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Abstract 
 

In this paper we propose a new approach for Big Data 
mining and analysis. This new approach works well 
on distributed datasets and deals with data cluster- 
ing task of the analysis.  The approach consists of 
two main phases: the first phase executes a clustering 
algorithm on local data, assuming that the datasets 
was already distributed  among the system process- 
ing nodes.  The second  phase deals with  the local 
clusters aggregation to generate global clusters. This 
approach not only generates  local clusters on each 
processing node in parallel, but  also  facilitates the 
formation of global clusters without prior knowledge 
of the number of the clusters, which many partition- 
ing clustering algorithm require.  In this study, this 
approach was applied on spatial datasets. The pro- 
posed aggregation  phase is very efficient and does not 
involve the exchange of large amounts of data between 
the processing nodes. The experimental results show 
that  the approach has super-linear speed-up,  scales 
up very well, and can take  advantage of the recent 
programming models, such as MapReduce model, as 
its results are not affected by the types of communi- 
cations. 

 

Keywords: Distributed data mining, distributed com- 
puting,  synchronous communication, asynchronous 
communication, super-speedup, spacial data mining. 

 
1    Introduction 

 
Nowadays big data is becoming a commonplace. It is 
generated by multiple  sources at rapid pace, which 
leads to  very large data volumes that  need to  be 
stored, managed, and analysed for useful insights. 
From organisations point  of view, it is not the size 
of the generated data which is important.  It is what 
we learn from it that matters, as this may help un- 
derstanding the behaviour of the system that is gov- 
erned by this data or help to make some key decisions, 
etc.  To extract meaningful value from big data, we 
need appropriate and efficient  mining and analytics 
techniques to analyse it.   One of the most powerful 
and common approaches of analysing datasets for ex- 
tracting  useful knowledge is clustering.   Clustering 
has a wide range of applications and its concept is 
so interesting that  numerous algorithms for various 

 

 

types of data have been proposed and implemented. 
However, big data come up with new challenges, such 
as large volumes, velocity, variety, and veracity, that 
the majority of popular clustering algorithms are in- 
efficient at very large scale. This inefficiency can be 
that the final results are not satisfactory or the algo- 
rithm has high complexity which requires large com- 
puting power and response time to produce final re- 
sults. There are two major categories of approaches 
to deal with computational complexity of these clus- 
tering algorithms: 1) the first category consists of re- 
ducing the size of the initial  dataset.  One can use 
either sample-based techniques or dimensionality re- 
duction techniques. The second category consists of 
using parallel and distributed computing to speed up 
the response time.  In this case we can try  to paral- 
lelise or model the algorithm in the form of a client- 
server model using MapReduce mechanism. However, 
these algorithms are inherently difficult to parallelise, 
and designing an efficient distributed version of the al- 
gorithm is not straightforward either. This is due to 
the fact that the processing nodes, either in the paral- 
lel or distributed versions, need to communicate and 
coordinate their efforts in order to obtain the same re- 
sults. These communications are extremely expensive 
and can cancel the benefit of the parallelised version. 
To deal with these challenging issues, we propose to 
study a distributed approach that takes advantage of 
parallel and distributed computing power, while get- 
ting ride of the drawbacks of the previous methods. 
In addition, one of the main advantages of our ap- 
proach is that it can be used as a framework for all 
clustering algorithms. In other words, while it is well 
known that there is no clustering algorithm that can 
universally be used to cluster every dataset of a given 
application, our approach can be used for all algo- 
rithms or a set of algorithms to derive a distributed 
clustering approach for a given data having specific 
characteristics. 

The proposed approach has two main phases: the 
first phase, based on the SPMD paradigm, consists 
of dividing the datasets into K partitions, where K 
is the number of processing nodes. Then, for each 
partition  we cluster its data into Ci   clusters.  This 
phase is purely parallel, as each processing  node exe- 
cutes a clustering algorithm on its data partition  in- 
dependently of the others. The obtained clusters on 
each node are called local clusters. This phase does 
not require any communications, and in addition, in 
the majority  of applications the data is collected by 
various sources, which are geographically distributed. 
Therefore, the data is already partitioned.   All  re- 
quired is to cluster locally the data. The second phase 
consists of aggregating (or merging) the local clusters 
to obtain global clusters by merging overlapping 
cluster. In order to  determine  whether two local 
clus-



