j) then
Send (Ci , N odej) // Each node

sends its contours to others
nodes in the same group of
neighbourhood

else
Recv (C ≡ ({Cl }, N odel)) // If

the node is the leader, it
will receive the others node’s
contours in the same group of
neighbourhood
GK,Level = Merge (Ci , C) // Merge

the overlapping contours
end

end
level - -

until (level == 0);
return (CGk,0

)

then the optimal speedup can be P 2 ; this is called su-
per speedup. In the following section we will evaluate
the speedup in the case of DBSCAN.

5 Experimental Results

We have implemented our approach on a distributed
computing system. The distributed computing sys-
tem consists of heterogeneous desktops (different
CPUs, OSs, memory sizes, loads, etc.). We use JADE
(Java Agent DEvelopment), as a development plat-
form to implement the approach. JADE is based on
a 2P2 communication architecture, It allows to use
heterogeneous processing nodes, it is scalable, and dy-
namic (Cortese 2005, Bellifemine et al. 2005).

The system nodes (desktops) are connected to lo-
cal area networks. This allows us to add as many
nodes as required, depending on the experiment. Ta-
ble 1 lists types of machines used to perform the ex-
periments. The main goal here is to demonstrate
the performance of the DDC in a heterogeneous dis-
tributed computing environment.

Table 1: The characteristics of the used Machines

Phase2 - Aggregation: The aggregation de-
pends on the hierarchical combination of contours of
local clusters. As the combination is based on the
intersection of edges from the contours, the complex-
ity of this phase is O(wi log wi + p). Where wi is the
total vertices of the contours by node vi and p is the
intersection points between edges of different contours
(polygons).

Total complexity: The total complexity of the
DDC approach, assuming that the local clustering al-
gorithm is DBSCAN which is of complexity O(n2),
is:

TT otal = O(n2)+O(ci log ci)+O(wi log wi +p) � O(n2)

We used two benchmarks of datasets from

Chameleon (Fränti 2015). These are commonly used
to test and evaluate clustering. Table 2 gives details
about the datasets.

Table 2: Datasets

i i
(2)

The DDC approach is tested using various parti-

tions of different sizes. Various scenarios were created

1

based on the goals of the experiments. These scenar-
ios mainly differ on the way the datasets are divided
among the processing nodes of the distributed plat-
form. For each scenario, we recorded the execution
time for the local clustering, the merging step includ-
ing contour calculations, aggregation time and Idle
time.). finally we capture also the total execution
time that the approach takes to finish all the steps.
in the following we describe the different scenarios
considered.

5.1 Experiment I

In this scenario we give each machine a random chunk
of the dataset, the size of the partition that was gen-
erated for each machine is in the range between 1500
points and 10000 points. As the dataset is relatively
small we chose eight machines for the computing plat-
form.

Table 3 shows the execution time taken by each
machine to run the algorithm (step one and step two)
using synchronous and asynchronous communications
respectively, it also shows the overall time taken to
finish all the steps.

From Table 3, we can see that the time taken by
each machine to accomplish the first step of the al-
gorithm is the same for both synchronous and asyn-
chronous, whereas the time of the second step is dif-
ferent. We can also notice that each machine returns
different execution time of the whole algorithm. This
is because the machines have different capacities (see
Table 1).

The total execution time of the algorithm while us-
ing synchronous communication is smaller compared
to when using synchronous communication. This is
because in synchronous communications, machines
have more waiting time (up to 60% waiting time).

5.2 Experiment II

In this scenario we allocate the whole dataset size to
one machine and the remaining machines were allo-
cated one eight of the dataset each. This scenario is
chosen to show the worst case of waiting time.

Table 4 shows the execution time taken by each
machine to execute the DDC technique (step one
and step two) using synchronous and asynchronous
communications respectively, it also shows the over-
all time taken to finish all the steps.

From Table 4, we can notice that the difference
between the execution times of the synchronous and
asynchronous DDC is still significant. Because with
synchronous communications the machines need to
wait for the last machine to finish its first step before
they all start merging their results (step 2), whereas
for asynchronous model the seven machines did the
merging (step2) while the last machine finishes its
clustering (step1).