focus on either merging local models or mining a set of 

 

ters belonging to two different nodes are overlapping 
or not, one needs to exchange the local clusters be- 
tween the nodes. This operation is extremely expen- 
sive when the dataset is very large. The main idea of 
our approach is to minimise the data exchange while 
maximising the quality  of the global clusters.  The 
methode used to aggregate spatial local clusters into 
global clusters allows only to exchange about 2% of 
the original datasets  (Laloux et al. 2011), which is 
highly efficient. In this paper, we want to study the 
performance of such distributed clustering technique 
by calculating its speedup compared to the sequential 
version of the algorithm, its scalability, its communi- 
cation overheads, and its complexity in general. 

The rest of the paper is organised as follows: In 
the  next  section we  will  give  an overview  of  the 
state-of-the-art of parallel and distributed data min- 
ing techniques and discuss their limitations.  Then we 
will present in more details the proposed distributed 
framework and its concepts in Section 3.  In section 
4, we evaluate its performance  based on two  types 
of implementations; synchronous  and asynchronous 
communications. In section 5, we discuss the experi- 
mental results based on speedup, scalability, commu- 
nication overheads, and compare the two implementa- 
tion models; synchronous and asynchronous. Finally, 
we conclude in Section 6. 

 
2    Related  Work 

 
Distributed Data Mining (DDM)  is a line of research 
that has attracted much interest in recent years (Ji- 
awei Han 2006). DDM was developed because of the 
need to process data that  can be very large or ge- 
ographically distributed  across multiple  sites.  This 
has two  advantages: first,  a distributed  system has 
enough processong power to analyse the data within 
a reasonable time frame.  Second, it would be very 
advantageous to process data on their respective sites 
to avoid the transfer of large volumes of data between 
the site to avoid heavy communications, network bot- 
tlenecks, etc. 

DDM  techniques can be  divided into  two  cate- 
gories based on the targeted architectures of comput- 
ing platforms (Zaki 2000). The first, based on par- 
allelism, uses traditional  dedicated and parallel ma- 
chines with  tools for communications between pro- 
cessors. These machines are generally called super- 
computers. The second category targets a network of 
autonomous machines. These are called distributed 
systems, and are characterised by  distributed  re- 
sources, low-speed network  connecting the  system 
nodes, and autonomous  processing nodes which can 
be of different architectures, but they are very abun- 
dant   (Ghosh 2014). The main goal of this category 
of techniques is to distribute the work among the sys- 
tem nodes and try  to minimise the response time of 
the whole application. Some of these techniques have 
already been developed and implemented in  (Aouad, 
Le-Khac & Kechadi. 2007, Wu et al. 2014). 

However,  the  traditional  DDM  methods are not 
always effective, as they suffer from the problem of 
scaling.  One solution to deal with  large scale data 
is to use parallelism, but  this is very expensive  in 
terms of communications and processing power. An- 
other solution is to reduce the size of training  sets 
(sampling).  Each system node generates a separate 
sample. These samples will be analysed using a single 
global algorithm  (Tian Zhang 1996, A. K. Jain 1999). 
However, this technique has a disadvantage that the 
sampling in this case  is very complex and requires 
many communications  between the nodes which may 

impact on the quality  of the samples and therefore 
the final results. This has led to the development of 
techniques that  rely on ensemble learning  (Rokach 
et al. 2014, Eric Bauer 1999). These new techniques 
are very promising, as each technique  of the ensemble 
netwrok attempts to learn from the data and the best 
or compromised results of the network will emerge as 
the winner. Integrating ensemble learning methods in 
DDM framework will allow to deal with the scalability 
problem, as it is the case of the proposed approach. 

Clustering algorithms can be divided into two 
main categories, namely partitioning  and hierarchi- 
cal. Different elaborated taxonomies of existing clus- 
tering algorithms  are given in the literature.   Many 
parallel clustering versions based on these algorithms 
have been proposed in the literature   (Aouad, Khac 
& Kechadi 2007, Dhillon & Modha 1999, Ester et al. 
1996, Garg et al. 2006, H.Geng et al. 2005, Dhillon & 
Modha 2000, Xu et al. 1999). These algorithms are 
further  classified into two  sub-categories. The first 
consists of methods requiring multiple rounds of mes- 
sage passing. They require a significant  amount  of 
synchronisations and data exchange. The second sub- 
category consists of methods that build local cluster- 
ing models and send them to a central site to build 
global models (Laloux et al. 2011). 