5.3 Experiment III

In this scenario we allocate to seven machines the
whole dataset and the one machine was allocated one
eight of the dataset. This scenario is chosen to show
the effect of the complexity of the local clustering
complexity on the machines and on the waiting time
of some powerful machines.

Table 5 shows the execution time taken by each
machine to run the algorithm (step one and step two)
using synchronous and asynchronous communications
respectively, it also shows the overall time taken to
finish all the steps.

This scenario is the opposite of the previous sce-
nario. Unlike the previous scenarios, Table 5 shows
that the difference between the execution times of
synchronous and asynchronous versions of the DDC
is smaller. This is because in both cases the machines
spend more time finishing the first step, therefore, the
waiting time is less for synchronous over asynchronous
model.

5.4 Experiment IV

In this scenario we took into account the machines
capabilities and we divide the datasets according to
their capacities. Therefore the work load is evenly
distributed among them and we expect them to finish
the first phase more or less at the same time. This al-
lows to reduce the waiting time of the machines and
follow immediately with the second phase. The to-
tal execution times of synchronous and asynchronous
versions should be the same. This case favours more
the synchronous implementation of the approach.

As predicted, Table 6 shows that there is no signifi-
cant difference between the two execution times. Note
that the little difference in favour of the synchronous
version is due to the fact that in the asynchronous
model the machines still need to execute the algo-
rithm that checks which one finished first and receive
the contours for merging.

5.5 Effective Speedup

The goal here is to compare our parallel clustering to
the sequential algorithm and show the DDC speedup
over the sequential version of clustering, as mentioned
in Equation 3.

Considering the best scenario of executing the se-
quential version of DBSCAN on the fastest machine in
the system. For instance, T1 = 15841 ms. Clustering
a partition of the same dataset on the same machine
will take = T d = 258 ms. The execution time of the
DDC on the same datasets on eight heterogeneous
machines with load balancing is Tp = 1761 ms (see
Table 6). Therefore, from equation 3, we can deduce
a speedup of 9, which is still a super-linear speedup.
In the next section we will show how many processing
nodes are required to cluster a dataset of size N .

5.6 Scalability

The goal here is to show that the DDC technique
scales well and also we can dynamically determine
the optimal number of processing nodes required to
cluster a dataset of size N . We consider two datasets,
the first dataset D1 contains 10, 000 data points and
the second D1 contains 30, 000 data points. Figure 4
shows the execution time (y axis is in log2) against
the number of machines in the system using the first
dataset and Figure 5 shows the execution time (y axis
is in log2) against the number of machines in the sys-
tem using the second dataset contains 30, 000 data
points.

As one can see, from both Figures 4 and 5, the ex-
ecution time of the first phase (Clustering and Con-
tour) keeps decreasing as the number of machines in
the distributed system increases. However, the time
of the second phase (merging) keeps increasing grad-
ually with the number of machines in the distributed
system that is because the amount of communications
in the second phase increases when the number of ma-
chines increases.

In addition, the total execution time of the algo-
rithm (which is the sum of the two times, phase one

Table 3: Time (ms) taken by eight machines to run scenario I using synchronous and asynchronous
communications

 Synchronous Asynchronous
Machine DS Size STEP01 STEP2 Time STEP1 STEP2 Time

M1 10000 21270 1104 22374 21270 554 21824
M2 2500 1060 20862 21922 1060 2515 3575
M3 3275 5093 16930 22023 5093 2017 7110
M4 5000 4592 17644 22236 4591 2620 7211
M5 1666 227 21642 21869 227 391 618
M6 2000 292 21736 22028 292 416 708
M7 5000 7520 14665 22185 7515 13949 21464
M8 1500 200 21842 22042 195 4605 4800

 Total Exec-Time 22374 Total Exec-Time 21824

Table 4: Time (ms) taken by eight machines to run scenario II using synchronous and asynchronous
communications