In  (Dhillon  &  Modha 1999) and (Dhillon  & 
Modha 2000), message-passing versions of the widely 
used K-Means  algorithm were proposed. In   (Ester 
et al. 1996) and  (Xu et al. 1999), the authors dealt 
with  the parallelisation of DBSCAN; density-based 
clustering algorithm. In  (Garg et al. 2006) a parallel 
message passing version of the BIRCH algorithm was 
presented. A parallel version of a hierarchical cluster- 
ing algorithm, called MPC for Message Passing Clus- 
tering,  which is especially dedicated to Microarray 
data was introduced in  (H.Geng et al. 2005). Most 
of the parallel approaches need either multiple  syn- 
chronisation constraints between processes or a global 
view of the dataset, or both (Aouad, Khac & Kechadi 
2007). All these approaches deal with the parallelisa- 
tion of the sequential version of the algorithm by try- 
ing phases of the algorithm which can be executed in 
parallel by several processors. However, this requires 
many synchronisations either to access shared data 
(for the shared memory model) or communications 
(for message passing model). In some algorithm these 
synchronisations and communications are extremely 
expensive and it is not worth parallelising them. This 
approach is not usually scalable. 

In (Brecheisen et al. 2006) a client-server model 
is adopted, where the data is equally partitioned and 
distributed  among the servers,  each of which com- 
putes the clusters locally and sends back the results 
to the master. The master merges the partially clus- 
tered results to obtain the final results. This strategy 
incurs a high communication overhead between the 
master and slaves, and a low parallel efficiency during 
the merging process.   Other parallelisations  using a 
similar client-server model include (Arlia & Coppola 
2001, Chen et al. 2010, Coppola & Vanneschi 2002, 
Fu et al. 2011, Guo & Grossman 2002, Zhou et al. 
2000).  Among these approaches,  various program- 
ming mechanisms have been used, for example, a spe- 
cial parallel programming environment, called skele- 
ton  based programming in  (Coppola &  Vanneschi 
2002) and parallel virtual  machine in (Guo & Gross- 
man 2002). A Hadoop-based approach is presented 
in (Fu et al. 2011). 

Another approach presented in  (Aouad, Khac & 
Kechadi 2007) also applied a merging of local models 
to create the global models. Current approaches only 



 

local models to build global ones. If the local models 
cannot effectively represent local datasets then global 
models accuracy will  be  very poor   (Laloux  et al. 
2011). In addition, both partitioning and hierarchical 
categories  have  some issues which are very difficult 
to deal with  in parallel versions. For the  partition- 
ing class, it needs the number of clusters to be fixed 
in advance, while in the majority of applications the 
number of classes is not known in advance. For the hi- 
erarchical clustering algorithms, they have the issue 
of stopping conditions for clustering decomposition, 
which is not an easy task and mainly in distributed 
versions. 

 
3    Dynamic  Distributed Clustering 

 
Dynamic Distributed Clustering (DDC) model is in- 
troduced to deal with the limitations  of the parallel 
and master-slave models. DDC combines the char- 
acteristics of both partitioning  and hierarchical clus- 
tering methodes. In addition, it does neither inherit 
the problem of the number of partitions to be fixed in 
advance nor the problem of stopping conditions. It is 
calculated dynamically and generates global clusters 
in a hierarchical way.  All  these features look very 
promising and some of them have been thoroughly 
studies in  (Bendechache, Kechadi & Le-Khac 2016), 
such as the dynamic calculation of the number of the 
clusters and the accuracy of the final clustering, in 
this study one wants to show the effect of the com- 
munications on the response time, the communica- 
tion model used, the scalability of the approach, and 
finally its performance in terms of speed up compared 
to the sequential version. In this paper we will focus 
on 

 

• Synchronous and asynchronous communications, 
as this approach can be implemented  either with 
synchronous or  asynchronous  communications. 
Both implementations produce the same results. 

 

• The speed-up of the DDC approach using DB- 
SCAN as the basic algorithm for clustering the 
partitions.  This algorithm is known to have non- 
polynomial complexity (O(n2 )). 

 

• Scalability  of the approach as the size of the 
dataset increases. 

 

We start by briefly explaining the algorithm and 
then present a performance and evaluation model for 
the approach. 