 Synchronous Asynchronous
Machine DS Size STEP1 STEP2 Time STEP1 STEP2 Time

M1 10000 21270 973 22243 21270 595 21865
M2 1250 215 21775 21990 215 518 733
M3 1250 640 21383 22023 640 20100 20740
M4 1250 304 21730 22034 304 497 801
M5 1250 161 22034 22195 161 394 555
M6 1250 171 21856 22027 170 286 456
M7 1250 245 21918 22163 245 509 754
M8 1250 185 21854 22039 185 858 1043

 Total Exec-Time 22243 Total Exec-Time 21865

Table 5: Time (ms) taken by eight machines to run scenario III using synchronous and asynchronous
communications

 Synchronous Asynchronous
Machine DS Size STEP1 STEP2 Time STEP1 STEP2 Time

M1 10000 21270 35978 57248 21270 905 22175
M2 10000 21590 34869 56459 21590 11513 33103
M3 10000 53005 3008 56013 53005 3292 56297
M4 10000 32424 24691 57115 32424 6996 39420
M5 10000 17364 38493 55857 17364 4612 21976
M6 10000 15841 41237 57078 15841 2066 17907
M7 10000 38732 18483 57215 38727 18459 57186
M8 1250 185 56915 57100 184 16077 16261

 Total Exec-Time 57248 Total Exec-Time 57186

Table 6: Time (ms) taken by eight machines to run scenario IV using synchronous and asynchronous
communications

 Synchronous Asynchronous
Machine DS Size STEP1 STEP2 Time STEP1 STEP2 Time

M1 1500 256 1505 1761 256 1159 1415
M2 1660 260 598 858 260 1512 1772
M3 500 252 1061 1313 252 626 878
M4 1000 253 621 874 253 608 861
M5 1500 255 1492 1747 255 600 855
M6 1400 260 605 865 260 514 774
M7 1000 259 1030 1289 259 939 1198
M8 1500 250 603 853 250 1500 1750

 Total Exec Time 1761 Total Exec Time 1772

and two) keep decreasing as the number of process-
ing nodes increases until it reaches a certain points
where the total execution time starts to increase (at
8 machines for dataset D1 and at 16 machines for
dataset D2). The optimal number of processing nodes
required to execute DDC is returned when the over-
head of the approach exceeds the execution time of
the local clustering. This is a very interesting charac-
teristic, as one can determine the number of machines

that can be allocated in advance.

6 Conclusion

In this paper, we proposed an efficient and flexible dis-
tributed clustering framework that can work with ex-
isting data mining algorithms. The approach exploits
the processing power of the distributed platform by

Figure 4: Scalability Experiment using dataset T1 .

Figure 5: Scalability Experiment using dataset T2 .

maximising the parallelism and minimising the com-
munications and mainly the size of the data that is
exchanged between the nodes of the system. It is im-
plemented using both synchronous and asynchronous
communications, and the results were significantly in
favour of the asynchronous model. The approach has
an efficient data reduction phase which reduces sig-
nificantly the size of the data exchanged therefore, it
deals with the problem of communication overhead.
The DDC approach has a super-linear speedup when
the complexity of the local clustering has an NP com-
plexity. We also can determine the optimal number
of processing nodes in advance.

References

A. K. Jain, M. N. Murty, P. J. F. (1999), ‘Data

clustering: a review’, ACM Computing Surveys
(CSUR) 31, 264–323.

Aouad, L., Khac, N.-A. L. & Kechadi, M.-T. (2007),
Advances in Data Mining. Theoretical Aspects and
Applications: 7th Industrial Conference (ICDM
2007), Leipzig, Germany, July 14-18, 2007. Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Hei-
delberg, chapter Lightweight Clustering Technique
for Distributed Data Mining Applications, pp. 120–
134.

Aouad, L., Le-Khac, N.-A. & Kechadi., M.-T. (2007),

Image analysis platform for data management in
the meteorological domain, in ‘7th Industrial Con-
ference, ICDM 2007, Leipzig, Germany, July 14-18,
2007. Proceedings’, Vol. 4597, Springer Berlin Hei-
delberg, pp. 120–134.