The DDC approach has two main phases.  In the 
first phase, we cluster the datasets located on each 
processing node and select good local representatives. 
All local clustering algorithms are executed in paral- 
lel without  communications between the nodes. As 
DBSCAN is the basic algorithm for clustering local 
datasets, we can reach a super lineare speed-up of p2 , 
where p is the number of processing nodes. The sec- 
ond phase collects the local clusters from each node 
and affects them to some special nodes in the sys- 
tem; called leaders. The leaders are elected according 
to their  characteristics  such as capacity, processing 
power, connectivity,  etc.  The leaders are responsi- 
ble for merging the local clusters.  In the following 
we explain how the local clusters are represented and 
merged to generate global clusters. 

 
3.1    Local Models 

 

The local clusters are highly dependent on the clus- 
tering techniques  used locally in each node. For in- 
stance, for spatial datasets, the shape  of a cluster 

is usually  dictated by the technique  used to obtain 
them.   Moreover, this  is  not an issue for the first 
phase, as the accuracy of a cluster affects only the 
local results of a given node.  However, the second 
phase requires sending and receiving all local clusters 
to the leaders. As the whole data is very large, this 
operation will saturate very quickly the network. So, 
we must avoid sending all the original data through 
the network. The key idea of the DDC approach is to 
send only the cluster’s representatives, which consti- 
tute between 1% and 2% of the whole data. The clus- 
ter representatives consist of the internal data repre- 
sentatives plus the boundary points of the cluster. 

There are many existing data reduction techniques 
in the literature.  Many of them are focusing only on 
the dataset size.  For instance, they try  to reduce 
the storage capacity without paying attention to the 
knowledge contained in the data. In  (Le-Khac et al. 
2010), an efficient reduction technique has been pro- 
posed; it is based on density-based clustering. Each 
cluster is represented by a set of carefully selected 
data-points, called representatives.  However,  select- 
ing representatives is still a challenge in terms of qual- 
ity and size (Januzaj et al. 2004, Laloux et al. 2011). 

The best way to represent a spatial cluster is by 
its shape and density. The shape of a cluster is rep- 
resented by its boundary points (called contour) (see 
Figure 1). Many algorithms for extracting the bound- 
aries from a cluster can be found in the literature 
(Fadilia et al. 2004, Chaudhuri et al. 1997, Melkemi 
& Djebali 2000, Edelsbrunner et al. 1983, Moreira & 
Santos 2007). We use an algorithm based on trian- 
gulation to generate the clusters’ boundaries (Duck- 
hama et  al. 2008).  It is an efficient  algorithm  for 
constructing non-convex boundaries. It is able to ac- 
curately characterise the shape of a wide range of dif- 
ferent point distributions and densities with a reason- 
able complexity of O(n log n). 

 
3.2    Global  Models 
 

The global clusters are generated in the second phase 
of the DDC. This phase is also executed in a dis- 
tributed  fashion but,  unlike  the first  phase, it has 
communications overheads.  This phase consists of 
two main steps, which can be repeated until all the 
global clusters were generated. First, each leader col- 
lects the local clusters of its neighbours. Second, the 
leaders will merge the local clusters using the overlay 
technique. The process of merging clusters will con- 
tinue until we reach the root node.  The root node 
will contain the global clusters  (see Figure 1). 

The pseudo code of the algorithm is given in Al- 
gorithm 1. 

In DDC we only exchange the boundaries of the 
clusters.  The  communications can be synchronous 
or asynchronous. We implemented this phase using 
both types of communications. An evaluation model 
is presented in the next Section. 

 
4    DDC EVALUATION 
 
In order to evaluate the performance of the DDC ap- 
proach, we use different  local clustering algorithms. 
For instance, with  both K-Means   (Bendechache & 
Kechadi 2015) and DBSCAN (Bendechache, Kechadi 
& Le-Khac 2016, Bendechache,  Le-Khac & Kechadi 
2016), the DDC  approach outperforms existing al- 
gorithms in both quality  of its results and response 
time including K-Means and DBSCAN applied to the 
whole dataset. In this section we evaluate its speed- 
up, scalability, and which architecture is more appro- 



 

 
 

Figure 1: An overview of the DDC Approach. 
 
 
 

priate to implement it.  In addition, we compare DDC 
with the sequential version of the basic clustering al- 
gorithm used within DDC. 

The proposed approach is more developed for dis- 
tributed  systems than pure parallel systems. There- 
fore, it is worth analysing the benefits of using syn- 
chronous or asynchronous processing mechanism,  as 
distributed systems are asynchronous and the block- 
ing operations have a strong impact in communica- 
tion time (Solar et al. 2013). 

 
 
 

 
Figure 3: Asynchronous communications. 

 
 
 

As can be seen in the example given in Figure 3, M3 

and M4  start merging their results before M1  and M2 

finish their computations. 
 
 

Figure 2: Synchronous communications. 
 
 

In synchronous model, as illustrated in Figure 2, 
although machines M3   and M4   have finished their 
computations before M1  and M2 , they can not send 
their results until M1  and M2  finish as well.  In this 
model, Not only the computations and communica- 
tions are not overlapped but also the machines which 
finished early wasted sometime waiting for the other 
to finish  (Solar et al. 2013). 

In  asynchronous  model the machines which fin- 
ished early  can advance to the next step.  The ma- 
chines manage their communications and the 1st and 
2nd phase overlap. This model is much more suitable 
for distributed computing, where the nodes are het- 
erogeneous and the communications are usually slow. 

4.1    DDC Computational Complexity 
 

Let M  be the number of nodes and ni   the dataset 
given to each node vi  in the system. The complexity 
of our approach is the sum of its components’ com- 
plexity; local mining, local reduction, and global ag- 
gregation. 

Phase1 - Local clustering: Let Γ(ni ) denote the 
local clustering algorithm running on node (vi ), and 
∆(ci ) be the time required to execute the reduction 
algorithm. The cost of this phase is given by: 
 

M 

TP hase1 
= Max(Γ(ni ) + ∆(ci ))  (1) 

i=1 

 
Where ci  is the cluster points generated by node 

vi . Note that the reduction algorithm is of complexity 
O(ci log ci ). 



 

Machine’s name Operating  System Processor Memory 

Dell-XPS L421X Ubuntu 
(V.14.04 LTS) 

1.8GHz*4 
Intel Core i5 

8 GB 

Dell-Inspiron-3721 Ubuntu 
(V.14.04 LTS) 

2.00GHz*4 
Intel Core i5 

4 GB 

Dell-Inspiron-3521 Ubuntu 
(V.16.04 LTS) 

1.8 GHz*4 
Intel Core i5 

6 GB 

iMac-Early 2010 cinux Mint 
(V.17.1 Rebecca) 3.06GHz*2 4 GB 

Dell-Inspiron-5559 Ubuntu 
(V.16.04 LTS) 

2.30GHz*4 
Intel Core i5 

8 GB 

iMac-Early 2009 OS X El Capitan 
(V.10.11.6) 

2.93 *2 GHz 
Intel Core Due 

8 GB 

MacBook Air OS X El Capitan 
(V.10.11.3) 

1.6 *2 GHz 
Intel Core i5 

8 GB 

 

Benchmark Size Descriptions 
 

D1 
 

10,000 Points 
Different shapes, with 

some clusters surrounded 
by others 

 
D2 

 
30,000 Points 

2 small circles, 
1 big circle 

and 2 linked ovals 

 

Algorithm 1 DDC Algorithm 

initialization 
    N odei  ∈ N , N : The Total nodes in the system. 

Phase 1 –  Local Clustering 

input   : Xi : Dataset Fragment, P aramsi : In- 
put parameters for the local clustering: P aramsi = 
(Epsi , M inP tsi ) for DBSCAN 

output:  Ci : Cluster’s contours of N odei 
 

foreach N odei  do 
Li =Local Clustering(Xi ,P aramsi ) 
// N odei   executes  a clustering 
algorithm locally. 
Ci =Contour(Li )  // N odei   executes  a 

contour  algorithm locally. 
end

 

4.2    DDC Speedup 
 

The DDC speedup is calculated against the sequential 
version of the approach. The sequential version con- 
sists clustering all the data on one machine. There- 
fore, it does require neither reduction nor aggregation. 
Let T1 be the execution time of the sequential version 
and Tp  the execution time of the DDC on p nodes. 
The speedup α is given by 
 

α = 
T1 

(3) 
Tp 

 
Note that if the complexity of the clustering algo- 

rithm  is polynomial then the optimal speedup that 
can be reached is P , under the condition that there is 
no overhead due to communications and extra work. 