Arlia, D. & Coppola, M. (2001), Experiments in par-
allel clustering with dbscan, in ‘European Confer-
ence on Parallel Processing’, Springer, pp. 326–331.

Bellifemine, F., Bergenti, F., Caire, G. & Poggi, A.
(2005), Jadea java agent development framework,
in ‘Multi-Agent Programming’, Springer, pp. 125–
147.

Bendechache, M. & Kechadi, M.-T. (2015), Dis-
tributed clustering algorithm for spatial data min-
ing, in ‘Spatial Data Mining and Geographical
Knowledge Services (ICSDM), 2015 2nd IEEE In-
ternational Conference on’, IEEE, pp. 60–65.

Bendechache, M., Kechadi, M.-T. & Le-Khac, N.-A.
(2016), Efficient large scale clustering based on data
partitioning, in ‘Data Science and Advanced An-
alytics (DSAA), 2016 IEEE International Confer-
ence on’, IEEE, pp. 612–621.

Bendechache, M., Le-Khac, N.-A. & Kechadi, M.-
T. (2016), Hierarchical aggregation approach for
distributed clustering of spatial datasets, in ‘Data
Mining Workshops (ICDMW), 2016 IEEE 16th In-
ternational Conference on’, IEEE, pp. 1098–1103.

Brecheisen, S., Kriegel, H.-P. & Pfeifle, M. (2006),
‘Parallel density-based clustering of complex ob-
jects’, Advances in Knowledge Discovery and Data
Mining pp. 179–188.

Chaudhuri, A., Chaudhuri, B. & Parui, S. (1997), ‘A
novel approach to computation of the shape of a
dot pattern and extraction of its perceptual bor-
der’, Computer vision and Image Understranding
68, 257–275.

Chen, M., Gao, X. & Li, H. (2010), Parallel dbscan
with priority r-tree, in ‘Information Management
and Engineering (ICIME), 2010 The 2nd IEEE In-
ternational Conference on’, IEEE, pp. 508–511.

Coppola, M. & Vanneschi, M. (2002), ‘High-
performance data mining with skeleton-based
structured parallel programming’, Parallel Com-
puting 28(5), 793–813.

Cortese, E. (2005), ‘Benchmark on jade mes-
sage transport system’, URL: http://jade. cselt.
it/doc/tutorials/benchmark/JADERTTBenchmark.
htm .

Dhillon, I. D. & Modha, D. S. (2000), A data-
clustering algorithm on distributed memory mul-
tiprocessors, in ‘Large-Scale Parallel Data Mining’,
Springer Berlin Heidelberg, pp. 245–260.

Dhillon, I. & Modha, D. (1999), A data-clustering
algorithm on distributed memory multiprocessor,
in ‘large-Scale Parallel Data Mining, Workshop
on Large-Scale Parallel KDD Systems, SIGKDD’,
Springer-Verlag London, UK, pp. 245–260.

Duckhama, M., Kulikb, L., Worboysc, M. & Galtond,
A. (2008), ‘Efficient generation of simple polygons
for characterizing the shape of a set of points in the
plane’, Elsevier Science Inc. New York, NY, USA
41, 3224–3236.

http://jade/

Edelsbrunner, H., Kirkpatrick, D. G. & Seidel, R.
(1983), ‘On the shape of a set of points in the
plane’, Information Theory, IEEE Transactions on
29(4), 551–559.

Eric Bauer, R. K. (1999), ‘An empirical comparison
of voting classification algorithms: Bagging, boost-
ing, and variants’, springer Link:Machine Learning
36, 105–139.

Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. (1996),
A density-based algorithm for discovering clusters
in large spatial databases with noise., in ‘Kdd’,
Vol. 96, pp. 226–231.

Fadilia, M., Melkemib, M. & ElMoataza, A. (2004),
Pattern Recognition Letters:Non-convex onion-
peeling using a shape hull algorithm, Vol. 24, EL-
SEVIER.