   If the complexity of the clustering algorithm is O(n2 ) 
    Phase 2 – Merging 

input   : D:  tree degree, Ci :  Local cluster’s 
contours generated by N odei  in the phase01 

output:  CGk,level   
: Global Cluster’s contours 

(global results, level=0) 
 

repeat 
level = treeheight 
N odei  joins a group GK,Level  of D elements 
// N odei   joins its neighbourhood 
N odej =ElectLeaderNode(GK,Level ) 
// N odej   is the  leader   of  the  group  G 
// In  parallel 
foreach N odei  ∈ GK,Level do 

if (i <> j) then 
Send  (Ci , N odej )  // Each node 

sends its contours to  others 
nodes in the  same  group  of 
neighbourhood 

else 
Recv (C  ≡  ({Cl },  N odel ))   // If 

the  node is the  leader, it 
will receive the  others   node’s 
contours in the  same  group  of 
neighbourhood 
GK,Level = Merge (Ci , C )  // Merge 

the  overlapping contours 
end 

end 
level - - 

until  (level == 0); 
return  (CGk,0 

) 

then the optimal speedup can be P 2 ; this is called su- 
per speedup. In the following section we will evaluate 
the speedup in the case of DBSCAN. 

 
5    Experimental Results 
 
We have implemented our approach on a distributed 
computing system. The distributed  computing sys- 
tem  consists of  heterogeneous  desktops (different 
CPUs, OSs, memory  sizes, loads, etc.). We use JADE 
(Java Agent  DEvelopment), as a development  plat- 
form to implement the approach. JADE is based on 
a 2P2 communication architecture, It allows to use 
heterogeneous processing nodes, it is scalable, and dy- 
namic  (Cortese 2005, Bellifemine et al. 2005). 

The system nodes (desktops)  are connected to lo- 
cal area networks.  This allows us to add as many 
nodes as required, depending on the experiment. Ta- 
ble 1 lists types of machines used to perform the ex- 
periments.  The main goal here  is to  demonstrate 
the performance of the DDC in a heterogeneous dis- 
tributed computing environment. 
 

Table 1: The characteristics of the used Machines 

 
 

Phase2  -  Aggregation:   The aggregation de- 
pends on the hierarchical combination of contours of 
local clusters.   As the combination is based on the 
intersection of edges from the contours, the complex- 
ity of this phase is O(wi log wi + p). Where wi  is the 
total vertices of the contours by node vi  and p is the 
intersection points between edges of different contours 
(polygons). 

Total complexity:  The total complexity of the 
DDC approach, assuming that the local clustering al- 
gorithm is DBSCAN which is of complexity O(n2 ), 
is: 

 

TT otal = O(n2 )+O(ci log ci )+O(wi log wi +p) � O(n2 ) 

 

 
We  used two  benchmarks of datasets from 

Chameleon (Fränti 2015). These are commonly used 
to test and evaluate clustering.  Table 2 gives details 
about the datasets. 
 

Table 2: Datasets 

i i 
(2) 

 

 
The DDC approach is tested using various parti- 

tions of different sizes. Various scenarios were created 



 

1 

based on the goals of the experiments. These scenar- 
ios mainly differ on the way the datasets are divided 
among the processing nodes of the distributed plat- 
form.  For each scenario, we recorded the execution 
time for the local clustering, the merging step includ- 
ing contour calculations, aggregation time and Idle 
time.).   finally  we capture also the total  execution 
time that the approach takes to finish all the steps. 
in the following we describe the different scenarios 
considered. 

 
5.1    Experiment I 

 

In this scenario we give each machine a random chunk 
of the dataset, the size of the partition  that was gen- 
erated for each machine is in the range between 1500 
points and 10000 points. As the dataset is relatively 
small we chose eight machines for the computing plat- 
form. 

Table 3 shows the execution time taken by each 
machine to run the algorithm (step one and step two) 
using synchronous and asynchronous communications 
respectively, it also shows the overall time taken to 
finish all the steps. 

From Table 3, we can see that the time taken by 
each machine to accomplish the first step of the al- 
gorithm is the same for both synchronous and asyn- 
chronous, whereas the time of the second step is dif- 
ferent. We can also notice that each machine returns 
different execution time of the whole algorithm. This 
is because the machines have different capacities  (see 
Table 1). 

The total execution time of the algorithm while us- 
ing synchronous communication is smaller compared 
to when using synchronous communication. This is 
because  in  synchronous communications, machines 
have more waiting time (up to 60% waiting time). 

 
5.2    Experiment II 

 

In this scenario we allocate the whole dataset size to 
one machine and the remaining machines were allo- 
cated one eight of the dataset each.  This scenario is 
chosen to show the worst case of waiting time. 

Table 4 shows the execution time taken by each 
machine to  execute the DDC  technique (step one 
and step two)  using synchronous and asynchronous 
communications respectively, it also shows the over- 
all time taken to finish all the steps. 

From Table 4, we can notice that  the difference 
between the execution times of the synchronous and 
asynchronous DDC is still significant. Because with 
synchronous communications the machines need to 
wait for the last machine to finish its first step before 
they all start merging their results (step 2), whereas 
for asynchronous model the seven machines  did the 
merging (step2) while the last machine finishes its 
clustering (step1). 

 
5.3    Experiment III 

 

In  this scenario we allocate to  seven machines the 
whole dataset and the one machine was allocated one 
eight of the dataset. This scenario is chosen to show 
the effect of the complexity of the  local clustering 
complexity on the machines and on the waiting time 
of some powerful machines. 

Table 5 shows the execution time taken by each 
machine to run the algorithm (step one and step two) 
using synchronous and asynchronous communications 
respectively, it also shows the overall time taken to 
finish all the steps. 

This scenario is the opposite of the previous sce- 
nario.  Unlike the previous scenarios, Table 5 shows 
that  the difference between the execution times of 
synchronous and asynchronous versions of the DDC 
is smaller. This is because in both cases the machines 
spend more time finishing the first step, therefore, the 
waiting time is less for synchronous over asynchronous 
model. 

 
5.4    Experiment IV 
 

In this scenario we took into account the machines 
capabilities and we divide the datasets according to 
their  capacities. Therefore the work load is evenly 
distributed among them and we expect them to finish 
the first phase more or less at the same time. This al- 
lows to reduce the waiting time of the machines and 
follow immediately with  the second phase. The to- 
tal execution times of synchronous and asynchronous 
versions should be the same. This case favours more 
the synchronous implementation of the approach. 

As predicted, Table 6 shows that there is no signifi- 
cant difference between the two execution times. Note 
that the little  difference in favour of the synchronous 
version is due to the fact that  in the asynchronous 
model the machines still  need to execute the algo- 
rithm that checks which one finished first and receive 
the contours for merging. 

 
5.5     Effective Speedup 
 

The goal here is to compare our parallel clustering to 
the sequential algorithm and show the DDC speedup 
over the sequential version of clustering, as mentioned 
in Equation 3. 

Considering the best scenario of executing the se- 
quential version of DBSCAN on the fastest machine in 
the system. For instance, T1 = 15841 ms. Clustering 
a partition  of the same dataset on the same machine 
will take = T d = 258 ms. The execution time of the 
DDC on the same datasets on eight  heterogeneous 
machines with  load balancing is Tp  = 1761 ms (see 
Table 6). Therefore, from equation 3, we can deduce 
a speedup of 9, which is still a super-linear speedup. 
In the next section we will show how many processing 
nodes are required to cluster a dataset of size N . 

 
5.6    Scalability 
 

The goal here is to show that  the DDC  technique 
scales  well and also we can dynamically determine 
the optimal number of processing nodes required to 
cluster a dataset of size N . We consider two datasets, 
the first dataset D1  contains 10, 000 data points and 
the second D1  contains 30, 000 data points. Figure 4 
shows the execution time (y axis is in log2 ) against 
the number of machines in the system using the first 
dataset and Figure 5 shows the execution time (y axis 
is in log2 ) against the number of machines in the sys- 
tem using the second dataset contains 30, 000 data 
points. 

As one can see, from both Figures 4 and 5, the ex- 
ecution time of the first phase (Clustering and Con- 
tour) keeps decreasing as the number of machines in 
the distributed system increases.  However, the time 
of the second phase (merging) keeps increasing  grad- 
ually with the number of machines in the distributed 
system that is because the amount of communications 
in the second phase increases when the number of ma- 
chines increases. 