Fränti, P. (2015), ‘Clustering datasets’.
URL: http://cs.uef.fi/sipu/datasets/

Fu, Y. X., Zhao, W. Z. & Ma, H. F. (2011), Re-
search on parallel dbscan algorithm design based
on mapreduce, in ‘Advanced Materials Research’,
Vol. 301, Trans Tech Publ, pp. 1133–1138.

Garg, A., Mangla, A., Bhatnagar, V. & Gupta, N.
(2006), ‘Pbirch: A scalable parallel clustering al-
gorithm for incremental data’, 10th Int’l. Sympo-
sium on Database Engineering and Applications
(IDEAS-06) pp. 315–316.

Ghosh, S. (2014), Distributed systems: an algorithmic
approach, CRC press.

Guo, Y. & Grossman, R. (2002), ‘A fast parallel
clustering algorithm for large spatial databases,
high performance data mining’, Data Mining and
Knowledge Discovery .

H.Geng, Omaha & Deng, X. (2005), A new clustering
algorithm using message passing and its applica-
tions in analyzing microarray data, in ‘ICMLA ’05
Proc. of the 4th Int’l. Conf. on Machine Learning
and Applications’, IEEE, p. 145150.

Januzaj, E., Kriegel, H.-P. & Pfeifle, M. (2004), Ad-
vances in Database Technology - EDBT 2004: 9th
International Conference on Extending Database
Technology, Springer Berlin Heidelberg, chapter
DBDC: Density Based Distributed Clustering,
pp. 88–105.

Jiawei Han, M. K. (2006), Data Mining: Concepts
and Techniques, 2nd edn, Elsevier, Diane Cerra,
San Francisco, CA 94111, chapter Introduction.

Laloux, J.-F., Le-Khac, N.-A. & Kechadi, M.-T.
(2011), ‘Efficient distributed approach for density-
based clustering’, Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE),
20th IEEE International Workshops pp. 145–150.

Le-Khac, N.-A., Bue, M., Whelan, M. & M-
T.Kechadi (2010), ‘A knowledgebased data reduc-
tion for very large spatio-temporal datasets’, Inter-
national Conference on Advanced Data Mining and
Applications, (ADMA2010) .

Melkemi, M. & Djebali, M. (2000), ‘Computing the
shape of a planar points set’, Elsevier Science
33, 14231436.

Moreira, A. & Santos, M. Y. (2007), Concave hull: A
k-nearest neighbours approach for the computation
of the region occupied by a set of points, in ‘Int’l.
Conf. on Computer Graphics Theory and Applica-
tions (GRAPP-2007)’, Barcelona, Spain, pp. 61–68.

Rokach, L., Schclar, A. & Itach, E. (2014), ‘Ensem-
ble methods for multi-label classification’, Expert
Systems with Applications 41, 7507 – 7523.

Solar, R., Borges, F., Suppi, R. & Luque, E. (2013),
‘Improving communication patterns for distributed
cluster-based individual-oriented fish school simu-
lations’, Procedia Computer Science 18, 702–711.

Tian Zhang, Raghu Ramakrishnan, M. L. (1996),
Birch: An efficient data clustering method for very
large databases, in ‘SIGMOD ’96 Proceedings of
the 1996 ACM SIGMOD international conference
on Management of data’, Vol. 25, pp. 103–114.

Wu, X., Zhu, X., Wu, G. Q. & Ding, W. (2014),
‘Data mining with big data’, IEEE Transactions on
Knowledge and Data Engineering 26(1), 97–107.

Xu, X., Jger, J. & Kriegel, H.-P. (1999), ‘A fast paral-
lel clustering algorithm for large spatial databases’,
Data Mining and Knowledge Discovery archive
3, 263–290.

Zaki, M. J. (2000), Large-Scale Parallel Data Min-
ing, Springer Berlin Heidelberg, Berlin, Heidelberg,
chapter Parallel and Distributed Data Mining: An
Introduction, pp. 1–23.

Zhou, A., Zhou, S., Cao, J., Fan, Y. & Hu, Y. (2000),
‘Approaches for scaling dbscan algorithm to large
spatial databases’, Journal of computer science and
technology 15(6), 509–526.

http://cs.uef.fi/sipu/datasets/