In addition, the total execution time of the algo- 
rithm  (which is the sum of the two times, phase one 



 

Table 3: Time (ms) taken by eight machines to run scenario I using synchronous and asynchronous 
communications 

 

 Synchronous Asynchronous 
Machine DS Size STEP01 STEP2 Time STEP1 STEP2 Time 

M1 10000 21270 1104 22374 21270 554 21824 
M2 2500 1060 20862 21922 1060 2515 3575 
M3 3275 5093 16930 22023 5093 2017 7110 
M4 5000 4592 17644 22236 4591 2620 7211 
M5 1666 227 21642 21869 227 391 618 
M6 2000 292 21736 22028 292 416 708 
M7 5000 7520 14665 22185 7515 13949 21464 
M8 1500 200 21842 22042 195 4605 4800 

 Total Exec-Time 22374 Total Exec-Time 21824 
 

Table 4: Time (ms) taken by eight machines to run scenario II using synchronous and asynchronous 
communications 

 

 Synchronous Asynchronous 
Machine DS Size STEP1 STEP2 Time STEP1 STEP2 Time 

M1 10000 21270 973 22243 21270 595 21865 
M2 1250 215 21775 21990 215 518 733 
M3 1250 640 21383 22023 640 20100 20740 
M4 1250 304 21730 22034 304 497 801 
M5 1250 161 22034 22195 161 394 555 
M6 1250 171 21856 22027 170 286 456 
M7 1250 245 21918 22163 245 509 754 
M8 1250 185 21854 22039 185 858 1043 

 Total Exec-Time 22243 Total Exec-Time 21865 
 

Table 5: Time (ms) taken by eight machines to run scenario III using synchronous and asynchronous 
communications 

 

 Synchronous Asynchronous 
Machine DS Size STEP1 STEP2 Time STEP1 STEP2 Time 

M1 10000 21270 35978 57248 21270 905 22175 
M2 10000 21590 34869 56459 21590 11513 33103 
M3 10000 53005 3008 56013 53005 3292 56297 
M4 10000 32424 24691 57115 32424 6996 39420 
M5 10000 17364 38493 55857 17364 4612 21976 
M6 10000 15841 41237 57078 15841 2066 17907 
M7 10000 38732 18483 57215 38727 18459 57186 
M8 1250 185 56915 57100 184 16077 16261 

 Total Exec-Time 57248 Total Exec-Time 57186 
 

Table 6: Time (ms) taken by eight machines to run scenario IV using synchronous and asynchronous 
communications 

 

 Synchronous Asynchronous 
Machine DS Size STEP1 STEP2 Time STEP1 STEP2 Time 

M1 1500 256 1505 1761 256 1159 1415 
M2 1660 260 598 858 260 1512 1772 
M3 500 252 1061 1313 252 626 878 
M4 1000 253 621 874 253 608 861 
M5 1500 255 1492 1747 255 600 855 
M6 1400 260 605 865 260 514 774 
M7 1000 259 1030 1289 259 939 1198 
M8 1500 250 603 853 250 1500 1750 

 Total Exec Time 1761 Total Exec Time 1772 
 

 
and two) keep decreasing as the number of process- 
ing nodes increases until it reaches  a certain points 
where the total execution time starts to increase (at 
8 machines for dataset D1   and at 16 machines for 
dataset D2 ). The optimal number of processing nodes 
required to execute DDC is returned when the over- 
head of the approach exceeds the execution time of 
the local clustering. This is a very interesting charac- 
teristic, as one can determine  the number of machines 

that can be allocated in advance. 

 
6    Conclusion 
 
In this paper, we proposed an efficient and flexible dis- 
tributed clustering framework that can work with ex- 
isting data mining algorithms. The approach exploits 
the processing power of the distributed platform by 



 

 
 

Figure 4: Scalability Experiment using dataset T1 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Scalability Experiment using dataset T2 . 

maximising the parallelism and minimising the com- 
munications and mainly the size of the data that  is 
exchanged between the nodes of the system. It is im- 
plemented using both synchronous and asynchronous 
communications, and the results were significantly in 
favour of the asynchronous model. The approach has 
an efficient data reduction phase which reduces sig- 
nificantly the size of the data exchanged therefore, it 
deals with the problem of communication overhead. 
The DDC approach has a super-linear speedup when 
the complexity of the local clustering has an NP com- 
plexity.  We also can determine the optimal number 
of processing nodes in advance. 
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